Digital Systems Laboratory

Size: px
Start display at page:

Download "Digital Systems Laboratory"

Transcription

1 2012 Fall CSE140L Digital Systems Laboratory Lecture #2 by Dr. Choon Kim CSE Department, UCSD Lecture #2 1

2 Digital Technologies CPU(Central Processing Unit) GPU(Graphics Processing Unit) DSP(Digital gnal Processor) SoC(System on Chip) FPGA (Field Programmable Gate Array) ASIC (Application Specific Integrated Circuit) Custom Designs etc. 2

3 DE1 Board Kit 3

4 FPGAs (Field Programmable Gate Arrays) Programmable Logic Block Switches -SRAM based (Flash memory) -Antifuse Switch Matrix Wiring Channels Disadvantages: Penalty on area, density, speed Advantages: Flexibility, low startup costs, low risk, revisions without changing the hardware 4

5 Periodic table Periodic Table Lecture #2 5

6 Transistors: licon Transistors are built out of silicon, a semiconductor Pure silicon is a poor conductor (no free charges) Doped silicon is a good conductor (free charges) n-type (free negative charges, electrons) p-type (free positive charges, holes) Free electron Free hole As B - licon Lattice n-type 1-<6> p-type 6

7 MOS Transistors Metal oxide silicon (MOS) transistors: Polysilicon (used to be metal) gate Oxide (silicon dioxide) insulator Doped silicon source gate drain Polysilicon O 2 n n p substrate gate source drain nmos 1-<7> 7

8 Transistors: nmos Gate = 0, it is OFF (source and drain are disconnected) source gate GND drain Gate = 1, it is ON (channel between source and drain) Source= 0 => Drain=0 Source=1 => Drain=0.8 (Poor one) source gate V DD drain n p n substrate n channel p n substrate GND GND 1-<8> 8

9 Transistors: pmos pmos transistor is just the opposite ON when Gate = 0 Source =0 => Drain = 0.2 (Poor zero) Source =1 => Drain = 1 OFF when Gate = 1 Polysilicon source gate drain O 2 p p n substrate gate source drain 1-<9>

10 Transistor Function g = 0 g = 1 nmos g d s d s OFF d s ON pmos g s d s d ON s d OFF 1-<10> 10

11 Transistor Function nmos transistors pass good 0 s, so connect source to GND pmos transistors pass good 1 s, so connect source to V DD inputs pmos pull-up network output nmos pull-down network 1-<11> 11

12 CMOS Gate Structure inputs pmos pull-up network output nmos pull-down network 1-<12> 12

13 CMOS Gates: NOT Gate NOT V DD A Y = A A Y Y A P1 Y N1 GND A P1 N1 Y 0??? 1??? 1-<13>

14 CMOS Gates: NOT Gate NOT V DD A Y = A A Y Y A P1 Y N1 GND A P1 N1 Y 0 ON OFF 1 1 OFF ON 0 1-<14>

15 CMOS Gates: NAND Gate A B NAND Y = AB Y A B Y A B P2 P1 Y N1 N2 A B P1 P2 N1 N2 Y <15>

16 CMOS Gates: NAND Gate A B NAND Y = AB Y A B Y A B P2 P1 Y N1 N2 A B P1 P2 N1 N2 Y 0 0 ON ON OFF OFF ON OFF OFF ON OFF ON ON OFF OFF OFF ON ON 0 1-<16>

17 NOR Gate Q: How do you build a three-input NOR gate? 1-<17> 17

18 Homework: Build other gate using CMOS Q: How do you build AND gate? Q: How do you build OR gate? Q: How do you build XOR gate? Q: How do you build XNOR gate? etc. 1-<19> 19

19 Transmission Gates nmos pass 1 s poorly pmos pass 0 s poorly Transmission gate is a better switch passes both 0 and 1 well When EN = 1, the switch is ON: A is connected to B When EN = 0, the switch is OFF: A is not connected to B A EN EN B 1-<20>

20 Noise Anything that degrades the signal E.g., resistance, power supply noise, coupling to neighboring wires, etc. Example: a gate (driver) could output a 5 volt signal but, because of resistance in a long wire, the signal could arrive at the receiver with a degraded value, for example, 4.5 volts Driver Noise Receiver 5 V 4.5 V 1-<21>

21 Logic Levels Driver Receiver Logic High Output Range V O H Output Characteristics V DD NM H Input Characteristics Logic High Input Range Forbidden Zone V IH V IL Logic Low Output Range V O L NM L GND Logic Low Input Range 1-<22>

22 V DD Scaling Chips in the 1970 s and 1980 s were designed using V DD = 5 V As technology improved, V DD dropped Avoid frying tiny transistors Save power 3.3 V, 2.5 V, 1.8 V, 1.5 V, 1.2 V, 1.0 V, Be careful connecting chips with different supply voltages 1-<23>

23 Logic Family Examples Logic Family V DD V IL V IH V OL V OH TTL 5 ( ) CMOS 5 (4.5-6) LVTTL 3.3 (3-3.6) LVCMOS 3.3 (3-3.6) <24>

24 Power Consumption Power = Energy consumed per unit time Two types of power consumption: Dynamic power consumption Static power consumption 1-<25>

25 Dynamic Power Consumption Power to charge transistor gate capacitances The energy required to charge a capacitance, C, to V DD is CV DD 2 If the circuit is running at frequency f, and all transistors switch (from 1 to 0 or vice versa) at that frequency, the capacitor is charged f/2 times per second (discharging from 1 to 0 is free). P dynamic = ½CV DD2 f 1-<26>

26 Static Power Consumption Power consumed when no gates are switching It is caused by the quiescent supply current, I DD, also called the leakage current Thus, the total static power consumption is: P static = I DD V DD 1-<27>

27 Power Consumption Example Estimate the power consumption of a wireless handheld computer V DD = 1.2 V C = 20 nf f = 1 GHz I DD = 20 ma 1-<28>

28 Power Consumption Example Estimate the power consumption of a wireless handheld computer V DD = 1.2 V C = 20 nf f = 1 GHz I DD = 20 ma P = ½CV DD2 f + I DD V DD = ½(20 nf)(1.2 V) 2 (1 GHz) + (20 ma)(1.2 V) = 14.4 W 1-<29>

29 Homework Can you implement a logic with NAND or NOR gate(s) only? Why? Lecture #2 30

30 Multiplexers -If S is 0, then I 0 will pass and I 1 is blocked. Thus, y=i 0. -Likewise, if S is 1, y=i 1. 31

31 More than 2-to-1 Multiplexers -We can also make a 4:1 MUX using three 2:1 MUX A B 0 MUX 1 0 Z S 0 MUX Z C D 0 MUX 1 1 S 1 If S 1 S 0 = 00, then S 1 will select MUX from A and B. nce S 0 =0, Z= A S1 S0 Z 0 0 A 0 1? 1 0? 1 1? 32

32 Multiplexers -We can make 4:1 and above MUXes too. -With 4 inputs, our selector needs to have two bits. 33

33 Question: What is the relation between number of inputs and the min. number of bits of selector? 34

34 35

35 36

36 4-bit Ripple Carry Adders -Chain 4 1-bit full adders together. A3A2A1A0 + B3B2B1B0 = C4 S3S2S1S0 -Connect the carry-out of the previous adder and the carry-in of the next adder. -Worst delay path (critical path): from A 0, B 0, or C 0 to S 3, or C 4 37

37 Critical Path for worst delay Propagation from C 0 to C C 0 C 4 38

38 Lecture #2 39

39 Welcome to Verilog Lecture #2 40

40 Introduction to Verilog HDL Home work(reading materials) Warning: Some information contained in the following reading materials(or any material in general) may be incorrect and not working. Only way to verify the correctness of the information is to test it by simulating and synthesizing using our Altera Quartus SW & HW kit. 1. [Quartus II example with Verilog]: Note: You can do this without understanding of Verilog. Follow the instructions described in tut_quartus_intro_verilog_de1 This is the same homework in Lecture#1 except Verilog is used as a design entry instead of Schematic diagram. 2. [Tutorial for beginner]: Follow Verilog short tutorial to make yourself familiar with this new design entry methodology. 3. [Manual]: intro_verilog_manual 4. [Short Reference Card]: Two-page Card Multiple-page Card 5. In addition, there are numerous Verilog information & tutorials available on the web in doc, book, & video format. The Verilog on wiki is an excellent place to learn the background. This Verilog Tutorial is one of tutorial sites. You can use whatever you feel comfortable. 41

EE 42/100 Lecture 23: CMOS Transistors and Logic Gates. Rev A 4/15/2012 (10:39 AM) Prof. Ali M. Niknejad

EE 42/100 Lecture 23: CMOS Transistors and Logic Gates. Rev A 4/15/2012 (10:39 AM) Prof. Ali M. Niknejad A. M. Niknejad University of California, Berkeley EE 100 / 42 Lecture 23 p. 1/16 EE 42/100 Lecture 23: CMOS Transistors and Logic Gates ELECTRONICS Rev A 4/15/2012 (10:39 AM) Prof. Ali M. Niknejad University

More information

Topic 6. CMOS Static & Dynamic Logic Gates. Static CMOS Circuit. NMOS Transistors in Series/Parallel Connection

Topic 6. CMOS Static & Dynamic Logic Gates. Static CMOS Circuit. NMOS Transistors in Series/Parallel Connection NMOS Transistors in Series/Parallel Connection Topic 6 CMOS Static & Dynamic Logic Gates Peter Cheung Department of Electrical & Electronic Engineering Imperial College London Transistors can be thought

More information

ECE380 Digital Logic. Logic values as voltage levels

ECE380 Digital Logic. Logic values as voltage levels ECE380 Digital Logic Implementation Technology: NMOS and PMOS Transistors, CMOS logic gates Dr. D. J. Jackson Lecture 13-1 Logic values as voltage levels V ss is the minimum voltage that can exist in the

More information

Chapter 6 DIFFERENT TYPES OF LOGIC GATES

Chapter 6 DIFFERENT TYPES OF LOGIC GATES Chapter 6 DIFFERENT TYPES OF LOGIC GATES Lesson 8 NMOS gates Ch06L8-"Digital Principles and Design", Raj Kamal, Pearson Education, 2006 2 Outline NMOS (n-channel based MOSFETs based circuit) NMOS Features

More information

CMOS Digital Logic Design with Verilog. Chapter1 Digital IC Design &Technology

CMOS Digital Logic Design with Verilog. Chapter1 Digital IC Design &Technology CMOS Digital Logic Design with Verilog Chapter1 Digital IC Design &Technology Chapter Overview: In this chapter we study the concept of digital hardware design & technology. This chapter deals the standard

More information

ECE/CoE 0132: FETs and Gates

ECE/CoE 0132: FETs and Gates ECE/CoE 0132: FETs and Gates Kartik Mohanram September 6, 2017 1 Physical properties of gates Over the next 2 lectures, we will discuss some of the physical characteristics of integrated circuits. We will

More information

420 Intro to VLSI Design

420 Intro to VLSI Design Dept of Electrical and Computer Engineering 420 Intro to VLSI Design Lecture 0: Course Introduction and Overview Valencia M. Joyner Spring 2005 Getting Started Syllabus About the Instructor Labs, Problem

More information

Digital Electronics Part II - Circuits

Digital Electronics Part II - Circuits Digital Electronics Part II - Circuits Dr. I. J. Wassell Gates from Transistors 1 Introduction Logic circuits are non-linear, consequently we will introduce a graphical technique for analysing such circuits

More information

ECE 334: Electronic Circuits Lecture 10: Digital CMOS Circuits

ECE 334: Electronic Circuits Lecture 10: Digital CMOS Circuits Faculty of Engineering ECE 334: Electronic Circuits Lecture 10: Digital CMOS Circuits CMOS Technology Complementary MOS, or CMOS, needs both PMOS and NMOS FET devices for their logic gates to be realized

More information

Chapter 3 Digital Logic Structures

Chapter 3 Digital Logic Structures Chapter 3 Digital Logic Structures Transistor: Building Block of Computers Microprocessors contain millions of transistors Intel Pentium 4 (2000): 48 million IBM PowerPC 750FX (2002): 38 million IBM/Apple

More information

Chapter 3. H/w s/w interface. hardware software Vijaykumar ECE495K Lecture Notes: Chapter 3 1

Chapter 3. H/w s/w interface. hardware software Vijaykumar ECE495K Lecture Notes: Chapter 3 1 Chapter 3 hardware software H/w s/w interface Problems Algorithms Prog. Lang & Interfaces Instruction Set Architecture Microarchitecture (Organization) Circuits Devices (Transistors) Bits 29 Vijaykumar

More information

Lecture 0: Introduction

Lecture 0: Introduction Lecture 0: Introduction Introduction Integrated circuits: many transistors on one chip. Very Large Scale Integration (VLSI): bucketloads! Complementary Metal Oxide Semiconductor Fast, cheap, low power

More information

Basic Fabrication Steps

Basic Fabrication Steps Basic Fabrication Steps and Layout Somayyeh Koohi Department of Computer Engineering Adapted with modifications from lecture notes prepared by author Outline Fabrication steps Transistor structures Transistor

More information

Low Power 8-Bit ALU Design Using Full Adder and Multiplexer

Low Power 8-Bit ALU Design Using Full Adder and Multiplexer Low Power 8-Bit ALU Design Using Full Adder and Multiplexer Gaddam Sushil Raj B.Tech, Vardhaman College of Engineering. ABSTRACT: Arithmetic logic unit (ALU) is an important part of microprocessor. In

More information

2009 Spring CS211 Digital Systems & Lab 1 CHAPTER 3: TECHNOLOGY (PART 2)

2009 Spring CS211 Digital Systems & Lab 1 CHAPTER 3: TECHNOLOGY (PART 2) 1 CHAPTER 3: IMPLEMENTATION TECHNOLOGY (PART 2) Whatwillwelearninthischapter? we learn in this 2 How transistors operate and form simple switches CMOS logic gates IC technology FPGAs and other PLDs Basic

More information

Figure.1. Schematic of 4-bit CLA JCHPS Special Issue 9: June Page 101

Figure.1. Schematic of 4-bit CLA JCHPS Special Issue 9: June Page 101 Delay Depreciation and Power efficient Carry Look Ahead Adder using CMOS T. Archana*, K. Arunkumar, A. Hema Malini Department of Electronics and Communication Engineering, Saveetha Engineering College,

More information

Layers. Layers. Layers. Transistor Manufacturing COMP375 1

Layers. Layers. Layers. Transistor Manufacturing COMP375 1 VLSI COMP375 Computer Architecture Middleware other CS classes Machine Language Microcode Logic circuits Transistors Middleware Machine Language - earlier Microcode Logic circuits Transistors Middleware

More information

+1 (479)

+1 (479) Introduction to VLSI Design http://csce.uark.edu +1 (479) 575-6043 yrpeng@uark.edu Invention of the Transistor Vacuum tubes ruled in first half of 20th century Large, expensive, power-hungry, unreliable

More information

EC 1354-Principles of VLSI Design

EC 1354-Principles of VLSI Design EC 1354-Principles of VLSI Design UNIT I MOS TRANSISTOR THEORY AND PROCESS TECHNOLOGY PART-A 1. What are the four generations of integrated circuits? 2. Give the advantages of IC. 3. Give the variety of

More information

EE4800 CMOS Digital IC Design & Analysis. Lecture 1 Introduction Zhuo Feng

EE4800 CMOS Digital IC Design & Analysis. Lecture 1 Introduction Zhuo Feng EE4800 CMOS Digital IC Design & Analysis Lecture 1 Introduction Zhuo Feng 1.1 Prof. Zhuo Feng Office: EERC 730 Phone: 487-3116 Email: zhuofeng@mtu.edu Class Website http://www.ece.mtu.edu/~zhuofeng/ee4800fall2010.html

More information

CPE/EE 427, CPE 527 VLSI Design I: Homeworks 3 & 4

CPE/EE 427, CPE 527 VLSI Design I: Homeworks 3 & 4 CPE/EE 427, CPE 527 VLSI Design I: Homeworks 3 & 4 1 2 3 4 5 6 7 8 9 10 Sum 30 10 25 10 30 40 10 15 15 15 200 1. (30 points) Misc, Short questions (a) (2 points) Postponing the introduction of signals

More information

Chapter 6 DIFFERENT TYPES OF LOGIC GATES

Chapter 6 DIFFERENT TYPES OF LOGIC GATES Chapter 6 DIFFERENT TYPES OF LOGIC GATES Lesson 9 CMOS gates Ch06L9-"Digital Principles and Design", Raj Kamal, Pearson Education, 2006 2 Outline CMOS (n-channel based MOSFETs based circuit) CMOS Features

More information

Reference. Wayne Wolf, FPGA-Based System Design Pearson Education, N Krishna Prakash,, Amrita School of Engineering

Reference. Wayne Wolf, FPGA-Based System Design Pearson Education, N Krishna Prakash,, Amrita School of Engineering FPGA Fabrics Reference Wayne Wolf, FPGA-Based System Design Pearson Education, 2004 CPLD / FPGA CPLD Interconnection of several PLD blocks with Programmable interconnect on a single chip Logic blocks executes

More information

4-bit counter circa bit counter circa 1990

4-bit counter circa bit counter circa 1990 Digital Logic 4-bit counter circa 1960 8-bit counter circa 1990 Logic gates Operates on logical values (TRUE = 1, FALSE = 0) NOT AND OR XOR 0-1 1-0 0 0 0 1 0 0 0 1 0 1 1 1 0 0 0 1 0 1 0 1 1 1 1 1 0 0 0

More information

Microcontroller Systems. ELET 3232 Topic 13: Load Analysis

Microcontroller Systems. ELET 3232 Topic 13: Load Analysis Microcontroller Systems ELET 3232 Topic 13: Load Analysis 1 Objective To understand hardware constraints on embedded systems Define: Noise Margins Load Currents and Fanout Capacitive Loads Transmission

More information

Layers. Layers. Layers. Transistor Manufacturing COMP375 1

Layers. Layers. Layers. Transistor Manufacturing COMP375 1 Layers VLSI COMP370 Intro to Computer Architecture t Applications Middleware other CS classes High level languages Machine Language Microcode Logic circuits Gates Transistors Silicon structures Layers

More information

Digital logic families

Digital logic families Digital logic families Digital logic families Digital integrated circuits are classified not only by their complexity or logical operation, but also by the specific circuit technology to which they belong.

More information

Lecture 0: Introduction

Lecture 0: Introduction Introduction to CMOS VLSI Design Lecture : Introduction David Harris Steven Levitan Harvey Mudd College University of Pittsburgh Spring 24 Fall 28 Administrivia Professor Steven Levitan TA: Bo Zhao Syllabus

More information

A HIGH SPEED & LOW POWER 16T 1-BIT FULL ADDER CIRCUIT DESIGN BY USING MTCMOS TECHNIQUE IN 45nm TECHNOLOGY

A HIGH SPEED & LOW POWER 16T 1-BIT FULL ADDER CIRCUIT DESIGN BY USING MTCMOS TECHNIQUE IN 45nm TECHNOLOGY A HIGH SPEED & LOW POWER 16T 1-BIT FULL ADDER CIRCUIT DESIGN BY USING MTCMOS TECHNIQUE IN 45nm TECHNOLOGY Jasbir kaur 1, Neeraj Singla 2 1 Assistant Professor, 2 PG Scholar Electronics and Communication

More information

Jack Keil Wolf Lecture. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Lecture Outline. MOSFET N-Type, P-Type.

Jack Keil Wolf Lecture. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Lecture Outline. MOSFET N-Type, P-Type. ESE 570: Digital Integrated Circuits and VLSI Fundamentals Jack Keil Wolf Lecture Lec 3: January 24, 2019 MOS Fabrication pt. 2: Design Rules and Layout http://www.ese.upenn.edu/about-ese/events/wolf.php

More information

Homework 10 posted just for practice. Office hours next week, schedule TBD. HKN review today. Your feedback is important!

Homework 10 posted just for practice. Office hours next week, schedule TBD. HKN review today. Your feedback is important! EE141 Fall 2005 Lecture 26 Memory (Cont.) Perspectives Administrative Stuff Homework 10 posted just for practice No need to turn in Office hours next week, schedule TBD. HKN review today. Your feedback

More information

CHAPTER 6 DIGITAL CIRCUIT DESIGN USING SINGLE ELECTRON TRANSISTOR LOGIC

CHAPTER 6 DIGITAL CIRCUIT DESIGN USING SINGLE ELECTRON TRANSISTOR LOGIC 94 CHAPTER 6 DIGITAL CIRCUIT DESIGN USING SINGLE ELECTRON TRANSISTOR LOGIC 6.1 INTRODUCTION The semiconductor digital circuits began with the Resistor Diode Logic (RDL) which was smaller in size, faster

More information

1. Short answer questions. (30) a. What impact does increasing the length of a transistor have on power and delay? Why? (6)

1. Short answer questions. (30) a. What impact does increasing the length of a transistor have on power and delay? Why? (6) CSE 493/593 Test 2 Fall 2011 Solution 1. Short answer questions. (30) a. What impact does increasing the length of a transistor have on power and delay? Why? (6) Decreasing of W to make the gate slower,

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 0 ELECTRONICS AND COMMUNICATION ENGINEERING TUTORIAL QUESTION BANK Name : VLSI Design Code : A0 Regulation : R5 Structure :

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 3: January 24, 2019 MOS Fabrication pt. 2: Design Rules and Layout Penn ESE 570 Spring 2019 Khanna Jack Keil Wolf Lecture http://www.ese.upenn.edu/about-ese/events/wolf.php

More information

Shorthand Notation for NMOS and PMOS Transistors

Shorthand Notation for NMOS and PMOS Transistors Shorthand Notation for NMOS and PMOS Transistors Terminal Voltages Mode of operation depends on V g, V d, V s V gs = V g V s V gd = V g V d V ds = V d V s = V gs - V gd Source and drain are symmetric diffusion

More information

Lecture 1. Tinoosh Mohsenin

Lecture 1. Tinoosh Mohsenin Lecture 1 Tinoosh Mohsenin Today Administrative items Syllabus and course overview Digital systems and optimization overview 2 Course Communication Email Urgent announcements Web page http://www.csee.umbc.edu/~tinoosh/cmpe650/

More information

Department of EECS. University of California, Berkeley. Logic gates. September 1 st 2001

Department of EECS. University of California, Berkeley. Logic gates. September 1 st 2001 Department of EECS University of California, Berkeley Logic gates Bharathwaj Muthuswamy and W. G. Oldham September 1 st 2001 1. Introduction This lab introduces digital logic. You use commercially available

More information

ENG2410 Digital Design CMOS Technology. Fall 2017 S. Areibi School of Engineering University of Guelph

ENG2410 Digital Design CMOS Technology. Fall 2017 S. Areibi School of Engineering University of Guelph ENG2410 Digital Design CMOS Technology Fall 2017 S. reibi School of Engineering University of Guelph The Transistor Revolution First transistor Bell Labs, 1948 Bipolar logic 1960 s Intel 4004 processor

More information

Lecture 16. Complementary metal oxide semiconductor (CMOS) CMOS 1-1

Lecture 16. Complementary metal oxide semiconductor (CMOS) CMOS 1-1 Lecture 16 Complementary metal oxide semiconductor (CMOS) CMOS 1-1 Outline Complementary metal oxide semiconductor (CMOS) Inverting circuit Properties Operating points Propagation delay Power dissipation

More information

CHAPTER 3 NEW SLEEPY- PASS GATE

CHAPTER 3 NEW SLEEPY- PASS GATE 56 CHAPTER 3 NEW SLEEPY- PASS GATE 3.1 INTRODUCTION A circuit level design technique is presented in this chapter to reduce the overall leakage power in conventional CMOS cells. The new leakage po leepy-

More information

Spiral 1 / Unit 8. Transistor Implementations CMOS Logic Gates

Spiral 1 / Unit 8. Transistor Implementations CMOS Logic Gates 18.1 Spiral 1 / Unit 8 Transistor Implementations CMOS Logic Gates 18.2 Spiral Content Mapping Spiral Theory Combinational Design Sequential Design System Level Design Implementation and Tools Project

More information

Engr354: Digital Logic Circuits

Engr354: Digital Logic Circuits Engr354: Digital Logic Circuits Chapter 3: Implementation Technology Curtis Nelson Chapter 3 Overview In this chapter you will learn about: How transistors are used as switches; Integrated circuit technology;

More information

Digital Microelectronic Circuits ( ) CMOS Digital Logic. Lecture 6: Presented by: Adam Teman

Digital Microelectronic Circuits ( ) CMOS Digital Logic. Lecture 6: Presented by: Adam Teman Digital Microelectronic Circuits (361-1-3021 ) Presented by: Adam Teman Lecture 6: CMOS Digital Logic 1 Last Lectures The CMOS Inverter CMOS Capacitance Driving a Load 2 This Lecture Now that we know all

More information

Designing Information Devices and Systems II Fall 2017 Note 1

Designing Information Devices and Systems II Fall 2017 Note 1 EECS 16B Designing Information Devices and Systems II Fall 2017 Note 1 1 Digital Information Processing Electrical circuits manipulate voltages (V ) and currents (I) in order to: 1. Process information

More information

Design of Low power and Area Efficient 8-bit ALU using GDI Full Adder and Multiplexer

Design of Low power and Area Efficient 8-bit ALU using GDI Full Adder and Multiplexer Design of Low power and Area Efficient 8-bit ALU using GDI Full Adder and Multiplexer Mr. Y.Satish Kumar M.tech Student, Siddhartha Institute of Technology & Sciences. Mr. G.Srinivas, M.Tech Associate

More information

ECE 484 VLSI Digital Circuits Fall Lecture 02: Design Metrics

ECE 484 VLSI Digital Circuits Fall Lecture 02: Design Metrics ECE 484 VLSI Digital Circuits Fall 2016 Lecture 02: Design Metrics Dr. George L. Engel Adapted from slides provided by Mary Jane Irwin (PSU) [Adapted from Rabaey s Digital Integrated Circuits, 2002, J.

More information

Digital Design and System Implementation. Overview of Physical Implementations

Digital Design and System Implementation. Overview of Physical Implementations Digital Design and System Implementation Overview of Physical Implementations CMOS devices CMOS transistor circuit functional behavior Basic logic gates Transmission gates Tri-state buffers Flip-flops

More information

Transistor Digital Circuits

Transistor Digital Circuits Transistor Digital Circuits Switching Transistor Model (on) (on) T n T p Controlled switch model v CT > V CTex ; T- (on); i O > 0; v O 0 v CT < V Thn ; T- (off); i O = 0; v O = V PS v CT > V Thp ; T- (off);

More information

4-bit counter circa bit counter circa 1990

4-bit counter circa bit counter circa 1990 Digital Logic 4-bit counter circa 1960 8-bit counter circa 1990 Logic gates Operates on logical values (TRUE = 1, FALSE = 0) NOT AND OR XOR 0-1 1-0 0 0 0 1 0 0 0 1 0 1 1 1 0 0 0 1 0 1 0 1 1 1 1 1 0 0 0

More information

Digital Integrated CircuitDesign

Digital Integrated CircuitDesign Digital Integrated CircuitDesign Lecture 11 BiCMOS PMOS rray Q1 NMOS rray Y NMOS rray Q2 dib brishamifar EE Department IUST Contents Introduction BiCMOS Devices BiCMOS Inverters BiCMOS Gates BiCMOS Drivers

More information

INTRODUCTION TO MOS TECHNOLOGY

INTRODUCTION TO MOS TECHNOLOGY INTRODUCTION TO MOS TECHNOLOGY 1. The MOS transistor The most basic element in the design of a large scale integrated circuit is the transistor. For the processes we will discuss, the type of transistor

More information

Introduction to Electronic Devices

Introduction to Electronic Devices Introduction to Electronic Devices (Course Number 300331) Fall 2006 Dr. Dietmar Knipp Assistant Professor of Electrical Engineering Information: http://www.faculty.iubremen.de/dknipp/ Source: Apple Ref.:

More information

Lecture 12 Memory Circuits. Memory Architecture: Decoders. Semiconductor Memory Classification. Array-Structured Memory Architecture RWM NVRWM ROM

Lecture 12 Memory Circuits. Memory Architecture: Decoders. Semiconductor Memory Classification. Array-Structured Memory Architecture RWM NVRWM ROM Semiconductor Memory Classification Lecture 12 Memory Circuits RWM NVRWM ROM Peter Cheung Department of Electrical & Electronic Engineering Imperial College London Reading: Weste Ch 8.3.1-8.3.2, Rabaey

More information

BICMOS Technology and Fabrication

BICMOS Technology and Fabrication 12-1 BICMOS Technology and Fabrication 12-2 Combines Bipolar and CMOS transistors in a single integrated circuit By retaining benefits of bipolar and CMOS, BiCMOS is able to achieve VLSI circuits with

More information

Module-3: Metal Oxide Semiconductor (MOS) & Emitter coupled logic (ECL) families

Module-3: Metal Oxide Semiconductor (MOS) & Emitter coupled logic (ECL) families 1 Module-3: Metal Oxide Semiconductor (MOS) & Emitter coupled logic (ECL) families 1. Introduction 2. Metal Oxide Semiconductor (MOS) logic 2.1. Enhancement and depletion mode 2.2. NMOS and PMOS inverter

More information

ECE 2300 Digital Logic & Computer Organization

ECE 2300 Digital Logic & Computer Organization ECE 2300 Digital Logic & Computer Organization Spring 2018 CMOS Logic Lecture 4: 1 NAND Logic Gate X Y (X Y) = NAND Using De Morgan s Law: (X Y) = X +Y X X X +Y = Y Y Also a NAND We can build circuits

More information

Lecture Perspectives. Administrivia

Lecture Perspectives. Administrivia Lecture 29-30 Perspectives Administrivia Final on Friday May 18 12:30-3:30 pm» Location: 251 Hearst Gym Topics all what was covered in class. Review Session Time and Location TBA Lab and hw scores to be

More information

Lecture 4&5 CMOS Circuits

Lecture 4&5 CMOS Circuits Lecture 4&5 CMOS Circuits Xuan Silvia Zhang Washington University in St. Louis http://classes.engineering.wustl.edu/ese566/ Worst-Case V OL 2 3 Outline Combinational Logic (Delay Analysis) Sequential Circuits

More information

Low Power 8-Bit ALU Design Using Full Adder and Multiplexer Based on GDI Technique

Low Power 8-Bit ALU Design Using Full Adder and Multiplexer Based on GDI Technique Low Power 8-Bit ALU Design Using Full Adder and Multiplexer Based on GDI Technique Mohd Shahid M.Tech Student Al-Habeeb College of Engineering and Technology. Abstract Arithmetic logic unit (ALU) is an

More information

A Low Power Array Multiplier Design using Modified Gate Diffusion Input (GDI)

A Low Power Array Multiplier Design using Modified Gate Diffusion Input (GDI) A Low Power Array Multiplier Design using Modified Gate Diffusion Input (GDI) Mahendra Kumar Lariya 1, D. K. Mishra 2 1 M.Tech, Electronics and instrumentation Engineering, Shri G. S. Institute of Technology

More information

Lecture 30. Perspectives. Digital Integrated Circuits Perspectives

Lecture 30. Perspectives. Digital Integrated Circuits Perspectives Lecture 30 Perspectives Administrivia Final on Friday December 15 8 am Location: 251 Hearst Gym Topics all what was covered in class. Precise reading information will be posted on the web-site Review Session

More information

CMOS VLSI Design (A3425)

CMOS VLSI Design (A3425) CMOS VLSI Design (A3425) Unit III Static Logic Gates Introduction A static logic gate is one that has a well defined output once the inputs are stabilized and the switching transients have decayed away.

More information

Computer Architecture (TT 2012)

Computer Architecture (TT 2012) Computer Architecture (TT 212) Laws of Attraction aniel Kroening Oxford University, Computer Science epartment Version 1., 212 . Kroening: Computer Architecture (TT 212) 2 . Kroening: Computer Architecture

More information

Lecture #29. Moore s Law

Lecture #29. Moore s Law Lecture #29 ANNOUNCEMENTS HW#15 will be for extra credit Quiz #6 (Thursday 5/8) will include MOSFET C-V No late Projects will be accepted after Thursday 5/8 The last Coffee Hour will be held this Thursday

More information

Microelectronics, BSc course

Microelectronics, BSc course Microelectronics, BSc course MOS circuits: CMOS circuits, construction http://www.eet.bme.hu/~poppe/miel/en/14-cmos.pptx http://www.eet.bme.hu The abstraction level of our study: SYSTEM + MODULE GATE CIRCUIT

More information

Power-Area trade-off for Different CMOS Design Technologies

Power-Area trade-off for Different CMOS Design Technologies Power-Area trade-off for Different CMOS Design Technologies Priyadarshini.V Department of ECE Sri Vishnu Engineering College for Women, Bhimavaram dpriya69@gmail.com Prof.G.R.L.V.N.Srinivasa Raju Head

More information

3. COMPARING STRUCTURE OF SINGLE GATE AND DOUBLE GATE MOSFET WITH DESIGN AND CURVE

3. COMPARING STRUCTURE OF SINGLE GATE AND DOUBLE GATE MOSFET WITH DESIGN AND CURVE P a g e 80 Available online at http://arjournal.org APPLIED RESEARCH JOURNAL RESEARCH ARTICLE ISSN: 2423-4796 Applied Research Journal Vol. 3, Issue, 2, pp.80-86, February, 2017 COMPARATIVE STUDY ON SINGLE

More information

Architecture of Computers and Parallel Systems Part 9: Digital Circuits

Architecture of Computers and Parallel Systems Part 9: Digital Circuits Architecture of Computers and Parallel Systems Part 9: Digital Circuits Ing. Petr Olivka petr.olivka@vsb.cz Department of Computer Science FEI VSB-TUO Architecture of Computers and Parallel Systems Part

More information

Digital Systems Design

Digital Systems Design Digital Systems Design Digital Systems Design and Test Dr. D. J. Jackson Lecture 1-1 Introduction Traditional digital design Manual process of designing and capturing circuits Schematic entry System-level

More information

Device Technologies. Yau - 1

Device Technologies. Yau - 1 Device Technologies Yau - 1 Objectives After studying the material in this chapter, you will be able to: 1. Identify differences between analog and digital devices and passive and active components. Explain

More information

EECS150 - Digital Design Lecture 15 - CMOS Implementation Technologies. Overview of Physical Implementations

EECS150 - Digital Design Lecture 15 - CMOS Implementation Technologies. Overview of Physical Implementations EECS150 - Digital Design Lecture 15 - CMOS Implementation Technologies Mar 12, 2013 John Wawrzynek Spring 2013 EECS150 - Lec15-CMOS Page 1 Overview of Physical Implementations Integrated Circuits (ICs)

More information

EECS150 - Digital Design Lecture 9 - CMOS Implementation Technologies

EECS150 - Digital Design Lecture 9 - CMOS Implementation Technologies EECS150 - Digital Design Lecture 9 - CMOS Implementation Technologies Feb 14, 2012 John Wawrzynek Spring 2012 EECS150 - Lec09-CMOS Page 1 Overview of Physical Implementations Integrated Circuits (ICs)

More information

Advanced FPGA Design. Tinoosh Mohsenin CMPE 491/691 Spring 2012

Advanced FPGA Design. Tinoosh Mohsenin CMPE 491/691 Spring 2012 Advanced FPGA Design Tinoosh Mohsenin CMPE 491/691 Spring 2012 Today Administrative items Syllabus and course overview Digital signal processing overview 2 Course Communication Email Urgent announcements

More information

MOS TRANSISTOR THEORY

MOS TRANSISTOR THEORY MOS TRANSISTOR THEORY Introduction A MOS transistor is a majority-carrier device, in which the current in a conducting channel between the source and the drain is modulated by a voltage applied to the

More information

EMT 251 Introduction to IC Design

EMT 251 Introduction to IC Design EMT 251 Introduction to IC Design (Pengantar Rekabentuk Litar Terkamir) Semester II 2011/2012 Introduction to IC design and Transistor Fundamental Some Keywords! Very-large-scale-integration (VLSI) is

More information

UNIT-II LOW POWER VLSI DESIGN APPROACHES

UNIT-II LOW POWER VLSI DESIGN APPROACHES UNIT-II LOW POWER VLSI DESIGN APPROACHES Low power Design through Voltage Scaling: The switching power dissipation in CMOS digital integrated circuits is a strong function of the power supply voltage.

More information

EEC 118 Lecture #11: CMOS Design Guidelines Alternative Static Logic Families

EEC 118 Lecture #11: CMOS Design Guidelines Alternative Static Logic Families EEC 118 Lecture #11: CMOS Design Guidelines Alternative Static Logic Families Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation Announcements Homework 5 this week Lab

More information

! Review: MOS IV Curves and Switch Model. ! MOS Device Layout. ! Inverter Layout. ! Gate Layout and Stick Diagrams. ! Design Rules. !

! Review: MOS IV Curves and Switch Model. ! MOS Device Layout. ! Inverter Layout. ! Gate Layout and Stick Diagrams. ! Design Rules. ! ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 3: January 21, 2017 MOS Fabrication pt. 2: Design Rules and Layout Lecture Outline! Review: MOS IV Curves and Switch Model! MOS Device Layout!

More information

Design and Implementation of ALU Chip using D3L Logic and Ancient Mathematics

Design and Implementation of ALU Chip using D3L Logic and Ancient Mathematics Design and Implementation of ALU Chip using D3L and Ancient Mathematics Mohanarangan S PG Student (M.E-Applied Electronics) Department of Electronics and Communicaiton Engineering Sri Venkateswara College

More information

EEC 118 Lecture #12: Dynamic Logic

EEC 118 Lecture #12: Dynamic Logic EEC 118 Lecture #12: Dynamic Logic Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation Outline Today: Alternative MOS Logic Styles Dynamic MOS Logic Circuits: Rabaey

More information

! Review: MOS IV Curves and Switch Model. ! MOS Device Layout. ! Inverter Layout. ! Gate Layout and Stick Diagrams. ! Design Rules. !

! Review: MOS IV Curves and Switch Model. ! MOS Device Layout. ! Inverter Layout. ! Gate Layout and Stick Diagrams. ! Design Rules. ! ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 3: January 21, 2016 MOS Fabrication pt. 2: Design Rules and Layout Lecture Outline! Review: MOS IV Curves and Switch Model! MOS Device Layout!

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 3: January 21, 2016 MOS Fabrication pt. 2: Design Rules and Layout Penn ESE 570 Spring 2016 Khanna Adapted from GATech ESE3060 Slides Lecture

More information

ECE 410: VLSI Design Course Lecture Notes (Uyemura textbook)

ECE 410: VLSI Design Course Lecture Notes (Uyemura textbook) ECE 410: VLSI Design Course Lecture Notes (Uyemura tetbook) Professor Fathi Salem Michigan State University We will be updating the notes this Semester. Lecture Notes Page 2.1 Electronics Revolution Age

More information

Digital Integrated Circuits - Logic Families (Part II)

Digital Integrated Circuits - Logic Families (Part II) Digital Integrated Circuits - Logic Families (Part II) MOSFET Logic Circuits MOSFETs are unipolar devices. They are simple, small in size, inexpensive to fabricate and consume less power. MOS fabrication

More information

Static Random Access Memory - SRAM Dr. Lynn Fuller Webpage:

Static Random Access Memory - SRAM Dr. Lynn Fuller Webpage: ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Static Random Access Memory - SRAM Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 14623-5604 Email:

More information

MM74HC132 Quad 2-Input NAND Schmitt Trigger

MM74HC132 Quad 2-Input NAND Schmitt Trigger Quad 2-Input NAND Schmitt Trigger General Description The utilizes advanced silicon-gate CMOS technology to achieve the low power dissipation and high noise immunity of standard CMOS, as well as the capability

More information

Device Technology( Part 2 ): CMOS IC Technologies

Device Technology( Part 2 ): CMOS IC Technologies 1 Device Technology( Part 2 ): CMOS IC Technologies Chapter 3 : Semiconductor Manufacturing Technology by M. Quirk & J. Serda Saroj Kumar Patra, Department of Electronics and Telecommunication, Norwegian

More information

Logic families (TTL, CMOS)

Logic families (TTL, CMOS) Logic families (TTL, CMOS) When you work with digital IC's, you should be familiar, not only with their logical operation, but also with such operational properties as voltage levels, noise immunity, power

More information

UNIT-III GATE LEVEL DESIGN

UNIT-III GATE LEVEL DESIGN UNIT-III GATE LEVEL DESIGN LOGIC GATES AND OTHER COMPLEX GATES: Invert(nmos, cmos, Bicmos) NAND Gate(nmos, cmos, Bicmos) NOR Gate(nmos, cmos, Bicmos) The module (integrated circuit) is implemented in terms

More information

Design Analysis of 1-bit Comparator using 45nm Technology

Design Analysis of 1-bit Comparator using 45nm Technology Design Analysis of 1-bit Comparator using 45nm Technology Pardeep Sharma 1, Rajesh Mehra 2 1,2 Department of Electronics and Communication Engineering, National Institute for Technical Teachers Training

More information

CMOS Circuits CONCORDIA VLSI DESIGN LAB

CMOS Circuits CONCORDIA VLSI DESIGN LAB CMOS Circuits 1 Combination and Sequential 2 Static Combinational Network CMOS Circuits Pull-up network-pmos Pull-down network-nmos Networks are complementary to each other When the circuit is dormant,

More information

Electronic Circuits EE359A

Electronic Circuits EE359A Electronic Circuits EE359A Bruce McNair B206 bmcnair@stevens.edu 201-216-5549 1 Memory and Advanced Digital Circuits - 2 Chapter 11 2 Figure 11.1 (a) Basic latch. (b) The latch with the feedback loop opened.

More information

E85: Digital Design and Computer Architecture

E85: Digital Design and Computer Architecture E85: Digital Design and Computer Architecture Lab 1: Electrical Characteristics of Logic Gates Objective The purpose of this lab is to become comfortable with logic gates as physical objects, to interpret

More information

CHAPTER 3 PERFORMANCE OF A TWO INPUT NAND GATE USING SUBTHRESHOLD LEAKAGE CONTROL TECHNIQUES

CHAPTER 3 PERFORMANCE OF A TWO INPUT NAND GATE USING SUBTHRESHOLD LEAKAGE CONTROL TECHNIQUES CHAPTER 3 PERFORMANCE OF A TWO INPUT NAND GATE USING SUBTHRESHOLD LEAKAGE CONTROL TECHNIQUES 41 In this chapter, performance characteristics of a two input NAND gate using existing subthreshold leakage

More information

Module 4 : Propagation Delays in MOS Lecture 19 : Analyzing Delay for various Logic Circuits

Module 4 : Propagation Delays in MOS Lecture 19 : Analyzing Delay for various Logic Circuits Module 4 : Propagation Delays in MOS Lecture 19 : Analyzing Delay for various Logic Circuits Objectives In this lecture you will learn the following Ratioed Logic Pass Transistor Logic Dynamic Logic Circuits

More information

! Sequential Logic. ! Timing Hazards. ! Dynamic Logic. ! Add state elements (registers, latches) ! Compute. " From state elements

! Sequential Logic. ! Timing Hazards. ! Dynamic Logic. ! Add state elements (registers, latches) ! Compute.  From state elements ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 19: April 2, 2019 Sequential Logic, Timing Hazards and Dynamic Logic Lecture Outline! Sequential Logic! Timing Hazards! Dynamic Logic 4 Sequential

More information

PHYSICAL STRUCTURE OF CMOS INTEGRATED CIRCUITS. Dr. Mohammed M. Farag

PHYSICAL STRUCTURE OF CMOS INTEGRATED CIRCUITS. Dr. Mohammed M. Farag PHYSICAL STRUCTURE OF CMOS INTEGRATED CIRCUITS Dr. Mohammed M. Farag Outline Integrated Circuit Layers MOSFETs CMOS Layers Designing FET Arrays EE 432 VLSI Modeling and Design 2 Integrated Circuit Layers

More information

Design cycle for MEMS

Design cycle for MEMS Design cycle for MEMS Design cycle for ICs IC Process Selection nmos CMOS BiCMOS ECL for logic for I/O and driver circuit for critical high speed parts of the system The Real Estate of a Wafer MOS Transistor

More information

ECE520 VLSI Design. Lecture 5: Basic CMOS Inverter. Payman Zarkesh-Ha

ECE520 VLSI Design. Lecture 5: Basic CMOS Inverter. Payman Zarkesh-Ha ECE520 VLSI Design Lecture 5: Basic CMOS Inverter Payman Zarkesh-Ha Office: ECE Bldg. 230B Office hours: Wednesday 2:00-3:00PM or by appointment E-mail: pzarkesh@unm.edu Slide: 1 Review of Last Lecture

More information