PARIS In-Orbit Demonstrator

Size: px
Start display at page:

Download "PARIS In-Orbit Demonstrator"

Transcription

1 1/52 PARIS In-Orbit Demonstrator Manuel Martín-Neira Neira,, Salvatore D Addio,, Christopher Buck (TEC-ETP) ETP) Acknowledgments: F. Coromina (TEC-ETP) ETP) N. Floury (TEC-EEP) EEP) J. Santiago Prowald (TEC-MCS) G. Toso (TEC-EEA) EEA) M. Rapisarda (TEC-ETN) ETN)

2 2/52 Mission Instrument Principle Instrument Design

3 Why PARIS IOD? 3/52 PARIS-IOD IOD will prove that ocean altimetry off the satellite ground track is feasible using reflected GPS/Galileo signals This will be of great value for, in particular, mesoscale ocean altimetry Requirement: 5 cm in 100 km

4 Secondary Objectives 4/52 Ionospheric Total Electron Content Ocean Scatterometry Significant Wave Height, Wind Speed, Currents Sea-Ice Ice freeboard measurements, ice age, ice extent Soil Moisture Biomass

5 What are the Constraints? 5/52 40 M M including launch and operation for 3 years

6 Proba Class Satellite 6/52

7 Launcher 7/52 PARIS-IOD IOD will be a piggyback passenger with another satellite Possible launchers: Rockot Vega Dnjepr PSLV Example: Rockot with SMOS and Proba-2

8 Piggyback on Rockot 8/52 The minimum diameter of the PARIS antenna required is 110 cm Need for a dedicated interface cone Vega similar scenario 110cm

9 System Concept - Rationale 9/52 Requirements Performance: Performance: Mesoscale Mesoscale Altimetry Altimetry Mass Mass Power Power Launcher Launcher Envelope Envelope Issues SNR SNR Height Height Precision Precision Ionospheric Ionospheric Delay Delay Height Height Accuracy Accuracy Instrument Instrument Delay Delay Calibration Calibration Height Height Accuracy Accuracy Instrument Instrument Ampl Ampl Calibration Calibration Height Height Accuracy Accuracy High High Gain Gain Down-Looking Down-Looking Antenna Antenna Multi-Frequency Multi-Frequency High High Gain Gain Up-Looking Up-Looking Antenna Antenna Switch Switch at at Antenna Antenna Elements Elements Radiometric Radiometric Techniques Techniques Solutions Civil Civil GNSS GNSS Signals Signals Interferometric Interferometric Processing Processing

10 System Concept - Summary 10/52 High gain beams for direct signals (D) High gain beams for reflected signals (R) Observables obtained by cross-correlation correlation (DxR( DxR) Implicit use of full GNSS bandwidth (3x40 MHz) Precise estimation of ionospheric delay Low noise ionospheric correction Precise on-board delay calibration Precise on-board amplitude calibration L5 L2 L1 40 MHz 40 MHz 40 MHz

11 Geometry 11/52 Geometry plays an important roll in the definition of critical parameters of the PARIS mission, such as: (a) Accuracy (b) Sampling and Coverage G P Ionosphere i i s O

12 Geometry: altimetric accuracy 12/52 a) Altimetric performance degrades with incidence angle b) Ionospheric delay and antenna losses increase with incidence angle (a) dh = dρ 2cosi (b) P G Antenna gain Ionosphere i i s dh i dρ The incidence angle i should be minimised. O

13 Geometry: sampling and coverage 13/52 c) The number of reflection points increases with incidence angle d) The coverage (swath) increases with incidence angle Number of reflection points swath P h p β ζ R i s i H G α γ R E g O The incidence angle i should be maximised.

14 Geometry: trade-off 14/ Fix incidence angle to guarantee altimetric accuracy 2.- Increase height to reach desired sampling and coverage 3.- Increase antenna size to maintain signal to noise ratio Number of reflection points P 2 h 2 swath P 1 G 1 i i h 1 p i s i G 2 α γ O

15 Ionospheric Correction: Facts 15/52 - At L-band,, the ionosphere is a major contributor to the propagation delay ρ = 2h cos i + I with 40.3 = TEC f I 2 - Multi-frequency observations allow to remove the ionospheric effect ρ1 = 2hcosi + ρ5 = 2hcosi + I f 2 1 I f 2 5 h 15 = ρ5 ρ cosi 2cosi However this is at the expense of a severe error amplification factor σ h 15 = σ ρ

16 Ionospheric Correction: Method 16/52 - Multi-frequency observations are taken y y = 1 f f h x - The ionospheric delays are retrieved with the following uncertainties 1 σ 78σ 2 f 1 x = 1. y σ x = 3. 2σ 2 y f5 1 - A regression is performed over N samples of ionospheric delay 1 σ 2 f x = σ y σ x = σ 2 y N f5 N -The smoothed ionospheric delay is used in the range equations, resulting in an improved error amplification factor σ h N 3.2 4N 2 2 = + + σ y σ h 1. 08σ y = (N=5 regression)

17 Ionospheric Correction: Example 1/2 17/52 - What matters in mesoscale ocean altimetry is the difference between the ionospheric delay at two specular points - Worst case is between nadir (i=0 ) ) and edge of swath (i=30 ) G 1 G 2 P Ionosphere i i s 1 s 2 O

18 Ionospheric Correction: Example 2/2 18/52 Vertical Delay (m) m Derived from RA-2 real data m Mesoscale Delay (m) m m Residual Delay (m) m km averaging of mesoscale delay applied m

19 Mission Summary Table 19/52

20 Payload Mass Budget 20/52 No of array elements Radiators + structure 62 LNAs Harness Mechanisms BFN (phase shifters) Processor + power conditioning X-band transmitter and antenna Total kg 3kg 6kg 3kg 2kg 6kg 3kg 44kg

21 Payload Power Budget 21/52 Item LNAs (62x0.4W) Signal Processor Solid-State State Mass Memory Instrument Control Unit (ASIC) Total Power 25W 12W 5W 4W 46W

22 Mission Budget 22/52 Payload (and pre-development): Platform: 17M 15M Ground Segment, Ops. (3 years): 5M Launch (as secondary passenger) 3M Total = 40M

23 Development Schedule 23/52 Framework preparation 1 year KO Critical breadboarding Phase A Phase B (EM model) Phase C/D Storage Launch Campaign Commissioning Phase Phase E 1-Nov years (from KO till Phase C/D) 6 months 1 year (+3 months) 3 years (+3 months) 6 months 3 months 6 months 2.5 years

24 24/52

25 25/52 Mission Instrument Principle Instrument Design

26 Interferometric Processing 26/52 UP CHAIN DOWN CHAIN BPF BPF DOCON fc up DOCON XC T c () dt 2 W 1 (τ) W 2 (τ) W 3 (τ) W N (τ) ( ) Wi τ N fc down Based on the cross-correlation correlation of the received direct and Earth-reflected reflected signals Pro: : Exploitation of the full TX Bandwidth and Power of GNSS Signals, Hardware Simplification, Flexibility Cons: : Signal-to to-noise Ratio Degradation (minor)

27 Interferometric Processing 27/52 SNR at the output of the correlator SNR = SNRo 1+ SNR SNR D U SNRo 1 SNR U If SNR U >> 1 then SNR=SNR o

28 SNR GPS L1 (C/A+P+M+L1C) 28/52 SNR Interferometric Processing example: GPS L1 Composite (C/A+P+M+L1C) Orbit Height: 800Km, incidence angle: 35deg Down-Looking Antenna Gain: 23 dbi SNR o = 9.6 db SNR D = 15 db Up-Looking Antenna Gain: 23 dbi SNR degradation ~ 1.1dB SNR = 8.5 db

29 Composite GNSS Signals In Space 29/52 Galileo E1 Comp Modulation GPS L1 Components Modulation E1-a a (PRS) BOCcos(15,2.5) C/A code (civil) BPSK(1) E1-b/c (OS/CS/SOL) Galileo E6 Comp BOC(1,1)* (recently changed to CBOC) Modulation P(Y) code (encrypted) M code (encrypted) L1C code (civil) BPSK(10) BOC(10,5) BOC(1,1)*, planned to TMBOC E6-a a (PRS) E6-b/c (CS) BOCcos(10,5) BPSK(5) GPS L2 Components L2C code (civil) Modulation BPSK(1)* Galileo E5 Comp Modulation P(Y) code (encrypted) M code (encrypted) BPSK(10) BOC(10,5) E5 (OS) AltBOC(15,10) GPS L5 Components Modulation * TBC L5C code (civil) BPSK(10)

30 Composite Autocorrelation Function 30/52 GPS L1 Composite Autocorrelation Function (squared) ACF Normalised Squared Amplitude C/A Component 0.7 ACF Ampltiude Composite L Delay [Chips]

31 Composite Power Waveform: Example 31/52 GPS L1 Composite Waveform (antenna gain: 23dBi) Amplitude [A.U.] 6 x Normalized Cross-Correlation Power Waveform C/A code GPS L1 Comparable Power Levels, But L1 Composite Waveform is much steeper than C/A, => Improved Precision Delay [Chips]

32 Altimetric Precision, Noise and Speckle 32/52 The height measurement precision of a PARIS altimeter is mainly driven by bandwidth, signal-to to-noise ratio (SNR) Antenna Gain Dimensioned to guarantee sufficient SNR and signal-to to-speckle ratio (SSR) Incoherent Averaging Upper Limited by the wanted Spatial Resolution The speckle is the dominant source of height precision error

33 Coherent Integration 33/52 UP CHAIN DOWN CHAIN BPF BPF DOCON fc up DOCON XC T c () dt 2 W 1 (τ) W 2 (τ) W 3 (τ) W N (τ) ( ) Wi τ N fc down Coherent integration is performed to restore sufficient SNR In the coherent integration, the coherent time Tc that maximises the height precision has to be adopted

34 PARIS Flight Direction Coherent Integration 34/52 Spatial filtering due to the delay-doppler doppler coherent integration SP, τ=0 RX 1 chip delay

35 Incoherent Integration 35/52 UP CHAIN DOWN CHAIN BPF BPF DOCON fc up DOCON XC T c () dt 2 W 1 (τ) W 2 (τ) W 3 (τ) W N (τ) ( ) Wi τ N fc down Incoherent Integration is performed in order to reduce the amplitude variability due to speckle Incoherent Integration is traded-off with along-track Spatial Resolution on the Ocean Surface

36 Altimetric Precision: Analytical Model 36/52 The height measurement precision can be analytically represented as: σ h elev, SP 2 2 cps = sinθ P Ninc, s SNR Ninc, n SNR s

37 37/52 Mission Instrument Principle Instrument Design

38 Instrument Design: Overall Block Diagram 38/52 Up-looking beam BPF LO NCO f s /2 A/D t s /2 t s /2 I T/2 T/2 A/D t s /2 Q T/2 T/2 f s t s Double phased array GNSS receiver Computer Master Clock Σ Tc Σ Tc Σ Tc Σ Tc Down-looking beam BPF LO NCO f s /2 A/D t s /2 t s /2 I T/2 T/2 A/D t s /2 Q T/2 T/2 General block diagram of the PARIS altimeter

39 39/52 Phased array Nominal directivity 22.9 dbic 31 elements Up-looking is RHCP Down-looking is LHCP L1, L5, E5 Scanning angle (from boresight): - downlooking 30 - up-looking 42 <1.1m Antenna Overview <1.1m space for the electronics height < 8 cm Uplooking antenna Downlooking antenna

40 Antenna and Front-end Electronics 40/52 Up-looking Antenna Elements Pressure connector 10 mm Honeycomb panel Electrical Harness Calibration Switch and LNA Aluminium Beam Pressure connector 10 mm Honeycomb panel < 8 cm Down-looking Antenna Elements

41 Antenna Electrical Block Diagram 41/52 Beamformer B S1 Switch circuit UP 1 Antenna element B1 Beamformer A T1 α 1 B2 α Sn LNA BPF B3 Power Divider Tn Phase Shifter DOWN DOWN 1 UP m Power Combiner UP β 1 β DOWN m

42 Antenna Accommodation 42/52 Stowed Configuration Solar Panel HRM PARIS Antenna 110 cm HRM Spring motor Solar panel Electrical motor PROBA-2 like platform Top View (60 x 70 x 80 cm 3 ) Side View

43 Antenna Deployment 43/52 PARIS Antenna 110 cm PARIS In-Orbit Demonstrator (1) Clearance Open Solar Panel (2) Up-looking Antenna Down-looking Antenna First deployment: spring release Second deployment: electrical motor actuation

44 Delay Calibration: Front-end Switch 44/52 - Allows on-board delay and amplitude calibration UP 1:2 switch 1:3 switch LNA 2 loads LNA 1 1:3 switch 1:2 switch DOWN

45 Delay Calibration: Receiver Swapping 1/2 45/52 Beamformer B UP 1 Antenna element Beamformer A S1 B1 T1 α 1 B2 α Sn LNA BPF B3 Power Divider Tn Phase Shifter DOWN 1 DOWN UP m UP β 1 β DOWN m x( t) = x1( t a α e) xm ( t b β e) y( t) = y1( t a α e ) ym ( t b β e )

46 Delay Calibration: Receiver Swapping 2/2 46/52 Beamformer B T1 Switch circuit UP 1 Antenna element B1 Beamformer A S1 α 2 B2 α Tn LNA BPF B3 Power Divider Sn Phase Shifter UP DOWN 1 UP m Power Combiner DOWN β 2 β DOWN m x( t) = x1( t a α e ) xm ( t b β e ) y( t) = y1( t a α e) ym ( t b β e)

47 Amplitude Calibration: : Background 47/52 - Needed to track the specular reflection point (waveform retracking) 6 x Normalized Cross-Correlation Power Waveform 5 C/A code GPS L1 4 Amplitude [A.U.] Delay [Chips] - Enables secondary applications (scatterometry, biomass ) - Based on microwave radiometry techniques (e.g. in SMOS)

48 Amplitude Calibration: Cold Sky View 48/52 Switch circuit UP 1 Antenna element B1 Beamformer A T1 B2 α LOAD UP m LNA BPF B3 Power Divider Tn Phase Shifter Power Combiner Variable Attenuator 0 or L Detector UP β LOAD

49 Amplitude Calibration: Matched Load 49/52 T ph UP 1 Switch circuit UP 1 Antenna element B1 Beamformer A T1 B2 α T ph UP m T ph LOAD UP m LNA BPF B3 Power Divider Tn Phase Shifter Power Combiner Variable Attenuator 0 or L Detector UP β The loads are equivalent to external absorbers T ph LOAD

50 Amplitude Calibration: Auto-correlation 50/52 - Auto-correlation of GNSS signals measured on-board for accurate retracking on-ground ground; - Expected SNR > 43 db BPF A/D I t s T T Up-looking beam LO NCO f s t s A/D Q t s T T Double phased array GPS receiver f s t s Computer Master Clock Σ Σ Σ Σ t s Down-looking beam On-board Measurement of the Auto-Correlation Function

51 Beam Steering: other Applications 51/52 - Down-looking beams steered to measure: G G P P Backscatter 0 doppler line B S D S (a) Backscatter (b) 0-doppler 0 line

52 Conclusions 52/52 - The objective of the PARIS In-Orbit Demonstrator is to demonstrate accurate mesoscale ocean altimetry using GNSS reflected signals - An instrument concept has been presented to achieve this goal - Based on interferometric processing between direct and reflected signals - Advanced antenna design with high gain in up and down beams - Accurate delay and amplitude calibration techniques devised - Low noise ionospheric delay compensation - We look forward to your participation in this potential project from the scientific, industrial and financial point of view

53 Delay Calibration: Method 53/ Go into delay calibration mode a few times per orbit 2.- Measure range with switch in position 1 1 τ 1 = ( a a + α α b b + β β ) + ( e e ) M 3.- Measure range with switch in position 2 1 τ2 = ( a a + α α b b + β β) ( e e ) M 4.- Find internal delay by the semi-difference of the two ranges above τ τ τ = ( a a b b ) + ( e ) 2 M e o = 5.- Go back into measurement mode and apply correction 1 1 τ = τ τ o 2 2 τ = τ + τ o

54 Delay Calibration: Other Considerations 54/52 - Sign of doppler frequency and delay shifts also flips Up-looking beam BPF LO NCO f s /2 A/D t s /2 t s /2 I T/2 T/2 A/D t s /2 Q T/2 T/2 f s t s Double phased array GNSS receiver Computer Master Clock Σ Tc Σ Tc Σ Tc Σ Tc Down-looking beam BPF LO NCO f s /2 A/D t s /2 t s /2 I T/2 T/2 A/D t s /2 Q T/2 T/2

55 Amplitude Calibration: : 4-point 4 Method 55/ Go into external amplitude calibration mode once a month 2.- Measure cold sky with and without IF attenuation G P 1 = P0 + G( T C + TR ) P 2 = P0 + ( T C + TR ) L 3.- Measure internal load with and without IF attenuation G P 3 = P0 + G( T L + TR ) P 4 = P0 + ( T L + TR ) L 4.- Find offset, receiver gain and noise temperature P P P P P P = o P3 P1 P G P3 P T L T C = 1 T = P3 TL P1 P P 5.- Apply those parameters to de-normalise the cross-correlations correlations T R C 1 3 TC P4 + TLP P + P 2 4 2

56 Amplitude Calibration: Other Issues 56/52 Amplitude Calibration of Beamformer-B: 1.- Go into amplitude calibration mode once a month 2.- Go from Earth pointing to inertial pointing (satellite upside down) 3.- Apply 4-point method to down-looking antenna and beamformer B Amplitude Calibration Tracking: - In-between between external calibration events, use internal load reference

57 System Performance 57/52 - Mesoscale ocean altimetry requirement: 5 cm in 100 km

OBSERVATION PERFORMANCE OF A PARIS ALTIMETER IN-ORBIT DEMONSTRATOR

OBSERVATION PERFORMANCE OF A PARIS ALTIMETER IN-ORBIT DEMONSTRATOR OBSERVATION PERFORMANCE OF A PARIS ALTIMETER IN-ORBIT DEMONSTRATOR Salvatore D Addio, Manuel Martin-Neira Acknowledgment to: Nicolas Floury, Roberto Pietro Cerdeira TEC-ETP, ETP, Electrical Engineering

More information

PARIS Ocean Altimeter

PARIS Ocean Altimeter PARIS Ocean Altimeter M. Martín-Neira, S. D Addio (TEC-ETP) European Space Agency Acknowledgment: C. Buck (TEC-ETP) N. Floury, R. Prieto (TEC-EEP) GNSS-R10 Workshop, UPC, Barcelona, 21-22 October 2010

More information

Soil Moisture Observation Utilizing Reflected GNSS Signals

Soil Moisture Observation Utilizing Reflected GNSS Signals Soil Moisture Observation Utilizing Reflected GNSS Signals GNSS-R Tech in Soil Moisture New Data Processing Method Prof. Dongkai YANG Joint African/Asia-Pacific UN-Regional Centers and International Training

More information

The Typhoon Investigation using GNSS-R Interferometric Signals (TIGRIS)

The Typhoon Investigation using GNSS-R Interferometric Signals (TIGRIS) The Typhoon Investigation using GNSS-R Interferometric Signals (TIGRIS) F. Fabra 1, W. Li 2, M. Martín-Neira 3, S. Oliveras 1, A. Rius 1, W. Yang 2, D. Yang 2 and Estel Cardellach 1 1 Institute of Space

More information

Biomass, a polarimetric interferometric P-band SAR mission

Biomass, a polarimetric interferometric P-band SAR mission Biomass, a polarimetric interferometric P-band SAR mission M. Arcioni, P. Bensi, M. Fehringer, F. Fois, F. Heliere, N. Miranda, K. Scipal Fringe 2015, ESRIN 27/03/2015 The Biomass Mission 1. Biomass was

More information

A Global System for Detecting Dangerous Seas Using GNSS Bi-static Radar Technology

A Global System for Detecting Dangerous Seas Using GNSS Bi-static Radar Technology A Global System for Detecting Dangerous Seas Using GNSS Bi-static Radar Technology Scott Gleason, Ka Bian, Alex da Silva Curiel Stephen Mackin and Martin Sweeting 20 th AIAA/USU Smallsat Conference, Logan,

More information

Developments in GNSS Reflectometry from the SGR-ReSI on TDS-1

Developments in GNSS Reflectometry from the SGR-ReSI on TDS-1 Changing the economics of space Developments in GNSS Reflectometry from the SGR-ReSI on TDS-1 Martin Unwin Philip Jales, Jason Tye (SSTL), Brent Abbott SST-US Christine Gommenginger, Giuseppe Foti (NOC)

More information

GNSS Reflections over Ocean Surfaces

GNSS Reflections over Ocean Surfaces GNSS Reflections over Ocean Surfaces State of the Art F. Soulat CCT Space Reflectometry December 1st 2010 Page n 1 Outline Concept GNSS-R Signal On-going Activities ( Applications) CLS GNSS-R Studies CCT

More information

GNSS-R for Ocean and Cryosphere Applications

GNSS-R for Ocean and Cryosphere Applications GNSS-R for Ocean and Cryosphere Applications E.Cardellach and A. Rius Institut de Ciències de l'espai (ICE/IEEC-CSIC), Spain Contents Altimetry with Global Navigation Satellite Systems: Model correlation

More information

Rec. ITU-R P RECOMMENDATION ITU-R P *

Rec. ITU-R P RECOMMENDATION ITU-R P * Rec. ITU-R P.682-1 1 RECOMMENDATION ITU-R P.682-1 * PROPAGATION DATA REQUIRED FOR THE DESIGN OF EARTH-SPACE AERONAUTICAL MOBILE TELECOMMUNICATION SYSTEMS (Question ITU-R 207/3) Rec. 682-1 (1990-1992) The

More information

GNSS Reflectometry and Passive Radar at DLR

GNSS Reflectometry and Passive Radar at DLR ACES and FUTURE GNSS-Based EARTH OBSERVATION and NAVIGATION 26./27. May 2008, TU München Dr. Thomas Börner, Microwaves and Radar Institute, DLR Overview GNSS Reflectometry a joined proposal of DLR and

More information

Waveform Processing of Nadir-Looking Altimetry Data

Waveform Processing of Nadir-Looking Altimetry Data Waveform Processing of Nadir-Looking Altimetry Data Mònica Roca and Richard Francis ESA/ESTEC Noordwijk The Netherlands Contents 1. the concept 2. introduction 3. the on-board waveform [how the return

More information

GNSS Remo Sensing in ensin a 6U Cubesat

GNSS Remo Sensing in ensin a 6U Cubesat GNSS Remote Sensing in a 6U Cubesat Andrew Dempster Remote Sensing using GNSS Radio occultation Well established, with existing missions, v useful for input to weather models Reflectometry Experimental,

More information

PARIS Interferometric Technique - Proof of Concept PIT-PoC

PARIS Interferometric Technique - Proof of Concept PIT-PoC PARIS Interferometric Technique - Proof of Concept PIT-PoC O. Nogués-Correig 1, S. Ribó 1, J.C. Arco 1, E. Cardellach 1, A. Rius 1 E. València 2, J.M. Tarongí 2, A. Camps 2, H. van der Marel 3, M. Martín-Neira

More information

Ocean SAR altimetry. from SIRAL2 on CryoSat2 to Poseidon-4 on Jason-CS

Ocean SAR altimetry. from SIRAL2 on CryoSat2 to Poseidon-4 on Jason-CS Ocean SAR altimetry from SIRAL2 on CryoSat2 to Poseidon-4 on Jason-CS Template reference : 100181670S-EN L. Phalippou, F. Demeestere SAR Altimetry EGM NOC, Southampton, 26 June 2013 History of SAR altimetry

More information

Prototype Software-based Receiver for Remote Sensing using Reflected GPS Signals. Dinesh Manandhar The University of Tokyo

Prototype Software-based Receiver for Remote Sensing using Reflected GPS Signals. Dinesh Manandhar The University of Tokyo Prototype Software-based Receiver for Remote Sensing using Reflected GPS Signals Dinesh Manandhar The University of Tokyo dinesh@qzss.org 1 Contents Background Remote Sensing Capability System Architecture

More information

The Biomass Mission, status of the satellite system

The Biomass Mission, status of the satellite system The Biomass Mission, status of the satellite system M. Arcioni, P. Bensi, M. Fehringer, F. Fois, F. Heliere, K. Scipal PolInSAR/Biomass Meeting 2015, ESRIN 29/01/2015 1. Key facts (lifetime, duty cycle

More information

Interferometric Cartwheel 1

Interferometric Cartwheel 1 The Interferometric CartWheel A wheel of passive radar microsatellites for upgrading existing SAR projects D. Massonnet, P. Ultré-Guérard (DPI/EOT) E. Thouvenot (DTS/AE/INS/IR) Interferometric Cartwheel

More information

GMES Sentinel-1 Transponder Development

GMES Sentinel-1 Transponder Development GMES Sentinel-1 Transponder Development Paul Snoeij Evert Attema Björn Rommen Nicolas Floury Malcolm Davidson ESA/ESTEC, European Space Agency, Noordwijk, The Netherlands Outline 1. GMES Sentinel-1 overview

More information

SMOS Payload Performance

SMOS Payload Performance SMOS Payload Performance Manuel Martin-Neira, Michael Brown SM-OS Project European Space Agency Josep Closa EADS-CASA Espacio and contributions from: UPC and DEIMOS SMOS project teams 1/33 Contents: -

More information

2 INTRODUCTION TO GNSS REFLECTOMERY

2 INTRODUCTION TO GNSS REFLECTOMERY 2 INTRODUCTION TO GNSS REFLECTOMERY 2.1 Introduction The use of Global Navigation Satellite Systems (GNSS) signals reflected by the sea surface for altimetry applications was first suggested by Martín-Neira

More information

Earth Remote Sensing using Surface-Reflected GNSS Signals (Part II)

Earth Remote Sensing using Surface-Reflected GNSS Signals (Part II) Jet Propulsion Laboratory California Institute of Technology National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena, California Earth Remote

More information

Design and Performance Simulation of a Ku-Band Rotating Fan-Beam Scatterometer

Design and Performance Simulation of a Ku-Band Rotating Fan-Beam Scatterometer Design and Performance Simulation of a Ku-Band Rotating Fan-Beam Scatterometer Xiaolong DONG, Wenming LIN, Di ZHU, (CSSAR/CAS) PO Box 8701, Beijing, 100190, China Tel: +86-10-62582841, Fax: +86-10-62528127

More information

Status of MOLI development MOLI (Multi-footprint Observation Lidar and Imager)

Status of MOLI development MOLI (Multi-footprint Observation Lidar and Imager) Status of MOLI development MOLI (Multi-footprint Observation Lidar and Imager) Tadashi IMAI, Daisuke SAKAIZAWA, Jumpei MUROOKA and Toshiyoshi KIMURA JAXA 1 Outline of This Presentation 1. Overview of MOLI

More information

Link Budgets International Committee on GNSS Working Group A Torino, Italy 19 October 2010

Link Budgets International Committee on GNSS Working Group A Torino, Italy 19 October 2010 Link Budgets International Committee on GNSS Working Group A Torino, Italy 19 October 2010 Dr. John Betz, United States Background Each GNSS signal is a potential source of interference to other GNSS signals

More information

GEROS-ISS: GNSS REflectometry, Radio Occultation and Scatterometry onboard the International Space Station

GEROS-ISS: GNSS REflectometry, Radio Occultation and Scatterometry onboard the International Space Station GEROS-ISS: GNSS REflectometry, Radio Occultation and Scatterometry onboard the International Space Station J. Wickert, O. Andersen, L. Bertino, A. Camps, E. Cardellach, B. Chapron, C. Gommenginger, J.

More information

CYGNSS Wind Retrieval Performance

CYGNSS Wind Retrieval Performance International Ocean Vector Wind Science Team Meeting Kailua-Kona, Hawaii USA 6-8 May 2013 CYGNSS Wind Retrieval Performance Chris Ruf (1), Maria-Paola Clarizia (1,2), Andrew O Brien (3), Joel Johnson (3),

More information

EPS Bridge Low-Cost Satellite

EPS Bridge Low-Cost Satellite EPS Bridge Low-Cost Satellite Results of a Concept Study being performed for Dr. Hendrik Lübberstedt OHB-System AG OpSE Workshop Walberberg 8th November 2005 EPS Bridge Key System Requirements Minimum

More information

PARIS-MB User Manual

PARIS-MB User Manual PARIS-MB User Manual Serni Ribó Institut de Ciències de l Espai (CSIC/IEEC) January 7th, 2014 Version 1.0 1 Instrument Description The PARIS Multi-Band receiver is a GNSS reflection receiver capable of

More information

China. France Oceanography S A T. Overview of the near-real time wave products of the CFOSAT mission. e l l i t e

China. France Oceanography S A T. Overview of the near-real time wave products of the CFOSAT mission. e l l i t e China Overview of the near-real time wave products of the CFOSAT mission C. Tison (1), D. Hauser (2), S. Guibert (1), T. Amiot (1), L. Aouf (3), J.M. Lefèvre (3), B. Chapron (5), N. Corcoral (1), P. Castillan

More information

HEMERA Constellation of passive SAR-based micro-satellites for a Master/Slave configuration

HEMERA Constellation of passive SAR-based micro-satellites for a Master/Slave configuration HEMERA Constellation of passive SAR-based micro-satellites for a Master/Slave HEMERA Team Members: Andrea Bellome, Giulia Broggi, Luca Collettini, Davide Di Ienno, Edoardo Fornari, Leandro Lucchese, Andrea

More information

ICO S-BAND ANTENNAS TEST PROGRAM

ICO S-BAND ANTENNAS TEST PROGRAM ICO S-BAND ANTENNAS TEST PROGRAM Peter A. Ilott, Ph.D.; Robert Hladek; Charles Liu, Ph.D.; Bradford Arnold Hughes Space & Communications, El Segundo, CA Abstract The four antenna subsystems on each of

More information

Relative Navigation, Timing & Data. Communications for CubeSat Clusters. Nestor Voronka, Tyrel Newton

Relative Navigation, Timing & Data. Communications for CubeSat Clusters. Nestor Voronka, Tyrel Newton Relative Navigation, Timing & Data Communications for CubeSat Clusters Nestor Voronka, Tyrel Newton Tethers Unlimited, Inc. 11711 N. Creek Pkwy S., Suite D113 Bothell, WA 98011 425-486-0100x678 voronka@tethers.com

More information

Polarisation Capabilities and Status of TerraSAR-X

Polarisation Capabilities and Status of TerraSAR-X Polarisation Capabilities and Status of TerraSAR-X Irena Hajnsek, Josef Mittermayer, Stefan Buckreuss, Kostas Papathanassiou German Aerospace Center Microwaves and Radar Institute irena.hajnsek@dlr.de

More information

CEGEG046 / GEOG3051 Principles & Practice of Remote Sensing (PPRS) 8: RADAR 1

CEGEG046 / GEOG3051 Principles & Practice of Remote Sensing (PPRS) 8: RADAR 1 CEGEG046 / GEOG3051 Principles & Practice of Remote Sensing (PPRS) 8: RADAR 1 Dr. Mathias (Mat) Disney UCL Geography Office: 113, Pearson Building Tel: 7670 05921 Email: mdisney@ucl.geog.ac.uk www.geog.ucl.ac.uk/~mdisney

More information

Preparation for Flight of Next Generation Space GNSS Receivers

Preparation for Flight of Next Generation Space GNSS Receivers Changing the economics of space Preparation for Flight of Next Generation Space GNSS Receivers ICGPSRO, 14-16 th May 2013 Taiwan #0205691 Commercial in Confidence 1 Overview SSTL and Spaceborne GNSS Small

More information

Bistatic/Monostatic Synthetic Aperture Radar for Ice Sheet Measurements

Bistatic/Monostatic Synthetic Aperture Radar for Ice Sheet Measurements Bistatic/Monostatic Snthetic Aperture Radar for Ice Sheet Measurements John Paden MS Thesis Defense April 18, 003 Committee Chairperson: Dr. Chris Allen Committee Members: Dr. Prasad Gogineni Dr. Glenn

More information

CNES PRIORITIES IN POLAR AND CRYOSPHERE RESEARCH

CNES PRIORITIES IN POLAR AND CRYOSPHERE RESEARCH Polar Space Task Group 3rd Session CNES PRIORITIES IN POLAR AND CRYOSPHERE RESEARCH Juliette Lambin, Steven Hosford Wednesday, May 22th, 2013 Paris, France 1 OUTLINE CNES MISSIONS FOR POLAR/CRYOSPHERE

More information

Microwave Sensors Subgroup (MSSG) Report

Microwave Sensors Subgroup (MSSG) Report Microwave Sensors Subgroup (MSSG) Report Feb 17-20, 2014, ESA ESRIN, Frascati, Italy DONG, Xiaolong, MSSG Chair National Space Science Center Chinese Academy of Sciences (MiRS,NSSC,CAS) Email: dongxiaolong@mirslab.cn

More information

Calibration Concepts for Future Low Frequency SAR Systems. Jens Reimann, Marco Schwerdt, Sravan Kumar Aitha and Manfred Zink

Calibration Concepts for Future Low Frequency SAR Systems. Jens Reimann, Marco Schwerdt, Sravan Kumar Aitha and Manfred Zink Calibration Concepts for Future Low Frequency SAR Systems Jens Reimann, Marco Schwerdt, Sravan Kumar Aitha and Manfred Zink DLR.de Chart 2 Low Frequency SAR Missions OHB DLR.de Chart 3 BIOMASS - Facts

More information

Compact High Resolution Imaging Spectrometer (CHRIS) siraelectro-optics

Compact High Resolution Imaging Spectrometer (CHRIS) siraelectro-optics Compact High Resolution Imaging Spectrometer (CHRIS) Mike Cutter (Mike_Cutter@siraeo.co.uk) Summary CHRIS Instrument Design Instrument Specification & Performance Operating Modes Calibration Plan Data

More information

Theoretical Simulations of GNSS Reflections from Bare and Vegetated Soils

Theoretical Simulations of GNSS Reflections from Bare and Vegetated Soils Theoretical Simulations of GNSS Reflections from Bare and Vegetated Soils R. Giusto 1, L. Guerriero, S. Paloscia 3, N. Pierdicca 1, A. Egido 4, N. Floury 5 1 DIET - Sapienza Univ. of Rome, Rome DISP -

More information

VenSAR: A MULTI-FUNCTIONAL S-BAND RADAR FOR THE EnVision MISSION TO VENUS

VenSAR: A MULTI-FUNCTIONAL S-BAND RADAR FOR THE EnVision MISSION TO VENUS VenSAR: A MULTI-FUNCTIONAL S-BAND RADAR FOR THE EnVision MISSION TO VENUS Richard Ghail (1) and David Hall (2) (1) Civil and Environmental Engineering, Imperial College London, London SW7 2AZ, United Kingdom

More information

Typical technical and operational characteristics of Earth exploration-satellite service (passive) systems using allocations between 1.

Typical technical and operational characteristics of Earth exploration-satellite service (passive) systems using allocations between 1. Recommendation ITU-R RS.1861 (01/2010) Typical technical and operational characteristics of Earth exploration-satellite service (passive) systems using allocations between 1.4 and 275 GHz RS Series Remote

More information

Ionospheric H-Atom Tomography: a Feasibility Study using GNSS Reflections. G. Ruffini, Josep Marco, L. Ruffini ESTEC, Dec 17th 2002

Ionospheric H-Atom Tomography: a Feasibility Study using GNSS Reflections. G. Ruffini, Josep Marco, L. Ruffini ESTEC, Dec 17th 2002 Ionospheric H-Atom Tomography: a Feasibility Study using GNSS Reflections. G. Ruffini, Josep Marco, L. Ruffini ESTEC, Dec 17th 2002 Goals of the GIOS-1 study ESTEC Tech Officer: Bertram Arbesser-Rastburg

More information

T2L2 and beyond next generation time transfer schemes

T2L2 and beyond next generation time transfer schemes T2L2 and beyond next generation time transfer schemes Etienne Samain Patrick Vrancken (patrick.vrancken@oca.eu) Optical Clocks Workshop for ESA Cosmic Vision, Uni Düsseldorf, March 9, 2007 Toulouse, 13

More information

Assessing & Mitigation of risks on railways operational scenarios

Assessing & Mitigation of risks on railways operational scenarios R H I N O S Railway High Integrity Navigation Overlay System Assessing & Mitigation of risks on railways operational scenarios Rome, June 22 nd 2017 Anja Grosch, Ilaria Martini, Omar Garcia Crespillo (DLR)

More information

ECE Lecture 32

ECE Lecture 32 ECE 5010 - Lecture 32 1 Microwave Radiometry 2 Properties of a Radiometer 3 Radiometric Calibration and Uncertainty 4 Types of Radiometer Measurements Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation

More information

GNSS Signal Structures

GNSS Signal Structures GNSS Signal Structures Tom Stansell Stansell Consulting Tom@Stansell.com Bangkok, Thailand 23 January 2018 S t a n s e l l C o n s u l t i n g RL Introduction It s a pleasure to speak with you this morning.

More information

Passive Microwave Sensors LIDAR Remote Sensing Laser Altimetry. 28 April 2003

Passive Microwave Sensors LIDAR Remote Sensing Laser Altimetry. 28 April 2003 Passive Microwave Sensors LIDAR Remote Sensing Laser Altimetry 28 April 2003 Outline Passive Microwave Radiometry Rayleigh-Jeans approximation Brightness temperature Emissivity and dielectric constant

More information

An overview of the COSMIC follow-on mission (COSMIC-II) and its potential for GNSS-R

An overview of the COSMIC follow-on mission (COSMIC-II) and its potential for GNSS-R An overview of the COSMIC follow-on mission (COSMIC-II) and its potential for GNSS-R Lidia Cucurull (1), Dave Ector (2), and Estel Cardellach (3) (1) NOAA/NWS/NCEP/EMC (2) NOAA/NESDIS/OSD (3) IEEC/ICE-CSIC

More information

SATELLITE OCEANOGRAPHY

SATELLITE OCEANOGRAPHY SATELLITE OCEANOGRAPHY An Introduction for Oceanographers and Remote-sensing Scientists I. S. Robinson Lecturer in Physical Oceanography Department of Oceanography University of Southampton JOHN WILEY

More information

TELECOMMUNICATION SATELLITE TELEMETRY TRACKING AND COMMAND SUB-SYSTEM

TELECOMMUNICATION SATELLITE TELEMETRY TRACKING AND COMMAND SUB-SYSTEM TELECOMMUNICATION SATELLITE TELEMETRY TRACKING AND COMMAND SUB-SYSTEM Rodolphe Nasta Engineering Division ALCATEL ESPACE Toulouse, France ABSTRACT This paper gives an overview on Telemetry, Tracking and

More information

ELECTROMAGNETIC PROPAGATION (ALT, TEC)

ELECTROMAGNETIC PROPAGATION (ALT, TEC) ELECTROMAGNETIC PROPAGATION (ALT, TEC) N. Picot CNES, 18 Av Ed Belin, 31401 Toulouse, France Email : Nicolas.Picot@cnes.fr ABSTRACT For electromagnetic propagation, the ionosphere plays a key role. This

More information

BeiDou Next Generation Signal Design and Expected Performance

BeiDou Next Generation Signal Design and Expected Performance International Technical Symposium on Navigation and Timing ENAC, 17 Nov 2015 BeiDou Next Generation Signal Design and Expected Performance Challenges and Proposed Solutions Zheng Yao Tsinghua University

More information

Improvement of Antenna System of Interferometric Microwave Imager on WCOM

Improvement of Antenna System of Interferometric Microwave Imager on WCOM Progress In Electromagnetics Research M, Vol. 70, 33 40, 2018 Improvement of Antenna System of Interferometric Microwave Imager on WCOM Aili Zhang 1, 2, Hao Liu 1, *,XueChen 1, Lijie Niu 1, Cheng Zhang

More information

The Delay-Doppler Altimeter

The Delay-Doppler Altimeter Briefing for the Coastal Altimetry Workshop The Delay-Doppler Altimeter R. K. Raney Johns Hopkins University Applied Physics Laboratory 05-07 February 2008 1 What is a Delay-Doppler altimeter? Precision

More information

GNSS Programme. Overview and Status in Europe

GNSS Programme. Overview and Status in Europe GNSS Programme Overview and Status in Europe Inaugural Forum Satellite Positioning Research and Application Center 23 April 2007 Tokyo Presented by Thomas Naecke (European Commission) Prepared by Daniel

More information

A CubeSat Radio Beacon Experiment

A CubeSat Radio Beacon Experiment A CubeSat Radio Beacon Experiment CUBEACON A Beacon Test of Designs for the Future Antenna? Michael Cousins SRI International Multifrequency? Size, Weight and Power? CubeSat Developers Workshop, April

More information

Microwave Sensors Subgroup (MSSG) Report

Microwave Sensors Subgroup (MSSG) Report Microwave Sensors Subgroup (MSSG) Report CEOS WGCV-35 May 13-17, 2013, Shanghai, China DONG, Xiaolong, MSSG Chair CAS Key Laboratory of Microwave Remote Sensing National Space Science Center Chinese Academy

More information

Introduction to Galileo PRS

Introduction to Galileo PRS Introduction to Galileo PRS Fabio Covello 20/09/2017 ESA UNCLASSIFIED - For Official Use Galileo mission figures The Galileo Space Segment: 30 satellites (full constellation) Walker 24/3/1 constellation

More information

Scalable Front-End Digital Signal Processing for a Phased Array Radar Demonstrator. International Radar Symposium 2012 Warsaw, 24 May 2012

Scalable Front-End Digital Signal Processing for a Phased Array Radar Demonstrator. International Radar Symposium 2012 Warsaw, 24 May 2012 Scalable Front-End Digital Signal Processing for a Phased Array Radar Demonstrator F. Winterstein, G. Sessler, M. Montagna, M. Mendijur, G. Dauron, PM. Besso International Radar Symposium 2012 Warsaw,

More information

The Sentinel-1 Constellation

The Sentinel-1 Constellation The Sentinel-1 Constellation Evert Attema, Sentinel-1 Mission & System Manager AGRISAR and EAGLE Campaigns Final Workshop 15-16 October 2007 ESA/ESTECNoordwijk, The Netherlands Sentinel-1 Programme Sentinel-1

More information

GNSS Technologies. GNSS Acquisition Dr. Zahidul Bhuiyan Finnish Geospatial Research Institute, National Land Survey

GNSS Technologies. GNSS Acquisition Dr. Zahidul Bhuiyan Finnish Geospatial Research Institute, National Land Survey GNSS Acquisition 25.1.2016 Dr. Zahidul Bhuiyan Finnish Geospatial Research Institute, National Land Survey Content GNSS signal background Binary phase shift keying (BPSK) modulation Binary offset carrier

More information

Introduction to Radar Systems. Radar Antennas. MIT Lincoln Laboratory. Radar Antennas - 1 PRH 6/18/02

Introduction to Radar Systems. Radar Antennas. MIT Lincoln Laboratory. Radar Antennas - 1 PRH 6/18/02 Introduction to Radar Systems Radar Antennas Radar Antennas - 1 Disclaimer of Endorsement and Liability The video courseware and accompanying viewgraphs presented on this server were prepared as an account

More information

2009 CubeSat Developer s Workshop San Luis Obispo, CA

2009 CubeSat Developer s Workshop San Luis Obispo, CA Exploiting Link Dynamics in LEO-to-Ground Communications 2009 CubeSat Developer s Workshop San Luis Obispo, CA Michael Caffrey mpc@lanl.gov Joseph Palmer jmp@lanl.gov Los Alamos National Laboratory Paper

More information

GNSS-R for studies of the cryosphere

GNSS-R for studies of the cryosphere GNSS-R for studies of the cryosphere F. Fabra 1, E. Cardellach 1, O. Nogués-Correig 1, S. Oliveras 1, S. Ribó 1, J.C. Arco 1, A. Rius 1, M. Belmonte-Rivas 2, M. Semmling 3, G. Macelloni 4, S. Pettinato

More information

RECOMMENDATION ITU-R S *

RECOMMENDATION ITU-R S * Rec. ITU-R S.1339-1 1 RECOMMENDATION ITU-R S.1339-1* Rec. ITU-R S.1339-1 SHARING BETWEEN SPACEBORNE PASSIVE SENSORS OF THE EARTH EXPLORATION-SATELLITE SERVICE AND INTER-SATELLITE LINKS OF GEOSTATIONARY-SATELLITE

More information

Channel Modeling ETIN10. Wireless Positioning

Channel Modeling ETIN10. Wireless Positioning Channel Modeling ETIN10 Lecture no: 10 Wireless Positioning Fredrik Tufvesson Department of Electrical and Information Technology 2014-03-03 Fredrik Tufvesson - ETIN10 1 Overview Motivation: why wireless

More information

Altimeter Range Corrections

Altimeter Range Corrections Altimeter Range Corrections Schematic Summary Corrections Altimeters Range Corrections Altimeter range corrections can be grouped as follows: Atmospheric Refraction Corrections Sea-State Bias Corrections

More information

A Zeppelin-based Study on GNSS Reflectometry for Altimetric Application

A Zeppelin-based Study on GNSS Reflectometry for Altimetric Application A Zeppelin-based Study on GNSS Reflectometry for Altimetric Application M. Semmling 1 G. Beyerle 1 J. Beckheinrich 1 J. Wickert 1 M. Ge 1 S. Schön 2 1 GFZ Deutsches GeoForschungsZentrum, Potsdam 2 IfE

More information

SAR Formation Flying

SAR Formation Flying 3 th June 13 SAR Formation Flying Annex 4. Bistatic Sensor Experiment Document Version: v1_1 Dr. Kegen Yu, Prof. Chris Rizos & Prof. Andrew Dempster Australian Centre for Space Engineering Research (ACSER)

More information

Satellite-based positioning (II)

Satellite-based positioning (II) Lecture 11: TLT 5606 Spread Spectrum techniques Lecturer: Simona Lohan Satellite-based positioning (II) Outline GNSS navigation signals&spectra: description and details Basics: signal model, pilots, PRN

More information

EEG 816: Radiowave Propagation 2009

EEG 816: Radiowave Propagation 2009 Student Matriculation No: Name: EEG 816: Radiowave Propagation 2009 Dr A Ogunsola This exam consists of 5 problems. The total number of pages is 5, including the cover page. You have 2.5 hours to solve

More information

Remote Sensing: John Wilkin IMCS Building Room 211C ext 251. Active microwave systems (1) Satellite Altimetry

Remote Sensing: John Wilkin IMCS Building Room 211C ext 251. Active microwave systems (1) Satellite Altimetry Remote Sensing: John Wilkin wilkin@marine.rutgers.edu IMCS Building Room 211C 732-932-6555 ext 251 Active microwave systems (1) Satellite Altimetry Active microwave instruments Scatterometer (scattering

More information

Remote sensing of the oceans Active sensing

Remote sensing of the oceans Active sensing Remote sensing of the oceans Active sensing Gravity Sea level Ocean tides Low frequency motion Scatterometry SAR http://daac.gsfc.nasa.gov/campaign_docs/ocdst/what_is_ocean_color.html Shape of the earth

More information

Modelling GPS Observables for Time Transfer

Modelling GPS Observables for Time Transfer Modelling GPS Observables for Time Transfer Marek Ziebart Department of Geomatic Engineering University College London Presentation structure Overview of GPS Time frames in GPS Introduction to GPS observables

More information

Chapter 6 Spaceborne SAR Antennas for Earth Science

Chapter 6 Spaceborne SAR Antennas for Earth Science Chapter 6 Spaceborne SAR Antennas for Earth Science Yunjin Kim and Rolando L. Jordan 6.1 Introduction Before the development of the first synthetic aperture radar (SAR) antenna flown in space, Jet Propulsion

More information

The Influence of Multipath on the Positioning Error

The Influence of Multipath on the Positioning Error The Influence of Multipath on the Positioning Error Andreas Lehner German Aerospace Center Münchnerstraße 20 D-82230 Weßling, Germany andreas.lehner@dlr.de Co-Authors: Alexander Steingaß, German Aerospace

More information

New Signal Structures for BeiDou Navigation Satellite System

New Signal Structures for BeiDou Navigation Satellite System Stanford's 2014 PNT Symposium New Signal Structures for BeiDou Navigation Satellite System Mingquan Lu, Zheng Yao Tsinghua University 10/29/2014 1 Outline 1 Background and Motivation 2 Requirements and

More information

GPS (Introduction) References. Terms

GPS (Introduction) References. Terms GPS (Introduction) MSE, Rumc, GPS, 1 Terms NAVSTAR GPS ( Navigational Satellite Timing and Ranging - Global Positioning System) is a GNSS (Global Navigation Satellite System), developed by the US-DoD in

More information

2009 Small Satellite Conference Logan, Utah

2009 Small Satellite Conference Logan, Utah Exploiting Link Dynamics in LEO-to-Ground Communications 2009 Small Satellite Conference Logan, Utah Joseph Palmer jmp@lanl.gov Michael Caffrey mpc@lanl.gov Los Alamos National Laboratory Paper Abstract

More information

Sub-Mesoscale Imaging of the Ionosphere with SMAP

Sub-Mesoscale Imaging of the Ionosphere with SMAP Sub-Mesoscale Imaging of the Ionosphere with SMAP Tony Freeman Xiaoqing Pi Xiaoyan Zhou CEOS Workshop, ASF, Fairbanks, Alaska, December 2009 1 Soil Moisture Active-Passive (SMAP) Overview Baseline Mission

More information

TanDEM-X. 1. Mission Overview. Science Meeting No SAR Imaging Modes & Performance 3. Satellite Design Overview 4. Launcher 5.

TanDEM-X. 1. Mission Overview. Science Meeting No SAR Imaging Modes & Performance 3. Satellite Design Overview 4. Launcher 5. TanDEM-X Science Meeting No. 1 Dresden 15.5.2006 Wolfgang Pitz EADS Astrium GmbH D-88039 Friedrichshafen 1. Mission Overview 2. SAR Imaging Modes & Performance 3. Satellite Design Overview 4. Launcher

More information

Coherent detection of weak Mode-S signals from Low Earth Orbit

Coherent detection of weak Mode-S signals from Low Earth Orbit ADS-B over Satellite Coherent detection of weak Mode-S signals from Low Earth Orbit 4S Symposium, June 1 st 2016 in Valletta, Malta Toni Delovski, German Aerospace Center (DLR) Institute of Space Systems

More information

Microsatellite Constellation for Earth Observation in the Thermal Infrared Region

Microsatellite Constellation for Earth Observation in the Thermal Infrared Region Microsatellite Constellation for Earth Observation in the Thermal Infrared Region Federico Bacci di Capaci Nicola Melega, Alessandro Tambini, Valentino Fabbri, Davide Cinarelli Observation Index 1. Introduction

More information

Space multi-beam antenna with very high figure of merit, for Ka-band multimedia via satellite transmission

Space multi-beam antenna with very high figure of merit, for Ka-band multimedia via satellite transmission Space multi-beam antenna with very high figure of merit, for Ka-band multimedia via satellite transmission Yann CAILLOCE, Gerard CAILLE: Alcatel Space Industries, B.P. 87, 3037 Toulouse Cedex, France.

More information

GNSS-R for Land Bio-Geophysical Parameters Monitoring: the LEiMON Project

GNSS-R for Land Bio-Geophysical Parameters Monitoring: the LEiMON Project GNSS-R for Land Bio-Geophysical Parameters Monitoring: the LEiMON Project Alejandro Egido(1), Marco Caparrini(1), Leila Guerriero(2), Nazzareno Pierdicca(2), Simonetta Paloscia(3), Marco Brogioni(3), Nicolas

More information

Active microwave systems (1) Satellite Altimetry

Active microwave systems (1) Satellite Altimetry Remote Sensing: John Wilkin Active microwave systems (1) Satellite Altimetry jwilkin@rutgers.edu IMCS Building Room 214C 732-932-6555 ext 251 Active microwave instruments Scatterometer (scattering from

More information

Status of the ACES mission

Status of the ACES mission Moriond Workshop, March 2003 «Gravitational Waves and Experimental Gravity» Status of the ACES mission The ACES system The ACES payload : - space clocks : PHARAO and SHM - on-board comparisons - space-ground

More information

h max 20 TX Ionosphere d 1649 km Radio and Optical Wave Propagation Prof. L. Luini, July 1 st, 2016 SURNAME AND NAME ID NUMBER SIGNATURE

h max 20 TX Ionosphere d 1649 km Radio and Optical Wave Propagation Prof. L. Luini, July 1 st, 2016 SURNAME AND NAME ID NUMBER SIGNATURE Radio and Optical Wave Propagation Prof. L. Luini, July st, 06 3 4 do not write above SURNAME AND NAME ID NUMBER SIGNATURE Exercise Making reference to the figure below, the transmitter TX, working at

More information

ESA Study GNSS Reflectometry Instrument & Algorithms NCEO/CEOI Conference, 19 th Sept 2012

ESA Study GNSS Reflectometry Instrument & Algorithms NCEO/CEOI Conference, 19 th Sept 2012 Changing the economics of space ESA Study GNSS Reflectometry Instrument & Algorithms NCEO/CEOI Conference, 19 th Sept 2012 #01xxxxx Overview GNSS for Remote Sensing Concept and UK-DMC Experiment Scientific

More information

Remote Sensing: John Wilkin IMCS Building Room 211C ext 251. Active microwave systems (1) Satellite Altimetry

Remote Sensing: John Wilkin IMCS Building Room 211C ext 251. Active microwave systems (1) Satellite Altimetry Remote Sensing: John Wilkin wilkin@marine.rutgers.edu IMCS Building Room 211C 732-932-6555 ext 251 Active microwave systems (1) Satellite Altimetry Active microwave instruments Scatterometer (scattering

More information

Active microwave systems (2) Satellite Altimetry * range data processing * applications

Active microwave systems (2) Satellite Altimetry * range data processing * applications Remote Sensing: John Wilkin wilkin@marine.rutgers.edu IMCS Building Room 211C 732-932-6555 ext 251 Active microwave systems (2) Satellite Altimetry * range data processing * applications Satellite Altimeters

More information

Miguel A. Aguirre. Introduction to Space. Systems. Design and Synthesis. ) Springer

Miguel A. Aguirre. Introduction to Space. Systems. Design and Synthesis. ) Springer Miguel A. Aguirre Introduction to Space Systems Design and Synthesis ) Springer Contents Foreword Acknowledgments v vii 1 Introduction 1 1.1. Aim of the book 2 1.2. Roles in the architecture definition

More information

3D Multi-static SAR System for Terrain Imaging Based on Indirect GPS Signals

3D Multi-static SAR System for Terrain Imaging Based on Indirect GPS Signals Journal of Global Positioning Systems (00) Vol. 1, No. 1: 34-39 3D Multi-static SA System for errain Imaging Based on Indirect GPS Signals Yonghong Li, Chris izos School of Surveying and Spatial Information

More information

Remote Sensing using Bistatic GPS and a Digital Beam Steering Receiver

Remote Sensing using Bistatic GPS and a Digital Beam Steering Receiver Remote Sensing using Bistatic GPS and a Digital Beam Steering Receiver Alison Brown and Ben Mathews, NAVSYS Corporation BIOGRAPHY Alison Brown is the President and Chief Executive Officer of NAVSYS Corporation.

More information

Mission requirements and satellite overview

Mission requirements and satellite overview Mission requirements and satellite overview E. BOUSSARIE 1 Dual concept Users need Defence needs Fulfil the Defence needs on confidentiality and security Civilian needs Fulfillment of the different needs

More information

HIGH GAIN ADVANCED GPS RECEIVER

HIGH GAIN ADVANCED GPS RECEIVER ABSTRACT HIGH GAIN ADVANCED GPS RECEIVER NAVSYS High Gain Advanced () uses a digital beam-steering antenna array to enable up to eight GPS satellites to be tracked, each with up to dbi of additional antenna

More information

THE NASA/JPL AIRBORNE SYNTHETIC APERTURE RADAR SYSTEM. Yunling Lou, Yunjin Kim, and Jakob van Zyl

THE NASA/JPL AIRBORNE SYNTHETIC APERTURE RADAR SYSTEM. Yunling Lou, Yunjin Kim, and Jakob van Zyl THE NASA/JPL AIRBORNE SYNTHETIC APERTURE RADAR SYSTEM Yunling Lou, Yunjin Kim, and Jakob van Zyl Jet Propulsion Laboratory California Institute of Technology 4800 Oak Grove Drive, MS 300-243 Pasadena,

More information