Soil Moisture Observation Utilizing Reflected GNSS Signals

Size: px
Start display at page:

Download "Soil Moisture Observation Utilizing Reflected GNSS Signals"

Transcription

1 Soil Moisture Observation Utilizing Reflected GNSS Signals GNSS-R Tech in Soil Moisture New Data Processing Method Prof. Dongkai YANG Joint African/Asia-Pacific UN-Regional Centers and International Training Workshop on Global Navigation Satellite Systems (GNSS) Aug.

2 GUIDELINE Soil Moisture Observation Utilizing Reflected GNSS Signals I II Ⅲ Ⅳ Ⅴ Introduction Basic Principles Proposed Method Experiment&Results Conclusions

3 Introduction Multipath Effect Signal arrives by More than One Path Transmitter Harmful Effect: Positioning &Timing Error Usually be ELIMINATED Take ADVANTAGES of it! Multipath Receive r

4 Introduction Physical Phenomenon Electromagnetic wave meets reflecting surface Reflection or scattering Reflected Waveform Polarization characteristics Amplitude Phase Soil Moisture Land Surface Material Area Other properties

5 Introduction Research Status -- Experiment In 1993, Martin Neira first proposed PARIS concept, which is an application of ocean altimetry. Since 2000, NASA & University of Colorado made the first experiment to monitor soil moisture based on GNSS-R SMEX In 2009, SMOS launched by ESA can provide a resolution of 50 km space borne observation.

6 Introduction Research Status -- Method In 2010, American professor Larson proposed a new method that signals routinely recorded by GPS receivers installed to measure crustal deformation for geophysical studies could provide a global network of soil moisture sensors, and a new physical model utilizing SNR. The Spanish Starlab used IPT (Interference Pattern Technique). One antenna receives two kinds of signals at the same time, and a notch amplitude, which is sensitive to soil moisture, will appear at the vertical polarization. The conventional method is called ICF (Interferometric Complex Field ). It is widely applied due to its simplicity.

7 Introduction Primary Coverage GNSS-R GlobalNavigationSatelliteSystem Reflection Basic Principles include geometric relationship, signal characteristics, and parameters. Analysis Relationship among parameters to Propose a New data processing Method Experiment for validation by comparison

8 My Contents Soil Moisture Observation Utilizing Reflected GNSS Signals I II Ⅲ Ⅳ Ⅴ Introduction Basic Principles Proposed Method Experiment&Results Conclusions

9 Basic Principles Geometric Model Typical bistatic radar system mode Transmitter: GNSS L-band satellite Reflected signal receiver : LEO(Low Earth Orbit) satellite Not collocated GLONASS GALILEO Receiver GPS Beidou

10 Basic Principles Geometric Model Typical bistatic radar system mode Reflected signal receiver RHCP Antenna Right-Hand Circular Polarized Collects direct GNSS signals LHCP Antenna Left-Hand Circular Polarized Land surface reflected signals RHCP LHCP Direct Signal Reflected Signal

11 Basic Principles Geometric Model Typical bistatic radar system mode Specular reflection: mirrorlike reflection of wave from a surface, in which light from a single incoming direction is reflected into a single outgoing direction. Diffuse reflection: an incident wave is reflected at many angles rather than at just one. RHCP LHCP Direct Signal Reflected Signal Specular Point

12 Basic Principles Geometric Model Typical bistatic radar system mode Specular Direct Signal When diffuse reflection, each ring correspond to a sampling point, or in other word, time delay. RHCP LHCP Reflected Signal Specular Point

13 Basic Principles Geometric Model Typical bistatic radar system mode What do we WANT? Direct Signal Signal Received by LHCP Antenna What can we GET? Incident Signal Reflected Signal RHCP Direct Signal Elevation Angle LHCP Reflected Signal Incident Signal Elevation Angle

14 Basic Principles Geometric Model Typical bistatic radar system mode Because the distance between transmitter and receiver is too far; the distance between receiver and surface is too close RHCP LHCP Direct Signal Elevation Angle Reflected Signal Incident Signal Direct Signal Incident Signal Signal Received by LHCP Antenna Reflected Signal Elevation Angle

15 Basic Principles Signal Characteristic Reflected signal- circular polarization. Right-Hand-Circular-Polarized GNSS signal consists of a vertical and a horizontal polarization component. RHCP LHCP On Reflection Signal would change mostly to LHCP (ele>20 ).

16 Basic Principles Signal Characteristic Reflected signal- circular polarization Therefore,. we use two different antennas to receive different signals separately. RHCP LHCP On Reflection Signal would change mostly to LHCP (ele>20 ).

17 Basic Principles Signal Characteristic Reflected signal - correlation function In reflected signal processing, the correlation function of the local PRN code a and the antenna output signal UR at a time delay of τ is defined as: Self-Correlation Function -Tc In theory Tc -Tc In nature Tc

18 Basic Principles Signal Characteristic Reflected signal - correlation function In theory In nature Interference Attenuation Specular Point Sampling Points Long-tailed-shaped

19 Basic Principles Signal Characteristic Reflected signal - correlation function Interferometric Complex Field PR: reflected correlation power peaks PD: direct correlation power peaks 12 of 34

20 Basic Principles Essential Model Relationship between input & output Output: Soil Moisture Input: Signal Strength Elevation Retrieve Dielectric Constant Reflection Coefficient the square root of reflectivity Reflectivity ICF à Reflectivity

21 Basic Principles Essential Model Relationship between input & output Reflectivity the ratio of reflected signal to incident signal Reflection Coefficient is related to dielectric constant; the square root of reflectivity Reflectivity = ICF = PR/PD

22 My Contents Soil Moisture Observation Utilizing Reflected GNSS Signals I II Ⅲ Ⅳ Ⅴ Introduction Basic Principles Proposed Method Experiment&Results Conclusions

23 Proposed Method Waveform Area New method of data processing Maximum Slope Waveform Peak If we use multiple correlation power values at different time delays The amount of information can be enlarged Its function corresponds to that of a filter.

24 Proposed Method Waveform Area New method of data processing Normalized area with multiple samples that centres around the peak is substituted for the waveform peak of reflected signal. SR(t): Normalized Area Three factors may have effect on the ICF ratio.

25 ❶ Proposed Method Reflectivity Analysis Which reflection coefficient has better performance? All the three kinds of reflectivity could perform well in soil moisture retrieval. To reduce the computation cost Vertical polarization component

26 Proposed Method ❶Reflectivity Analysis Which reflection coefficient has better performance? Substituting R for RRL yield error, but it is negligible (elevation>65 ).

27 ❷ Proposed Method Dielectric Constant Analysis Would elevation angle affect largely on the ICF ratio? ε: the relative complex dielectric constant of the earth surface; ԑ: dielectric constant; ԑ0: dielectric constant of a vacuum; σ: conductivity(mho/m).

28 Proposed Method ❷Dielectric Constant Analysis Would elevation angle affect largely on the ICF ratio? Therefore, dielectric constant relies mainly on the ICF ratio.

29 ❸ Proposed Method Soil Moisture Is calculatedfrom dielectricconstant Volumetric water content is dete rmined by percent by volume S & C: Sand and Clay texture components Constants ß by frequency of incident signal (1.5 GHz) A Semi-Empirical Model Ɛsoil = S C + ( S C) mv + ( S C) mv^2

30 ❸ Proposed Method Soil Moisture Is calculatedfrom dielectricconstant Texture compositions of a soil do not influence significantly on the relationship. Soil moisture depends mainly on the ICF ratio.

31 My Contents Soil Moisture Observation Utilizing Reflected GNSS Signals I II Ⅲ Ⅳ Ⅴ Introduction Basic Principles Proposed Method Experiment&Results Conclusions

32 Experiment & Results Site Description To validate the proposed new method Site Beijing Vegetable Research Center Time On 18 September, 2013 A total of three and a half hours 8:45 a.m. ~ 12:15 a.m. Instrument installation Antenna: height = 2.1m Hardware: GNSS-R receiver Software: data processing (Windows)

33 Experiment & Results Weather Condition To validate the proposed new method The soil was reasonably moist after the precipitation event on the midnight of September 17. During the whole study period, intermittent rainfalls occurred.

34 Experiment & Results TDR Measurement To validate the proposed new method The existing data was collected by TDR (Time-Domain Reflectometer) soil moisture meter every 15 minutes, with probes of 7.5cm and accuracy of ±3.0% volumetric water content.

35 Experiment & Results Data Processing To validate the proposed new method The GNSS-R receiver was designed to choose the satellite with the highest elevation. Elevation angle ranges from 65 to 90 approximately. Satellite Elevation Angle Time Number Elevation 9:10-10: :15-10: :40-11: :43-12:

36 Experiment & Results Data Processing To validate the proposed new method Solid line: GNSS-R measurement is smoothed every 15 minutes Its trend roughly correlates with the trend in the TDR measurement Reflected signal is sensitive to soil moisture.

37 Experiment & Results Data Processing To validate the proposed new method Correlation Analysis The least square method to fit the GNSS-R smoothed data to the existing data Residual sum of squares = 0.01 The two curves in the previous figure show good consistency! GNSS-R Measurement TDR Measurement

38 Experiment & Results Data Processing To validate the proposed new method Smoothing Time It is supposed that the large fluctuation of GNSS-R measurements is caused by stochastic error, because the receiver process signal every second. However, the experiential meteorological data are not recorded with unit of second. They would not change remarkably within several minutes.

39 Experiment & Results Data Processing To validate the proposed new method Smoothing Time To reduce random error, we should first smooth the data before calculating ICF ratio.

40 Experiment & Results Other Results A paper published? Wenjiao Liu, Dongkai Yang, Chaoqun Gao, Qishan Zhang, Soil Moisture Observation Utilizing Reflected Global Navigaiton Satellite System Signals, ICEEICT, 2014.

41 Experiment & Results Other Results A soil moisture retrieval software Demonstrate intermediate parameters, soil moisture, and geometry relationship in real time.

42 My Contents Soil Moisture Observation Utilizing Reflected GNSS Signals I II Ⅲ Ⅳ Ⅴ Introduction Basic Principles Proposed Method Experiment&Results Conclusions

43 Conclusion GNSS-R for soil moisture observation is practical. Reflected signal is sensitive to soil moisture. A new data processing method using reflected signal wave area is valid and has good performance.

44 Conclusion Future Work COMPARISON: proposed & existing method Improve the ACCURACY of the model Soil depth Calibration Vegetation cover Antenna radiation pattern

45 CONTACT US School of Electronic and Information Engineering BEIHANG University Prof. Dongkai YANG Address:, No.37, Xueyuan Rd., Haidian DIstrict, Beijing, CHINA, Phone: (86)

46 THANK YOU

2 INTRODUCTION TO GNSS REFLECTOMERY

2 INTRODUCTION TO GNSS REFLECTOMERY 2 INTRODUCTION TO GNSS REFLECTOMERY 2.1 Introduction The use of Global Navigation Satellite Systems (GNSS) signals reflected by the sea surface for altimetry applications was first suggested by Martín-Neira

More information

Theoretical Simulations of GNSS Reflections from Bare and Vegetated Soils

Theoretical Simulations of GNSS Reflections from Bare and Vegetated Soils Theoretical Simulations of GNSS Reflections from Bare and Vegetated Soils R. Giusto 1, L. Guerriero, S. Paloscia 3, N. Pierdicca 1, A. Egido 4, N. Floury 5 1 DIET - Sapienza Univ. of Rome, Rome DISP -

More information

The Typhoon Investigation using GNSS-R Interferometric Signals (TIGRIS)

The Typhoon Investigation using GNSS-R Interferometric Signals (TIGRIS) The Typhoon Investigation using GNSS-R Interferometric Signals (TIGRIS) F. Fabra 1, W. Li 2, M. Martín-Neira 3, S. Oliveras 1, A. Rius 1, W. Yang 2, D. Yang 2 and Estel Cardellach 1 1 Institute of Space

More information

Remote Sensing with Reflected Signals

Remote Sensing with Reflected Signals Remote Sensing with Reflected Signals GNSS-R Data Processing Software and Test Analysis Dongkai Yang, Yanan Zhou, and Yan Wang (airplane) istockphoto.com/mark Evans; gpsiff background Authors from a leading

More information

Guideline I. Introduction II. GNSS-R receiver Description III. Data Process and Analysis IV. Summary

Guideline I. Introduction II. GNSS-R receiver Description III. Data Process and Analysis IV. Summary Data Collection and Analysis for GNSS--R Experiment in China GNSS Yang Dongkai Beihang University Sep. 2011 Guideline I. Introduction II. GNSS-R receiver Description III. Data Process and Analysis IV.

More information

Prototype Software-based Receiver for Remote Sensing using Reflected GPS Signals. Dinesh Manandhar The University of Tokyo

Prototype Software-based Receiver for Remote Sensing using Reflected GPS Signals. Dinesh Manandhar The University of Tokyo Prototype Software-based Receiver for Remote Sensing using Reflected GPS Signals Dinesh Manandhar The University of Tokyo dinesh@qzss.org 1 Contents Background Remote Sensing Capability System Architecture

More information

A Global System for Detecting Dangerous Seas Using GNSS Bi-static Radar Technology

A Global System for Detecting Dangerous Seas Using GNSS Bi-static Radar Technology A Global System for Detecting Dangerous Seas Using GNSS Bi-static Radar Technology Scott Gleason, Ka Bian, Alex da Silva Curiel Stephen Mackin and Martin Sweeting 20 th AIAA/USU Smallsat Conference, Logan,

More information

OBSERVATION PERFORMANCE OF A PARIS ALTIMETER IN-ORBIT DEMONSTRATOR

OBSERVATION PERFORMANCE OF A PARIS ALTIMETER IN-ORBIT DEMONSTRATOR OBSERVATION PERFORMANCE OF A PARIS ALTIMETER IN-ORBIT DEMONSTRATOR Salvatore D Addio, Manuel Martin-Neira Acknowledgment to: Nicolas Floury, Roberto Pietro Cerdeira TEC-ETP, ETP, Electrical Engineering

More information

PARIS Ocean Altimeter

PARIS Ocean Altimeter PARIS Ocean Altimeter M. Martín-Neira, S. D Addio (TEC-ETP) European Space Agency Acknowledgment: C. Buck (TEC-ETP) N. Floury, R. Prieto (TEC-EEP) GNSS-R10 Workshop, UPC, Barcelona, 21-22 October 2010

More information

GNSS-R for Ocean and Cryosphere Applications

GNSS-R for Ocean and Cryosphere Applications GNSS-R for Ocean and Cryosphere Applications E.Cardellach and A. Rius Institut de Ciències de l'espai (ICE/IEEC-CSIC), Spain Contents Altimetry with Global Navigation Satellite Systems: Model correlation

More information

Developments in GNSS Reflectometry from the SGR-ReSI on TDS-1

Developments in GNSS Reflectometry from the SGR-ReSI on TDS-1 Changing the economics of space Developments in GNSS Reflectometry from the SGR-ReSI on TDS-1 Martin Unwin Philip Jales, Jason Tye (SSTL), Brent Abbott SST-US Christine Gommenginger, Giuseppe Foti (NOC)

More information

Introduction Active microwave Radar

Introduction Active microwave Radar RADAR Imaging Introduction 2 Introduction Active microwave Radar Passive remote sensing systems record electromagnetic energy that was reflected or emitted from the surface of the Earth. There are also

More information

Non-PNT Applications from GNSS. Dr. Yang Dongkai School of Electronics and Information BeiHang University

Non-PNT Applications from GNSS. Dr. Yang Dongkai School of Electronics and Information BeiHang University Non-PNT Applications from GNSS Dr. Yang Dongkai edkyang@buaa.edu.cn School of Electronics and Information BeiHang University Outline 1 2 3 Introduction Typical Non-PNT Applications Potential Cooperation

More information

An overview of the COSMIC follow-on mission (COSMIC-II) and its potential for GNSS-R

An overview of the COSMIC follow-on mission (COSMIC-II) and its potential for GNSS-R An overview of the COSMIC follow-on mission (COSMIC-II) and its potential for GNSS-R Lidia Cucurull (1), Dave Ector (2), and Estel Cardellach (3) (1) NOAA/NWS/NCEP/EMC (2) NOAA/NESDIS/OSD (3) IEEC/ICE-CSIC

More information

Passive Microwave Sensors LIDAR Remote Sensing Laser Altimetry. 28 April 2003

Passive Microwave Sensors LIDAR Remote Sensing Laser Altimetry. 28 April 2003 Passive Microwave Sensors LIDAR Remote Sensing Laser Altimetry 28 April 2003 Outline Passive Microwave Radiometry Rayleigh-Jeans approximation Brightness temperature Emissivity and dielectric constant

More information

Rec. ITU-R P RECOMMENDATION ITU-R P *

Rec. ITU-R P RECOMMENDATION ITU-R P * Rec. ITU-R P.682-1 1 RECOMMENDATION ITU-R P.682-1 * PROPAGATION DATA REQUIRED FOR THE DESIGN OF EARTH-SPACE AERONAUTICAL MOBILE TELECOMMUNICATION SYSTEMS (Question ITU-R 207/3) Rec. 682-1 (1990-1992) The

More information

Multipath Analysis of the QuikSCAT Calibration Ground Station

Multipath Analysis of the QuikSCAT Calibration Ground Station Brigham Young University Department of Electrical and Computer Engineering 459 Clyde Building Provo, Utah 8462 Multipath Analysis of the QuikSCAT Calibration Ground Station Arden Anderson 16 April 21 MERS

More information

Earth Remote Sensing using Surface-Reflected GNSS Signals (Part II)

Earth Remote Sensing using Surface-Reflected GNSS Signals (Part II) Jet Propulsion Laboratory California Institute of Technology National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena, California Earth Remote

More information

GNSS Reflectometry: Innovative Remote Sensing

GNSS Reflectometry: Innovative Remote Sensing GNSS Reflectometry: Innovative Remote Sensing J. Beckheinrich 1, G. Beyerle 1, S. Schön 2, H. Apel 1, M. Semmling 1, J. Wickert 1 1.GFZ, German Research Center for Geosciences, Potsdam, Germany 2.Leibniz

More information

GNSS-R for Land Bio-Geophysical Parameters Monitoring: the LEiMON Project

GNSS-R for Land Bio-Geophysical Parameters Monitoring: the LEiMON Project GNSS-R for Land Bio-Geophysical Parameters Monitoring: the LEiMON Project Alejandro Egido(1), Marco Caparrini(1), Leila Guerriero(2), Nazzareno Pierdicca(2), Simonetta Paloscia(3), Marco Brogioni(3), Nicolas

More information

GNSS Reflections over Ocean Surfaces

GNSS Reflections over Ocean Surfaces GNSS Reflections over Ocean Surfaces State of the Art F. Soulat CCT Space Reflectometry December 1st 2010 Page n 1 Outline Concept GNSS-R Signal On-going Activities ( Applications) CLS GNSS-R Studies CCT

More information

GNSS-R for studies of the cryosphere

GNSS-R for studies of the cryosphere GNSS-R for studies of the cryosphere F. Fabra 1, E. Cardellach 1, O. Nogués-Correig 1, S. Oliveras 1, S. Ribó 1, J.C. Arco 1, A. Rius 1, M. Belmonte-Rivas 2, M. Semmling 3, G. Macelloni 4, S. Pettinato

More information

PARIS In-Orbit Demonstrator

PARIS In-Orbit Demonstrator 1/52 PARIS In-Orbit Demonstrator Manuel Martín-Neira Neira,, Salvatore D Addio,, Christopher Buck (TEC-ETP) ETP) Acknowledgments: F. Coromina (TEC-ETP) ETP) N. Floury (TEC-EEP) EEP) J. Santiago Prowald

More information

A Coherent Bistatic Vegetation Model for SoOp Land Applications: Preliminary Simulation Results

A Coherent Bistatic Vegetation Model for SoOp Land Applications: Preliminary Simulation Results A Coherent Bistatic Vegetation Model for SoOp Land Applications: Preliminary Simulation Results Mehmet Kurum (1), Manohar Deshpande (2), Alicia T. Joseph (2), Peggy E. O Neill (2), Roger H. Lang (3), Orhan

More information

Research Article A New Kind of Circular Polarization Leaky-Wave Antenna Based on Substrate Integrated Waveguide

Research Article A New Kind of Circular Polarization Leaky-Wave Antenna Based on Substrate Integrated Waveguide Antennas and Propagation Volume 1, Article ID 3979, pages http://dx.doi.org/1.11/1/3979 Research Article A New Kind of Circular Polarization Leaky-Wave Antenna Based on Substrate Integrated Waveguide Chong

More information

Ionospheric H-Atom Tomography: a Feasibility Study using GNSS Reflections. G. Ruffini, Josep Marco, L. Ruffini ESTEC, Dec 17th 2002

Ionospheric H-Atom Tomography: a Feasibility Study using GNSS Reflections. G. Ruffini, Josep Marco, L. Ruffini ESTEC, Dec 17th 2002 Ionospheric H-Atom Tomography: a Feasibility Study using GNSS Reflections. G. Ruffini, Josep Marco, L. Ruffini ESTEC, Dec 17th 2002 Goals of the GIOS-1 study ESTEC Tech Officer: Bertram Arbesser-Rastburg

More information

GNSS Remo Sensing in ensin a 6U Cubesat

GNSS Remo Sensing in ensin a 6U Cubesat GNSS Remote Sensing in a 6U Cubesat Andrew Dempster Remote Sensing using GNSS Radio occultation Well established, with existing missions, v useful for input to weather models Reflectometry Experimental,

More information

Sea surface temperature observation through clouds by the Advanced Microwave Scanning Radiometer 2

Sea surface temperature observation through clouds by the Advanced Microwave Scanning Radiometer 2 Sea surface temperature observation through clouds by the Advanced Microwave Scanning Radiometer 2 Akira Shibata Remote Sensing Technology Center of Japan (RESTEC) Tsukuba-Mitsui blds. 18F, 1-6-1 Takezono,

More information

COMPACT DUAL-BAND CIRCULARLY-POLARIZED AN- TENNA WITH C-SLOTS FOR CNSS APPLICATION. Education, Shenzhen University, Shenzhen, Guangdong , China

COMPACT DUAL-BAND CIRCULARLY-POLARIZED AN- TENNA WITH C-SLOTS FOR CNSS APPLICATION. Education, Shenzhen University, Shenzhen, Guangdong , China Progress In Electromagnetics Research Letters, Vol. 40, 9 18, 2013 COMPACT DUAL-BAND CIRCULARLY-POLARIZED AN- TENNA WITH C-SLOTS FOR CNSS APPLICATION Maowen Wang 1, *, Baopin Guo 1, and Zekun Pan 2 1 Key

More information

SINGLE-FEEDING CIRCULARLY POLARIZED TM 21 - MODE ANNULAR-RING MICROSTRIP ANTENNA FOR MOBILE SATELLITE COMMUNICATION

SINGLE-FEEDING CIRCULARLY POLARIZED TM 21 - MODE ANNULAR-RING MICROSTRIP ANTENNA FOR MOBILE SATELLITE COMMUNICATION Progress In Electromagnetics Research Letters, Vol. 20, 147 156, 2011 SINGLE-FEEDING CIRCULARLY POLARIZED TM 21 - MODE ANNULAR-RING MICROSTRIP ANTENNA FOR MOBILE SATELLITE COMMUNICATION X. Chen, G. Fu,

More information

AGRON / E E / MTEOR 518: Microwave Remote Sensing

AGRON / E E / MTEOR 518: Microwave Remote Sensing AGRON / E E / MTEOR 518: Microwave Remote Sensing Dr. Brian K. Hornbuckle, Associate Professor Departments of Agronomy, ECpE, and GeAT bkh@iastate.edu What is remote sensing? Remote sensing: the acquisition

More information

CEGEG046 / GEOG3051 Principles & Practice of Remote Sensing (PPRS) 8: RADAR 1

CEGEG046 / GEOG3051 Principles & Practice of Remote Sensing (PPRS) 8: RADAR 1 CEGEG046 / GEOG3051 Principles & Practice of Remote Sensing (PPRS) 8: RADAR 1 Dr. Mathias (Mat) Disney UCL Geography Office: 113, Pearson Building Tel: 7670 05921 Email: mdisney@ucl.geog.ac.uk www.geog.ucl.ac.uk/~mdisney

More information

GNSS-Reflectometry for Observation and Monitoring of Earth surface

GNSS-Reflectometry for Observation and Monitoring of Earth surface GNSS-Reflectometry for Observation and Monitoring of Earth surface Global Navigation meets Geoinformation ESA ESOC Darmstadt, 28-04-2017 Dr. Ing. Domenico Schiavulli INR engineer support at EUMETSAT Outline

More information

Rec. ITU-R P RECOMMENDATION ITU-R P PROPAGATION BY DIFFRACTION. (Question ITU-R 202/3)

Rec. ITU-R P RECOMMENDATION ITU-R P PROPAGATION BY DIFFRACTION. (Question ITU-R 202/3) Rec. ITU-R P.- 1 RECOMMENDATION ITU-R P.- PROPAGATION BY DIFFRACTION (Question ITU-R 0/) Rec. ITU-R P.- (1-1-1-1-1-1-1) The ITU Radiocommunication Assembly, considering a) that there is a need to provide

More information

Active Radio Frequency Sensing for Soil Moisture Retrieval

Active Radio Frequency Sensing for Soil Moisture Retrieval Active Radio Frequency Sensing for Soil Moisture Retrieval T. Pratt and Z. Lin University of Notre Dame Other Contributors L. Leo, S. Di Sabatino, E. Pardyjak Summary of DUGWAY Experimental Set-Up Deployed

More information

MULTIPATH EFFECT MITIGATION IN SIGNAL PROPAGATION THROUGH AN INDOOR ENVIRONMENT

MULTIPATH EFFECT MITIGATION IN SIGNAL PROPAGATION THROUGH AN INDOOR ENVIRONMENT JOURNAL OF APPLIED ENGINEERING SCIENCES VOL. 2(15), issue 2_2012 ISSN 2247-3769 ISSN-L 2247-3769 (Print) / e-issn:2284-7197 MULTIPATH EFFECT MITIGATION IN SIGNAL PROPAGATION THROUGH AN INDOOR ENVIRONMENT

More information

Modelling GPS Observables for Time Transfer

Modelling GPS Observables for Time Transfer Modelling GPS Observables for Time Transfer Marek Ziebart Department of Geomatic Engineering University College London Presentation structure Overview of GPS Time frames in GPS Introduction to GPS observables

More information

NEW DESIGN OF COMPACT SHORTED ANNULAR STACKED PATCH ANTENNA FOR GLOBAL NAVIGA- TION SATELLITE SYSTEM APPLICATION

NEW DESIGN OF COMPACT SHORTED ANNULAR STACKED PATCH ANTENNA FOR GLOBAL NAVIGA- TION SATELLITE SYSTEM APPLICATION Progress In Electromagnetics Research C, Vol. 36, 223 232, 213 NEW DESIGN OF COMPACT SHORTED ANNULAR STACKED PATCH ANTENNA FOR GLOBAL NAVIGA- TION SATELLITE SYSTEM APPLICATION Xi Li *, Lin Yang, and Min

More information

It is well known that GNSS signals

It is well known that GNSS signals GNSS Solutions: Multipath vs. NLOS signals GNSS Solutions is a regular column featuring questions and answers about technical aspects of GNSS. Readers are invited to send their questions to the columnist,

More information

# DEFINITIONS TERMS. 2) Electrical energy that has escaped into free space. Electromagnetic wave

# DEFINITIONS TERMS. 2) Electrical energy that has escaped into free space. Electromagnetic wave CHAPTER 14 ELECTROMAGNETIC WAVE PROPAGATION # DEFINITIONS TERMS 1) Propagation of electromagnetic waves often called radio-frequency (RF) propagation or simply radio propagation. Free-space 2) Electrical

More information

Radar Imaging Wavelengths

Radar Imaging Wavelengths A Basic Introduction to Radar Remote Sensing ~~~~~~~~~~ Rev. Ronald J. Wasowski, C.S.C. Associate Professor of Environmental Science University of Portland Portland, Oregon 3 November 2015 Radar Imaging

More information

Synthetic aperture RADAR (SAR) principles/instruments October 31, 2018

Synthetic aperture RADAR (SAR) principles/instruments October 31, 2018 GEOL 1460/2461 Ramsey Introduction to Remote Sensing Fall, 2018 Synthetic aperture RADAR (SAR) principles/instruments October 31, 2018 I. Reminder: Upcoming Dates lab #2 reports due by the start of next

More information

CYGNSS Wind Retrieval Performance

CYGNSS Wind Retrieval Performance International Ocean Vector Wind Science Team Meeting Kailua-Kona, Hawaii USA 6-8 May 2013 CYGNSS Wind Retrieval Performance Chris Ruf (1), Maria-Paola Clarizia (1,2), Andrew O Brien (3), Joel Johnson (3),

More information

MONITORING SEA LEVEL USING GPS

MONITORING SEA LEVEL USING GPS 38 MONITORING SEA LEVEL USING GPS Hasanuddin Z. Abidin* Abstract GPS (Global Positioning System) is a passive, all-weather satellite-based navigation and positioning system, which is designed to provide

More information

Qiang Chen, Daehee Won, Dennis M. Akos, and Eric E. Small

Qiang Chen, Daehee Won, Dennis M. Akos, and Eric E. Small IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 9, NO. 10, OCTOBER 2016 4771 Vegetation Sensing Using GPS Interferometric Reflectometry: Experimental Results With

More information

Environmental Data Records from Special Sensor Microwave Imager and Sounder (SSMIS)

Environmental Data Records from Special Sensor Microwave Imager and Sounder (SSMIS) Environmental Data Records from Special Sensor Microwave Imager and Sounder (SSMIS Fuzhong Weng Center for Satellite Applications and Research National Environmental, Satellites, Data and Information Service

More information

CYGNSS Mission Update

CYGNSS Mission Update International Ocean Vector Wind Science Team Meeting Portland, OR 19-21 May 2015 CYGNSS Mission Update Chris Ruf (1) CYGNSS Principal Investigator Paul Chang (2), Maria Paola Clarizia (1), Scott Gleason

More information

Improvement of Antenna System of Interferometric Microwave Imager on WCOM

Improvement of Antenna System of Interferometric Microwave Imager on WCOM Progress In Electromagnetics Research M, Vol. 70, 33 40, 2018 Improvement of Antenna System of Interferometric Microwave Imager on WCOM Aili Zhang 1, 2, Hao Liu 1, *,XueChen 1, Lijie Niu 1, Cheng Zhang

More information

Study of GPS Scintillation during Solar Maximum at Malaysia

Study of GPS Scintillation during Solar Maximum at Malaysia 1 st International Conference of Recent Trends in Information and Communication Technologies Study of GPS Scintillation during Solar Maximum at Malaysia Emad Fathi Aon 1,2*, Redhwan Qasem Shaddad 3,4,Abdul

More information

Dynamics and Control Issues for Future Multistatic Spaceborne Radars

Dynamics and Control Issues for Future Multistatic Spaceborne Radars Dynamics and Control Issues for Future Multistatic Spaceborne Radars Dr Stephen Hobbs Space Research Centre, School of Engineering, Cranfield University, UK Abstract Concepts for future spaceborne radar

More information

Test Results from a Novel Passive Bistatic GPS Radar Using a Phased Sensor Array

Test Results from a Novel Passive Bistatic GPS Radar Using a Phased Sensor Array Test Results from a Novel Passive Bistatic GPS Radar Using a Phased Sensor Array Alison Brown and Ben Mathews, NAVSYS Corporation BIOGRAPHY Alison Brown is the Chief Visionary Officer of NAVSYS Corporation.

More information

Technical Note on POlarimetric Phase Interferometry (POPI)

Technical Note on POlarimetric Phase Interferometry (POPI) arxiv:physics/0606099 v2 16 Jun 2006 Technical Note on POlarimetric Phase Interferometry (POPI) Estel Cardellach, Serni Ribó, and Antonio Rius Institut de Ciències de l Espai (IEEC-CSIC) 1 Chapter 1 POlarimetric

More information

7. Consider the following common offset gather collected with GPR.

7. Consider the following common offset gather collected with GPR. Questions: GPR 1. Which of the following statements is incorrect when considering skin depth in GPR a. Skin depth is the distance at which the signal amplitude has decreased by a factor of 1/e b. Skin

More information

Study of Factors which affect the Calculation of Co- Channel Interference in a Radio Link

Study of Factors which affect the Calculation of Co- Channel Interference in a Radio Link International Journal of Electronic and Electrical Engineering. ISSN 0974-2174 Volume 8, Number 2 (2015), pp. 103-111 International Research Publication House http://www.irphouse.com Study of Factors which

More information

Radio Frequency Sensing from Space

Radio Frequency Sensing from Space Radio Frequency Sensing from Space Edoardo Marelli ITU-R WP 7C Chairman ITU-R Seminar Manta (Ecuador) 20 September 2012 Why observing the Earth from space? Satellites orbiting around the Earth offer an

More information

SODAR- sonic detecting and ranging

SODAR- sonic detecting and ranging Active Remote Sensing of the PBL Immersed vs. remote sensors Active vs. passive sensors RADAR- radio detection and ranging WSR-88D TDWR wind profiler SODAR- sonic detecting and ranging minisodar RASS RADAR

More information

Microwave Remote Sensing (1)

Microwave Remote Sensing (1) Microwave Remote Sensing (1) Microwave sensing encompasses both active and passive forms of remote sensing. The microwave portion of the spectrum covers the range from approximately 1cm to 1m in wavelength.

More information

GPS ANTENNA WITH METALLIC CONICAL STRUC- TURE FOR ANTI-JAMMING APPLICATIONS

GPS ANTENNA WITH METALLIC CONICAL STRUC- TURE FOR ANTI-JAMMING APPLICATIONS Progress In Electromagnetics Research C, Vol. 37, 249 259, 2013 GPS ANTENNA WITH METALLIC CONICAL STRUC- TURE FOR ANTI-JAMMING APPLICATIONS Yoon-Ki Cho, Hee-Do Kang, Se-Young Hyun, and Jong-Gwan Yook *

More information

The Radio Channel. COS 463: Wireless Networks Lecture 14 Kyle Jamieson. [Parts adapted from I. Darwazeh, A. Goldsmith, T. Rappaport, P.

The Radio Channel. COS 463: Wireless Networks Lecture 14 Kyle Jamieson. [Parts adapted from I. Darwazeh, A. Goldsmith, T. Rappaport, P. The Radio Channel COS 463: Wireless Networks Lecture 14 Kyle Jamieson [Parts adapted from I. Darwazeh, A. Goldsmith, T. Rappaport, P. Steenkiste] Motivation The radio channel is what limits most radio

More information

A Physical Model for GPS Multipath Caused by Land Reflections: Toward Bare Soil Moisture Retrievals

A Physical Model for GPS Multipath Caused by Land Reflections: Toward Bare Soil Moisture Retrievals IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 1 A Physical Model for GPS Multipath Caused by Land Reflections: Toward Bare Soil Moisture Retrievals Valery U. Zavorotny,

More information

Carrier Phase Multipath Corrections Based on GNSS Signal Quality Measurements to Improve CORS Observations

Carrier Phase Multipath Corrections Based on GNSS Signal Quality Measurements to Improve CORS Observations Carrier Phase Multipath Corrections Based on GNSS Signal Quality Measurements to Improve CORS Observations Christian Rost and Lambert Wanninger Geodetic Institute Technische Universität Dresden Dresden,

More information

I. INTRODUCTION. Digital Object Identifier /JSTARS /$ IEEE

I. INTRODUCTION. Digital Object Identifier /JSTARS /$ IEEE 100 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 3, NO. 1, MARCH 2010 A Physical Model for GPS Multipath Caused by Land Reflections: Toward Bare Soil Moisture

More information

GEROS-ISS: GNSS REflectometry, Radio Occultation and Scatterometry onboard the International Space Station

GEROS-ISS: GNSS REflectometry, Radio Occultation and Scatterometry onboard the International Space Station GEROS-ISS: GNSS REflectometry, Radio Occultation and Scatterometry onboard the International Space Station J. Wickert, O. Andersen, L. Bertino, A. Camps, E. Cardellach, B. Chapron, C. Gommenginger, J.

More information

Propagation Channels. Chapter Path Loss

Propagation Channels. Chapter Path Loss Chapter 9 Propagation Channels The transmit and receive antennas in the systems we have analyzed in earlier chapters have been in free space with no other objects present. In a practical communication

More information

UNIT Derive the fundamental equation for free space propagation?

UNIT Derive the fundamental equation for free space propagation? UNIT 8 1. Derive the fundamental equation for free space propagation? Fundamental Equation for Free Space Propagation Consider the transmitter power (P t ) radiated uniformly in all the directions (isotropic),

More information

Introduction to RADAR Remote Sensing for Vegetation Mapping and Monitoring. Wayne Walker, Ph.D.

Introduction to RADAR Remote Sensing for Vegetation Mapping and Monitoring. Wayne Walker, Ph.D. Introduction to RADAR Remote Sensing for Vegetation Mapping and Monitoring Wayne Walker, Ph.D. Outline What is RADAR (and what does it measure)? RADAR as an active sensor Applications of RADAR to vegetation

More information

GLOBAL POSITIONING SYSTEMS. Knowing where and when

GLOBAL POSITIONING SYSTEMS. Knowing where and when GLOBAL POSITIONING SYSTEMS Knowing where and when Overview Continuous position fixes Worldwide coverage Latitude/Longitude/Height Centimeter accuracy Accurate time Feasibility studies begun in 1960 s.

More information

MODULE 9 LECTURE NOTES 2 ACTIVE MICROWAVE REMOTE SENSING

MODULE 9 LECTURE NOTES 2 ACTIVE MICROWAVE REMOTE SENSING MODULE 9 LECTURE NOTES 2 ACTIVE MICROWAVE REMOTE SENSING 1. Introduction Satellite sensors are capable of actively emitting microwaves towards the earth s surface. An active microwave system transmits

More information

Remote Sensing using Bistatic GPS and a Digital Beam Steering Receiver

Remote Sensing using Bistatic GPS and a Digital Beam Steering Receiver Remote Sensing using Bistatic GPS and a Digital Beam Steering Receiver Alison Brown and Ben Mathews, NAVSYS Corporation BIOGRAPHY Alison Brown is the President and Chief Executive Officer of NAVSYS Corporation.

More information

Global Positioning System: what it is and how we use it for measuring the earth s movement. May 5, 2009

Global Positioning System: what it is and how we use it for measuring the earth s movement. May 5, 2009 Global Positioning System: what it is and how we use it for measuring the earth s movement. May 5, 2009 References Lectures from K. Larson s Introduction to GNSS http://www.colorado.edu/engineering/asen/

More information

GNSS Ocean Reflected Signals

GNSS Ocean Reflected Signals GNSS Ocean Reflected Signals Per Høeg DTU Space Technical University of Denmark Content Experimental setup Instrument Measurements and observations Spectral characteristics, analysis and retrieval method

More information

Sw earth Dw Direct wave GRw Ground reflected wave Sw Surface wave

Sw earth Dw Direct wave GRw Ground reflected wave Sw Surface wave WAVE PROPAGATION By Marcel H. De Canck, ON5AU Electromagnetic radio waves can propagate in three different ways between the transmitter and the receiver. 1- Ground waves 2- Troposphere waves 3- Sky waves

More information

Preparation for Flight of Next Generation Space GNSS Receivers

Preparation for Flight of Next Generation Space GNSS Receivers Changing the economics of space Preparation for Flight of Next Generation Space GNSS Receivers ICGPSRO, 14-16 th May 2013 Taiwan #0205691 Commercial in Confidence 1 Overview SSTL and Spaceborne GNSS Small

More information

ESCI Cloud Physics and Precipitation Processes Lesson 10 - Weather Radar Dr. DeCaria

ESCI Cloud Physics and Precipitation Processes Lesson 10 - Weather Radar Dr. DeCaria ESCI 340 - Cloud Physics and Precipitation Processes Lesson 10 - Weather Radar Dr. DeCaria References: A Short Course in Cloud Physics, 3rd ed., Rogers and Yau, Ch. 11 Radar Principles The components of

More information

Earth Exploration-Satellite Service (EESS) - Passive Spaceborne Remote Sensing

Earth Exploration-Satellite Service (EESS) - Passive Spaceborne Remote Sensing Earth Exploration-Satellite Service (EESS) - Passive Spaceborne Remote Sensing John Zuzek Vice-Chairman ITU-R Study Group 7 ITU/WMO Seminar on Spectrum & Meteorology Geneva, Switzerland 16-17 September

More information

Introduction to Radar

Introduction to Radar National Aeronautics and Space Administration ARSET Applied Remote Sensing Training http://arset.gsfc.nasa.gov @NASAARSET Introduction to Radar Jul. 16, 2016 www.nasa.gov Objective The objective of this

More information

Atmospheric Effects. Attenuation by Atmospheric Gases. Atmospheric Effects Page 1

Atmospheric Effects. Attenuation by Atmospheric Gases. Atmospheric Effects Page 1 Atmospheric Effects Page 1 Atmospheric Effects Attenuation by Atmospheric Gases Uncondensed water vapour and oxygen can be strongly absorptive of radio signals, especially at millimetre-wave frequencies

More information

9 Moisture Monitoring

9 Moisture Monitoring 9 Moisture Monitoring Microwave techniques have been considered for moisture sensing in many food processing and agriculture-related industries (Trabelsi, et al. 1998b). Chapter 7 highlighted the strong

More information

A Solution for Every Application. Trimble GNSS Geodetic Antennas TRANSFORMING THE WAY THE WORLD WORKS

A Solution for Every Application. Trimble GNSS Geodetic Antennas TRANSFORMING THE WAY THE WORLD WORKS A Solution for Every Application Trimble GNSS Geodetic Antennas TRANSFORMING THE WAY THE WORLD WORKS Trimble GNSS Geodetic Antennas Trimble geodetic antennas mitigate multipath in different ways. Each

More information

Propagation curves and conditions of validity (homogeneous paths)

Propagation curves and conditions of validity (homogeneous paths) Rec. ITU-R P.368-7 1 RECOMMENDATION ITU-R P.368-7 * GROUND-WAVE PROPAGATION CURVES FOR FREQUENCIES BETWEEN 10 khz AND 30 MHz (1951-1959-1963-1970-1974-1978-1982-1986-1990-1992) Rec. 368-7 The ITU Radiocommunication

More information

Suppression of Pulse Interference in Partial Discharge Measurement Based on Phase Correlation and Waveform Characteristics

Suppression of Pulse Interference in Partial Discharge Measurement Based on Phase Correlation and Waveform Characteristics Journal of Energy and Power Engineering 9 (215) 289-295 doi: 1.17265/1934-8975/215.3.8 D DAVID PUBLISHING Suppression of Pulse Interference in Partial Discharge Measurement Based on Phase Correlation and

More information

Specificities of Near Nadir Ka-band Interferometric SAR Imagery

Specificities of Near Nadir Ka-band Interferometric SAR Imagery Specificities of Near Nadir Ka-band Interferometric SAR Imagery Roger Fjørtoft, Alain Mallet, Nadine Pourthie, Jean-Marc Gaudin, Christine Lion Centre National d Etudes Spatiales (CNES), France Fifamé

More information

Chapter 15: Radio-Wave Propagation

Chapter 15: Radio-Wave Propagation Chapter 15: Radio-Wave Propagation MULTIPLE CHOICE 1. Radio waves were first predicted mathematically by: a. Armstrong c. Maxwell b. Hertz d. Marconi 2. Radio waves were first demonstrated experimentally

More information

Microwave Sensors Subgroup (MSSG) Report

Microwave Sensors Subgroup (MSSG) Report Microwave Sensors Subgroup (MSSG) Report Feb 17-20, 2014, ESA ESRIN, Frascati, Italy DONG, Xiaolong, MSSG Chair National Space Science Center Chinese Academy of Sciences (MiRS,NSSC,CAS) Email: dongxiaolong@mirslab.cn

More information

Description of the Instruments and Algorithm Approach

Description of the Instruments and Algorithm Approach Description of the Instruments and Algorithm Approach Passive and Active Remote Sensing SMAP uses active and passive sensors to measure soil moisture National Aeronautics and Space Administration Applied

More information

Enhancing space situational awareness using passive radar from space based emitters of opportunity

Enhancing space situational awareness using passive radar from space based emitters of opportunity Tracking Space Debris Craig Benson School of Engineering and IT Enhancing space situational awareness using passive radar from space based emitters of opportunity Space Debris as a Problem Debris is fast

More information

Determination of refractivity variations with GNSS and ultra-stable frequency standards

Determination of refractivity variations with GNSS and ultra-stable frequency standards Determination of refractivity variations with GNSS and ultra-stable frequency standards Markus Vennebusch, Steffen Schön, Ulrich Weinbach Institut für Erdmessung (IfE) / Institute of Geodesy Leibniz-Universität

More information

Architecture, implementation and application of soil moisture in-situ sensor

Architecture, implementation and application of soil moisture in-situ sensor Architecture, implementation and application of soil moisture in-situ sensor network across Canadian agricultural landscapes Xiaoyuan Geng 1, Heather McNairn 1, Patrick Rollin 1, Jessika L Heureux 1, Catherine

More information

Introduction to Total Station and GPS

Introduction to Total Station and GPS Introduction to Total Station and GPS Dr. P. NANJUNDASWAMY Professor of Civil Engineering J S S Science and Technology University S J College of Engineering Mysuru 570 006 Introduction History GPS Overview

More information

GNSS Reflectometry at GFZ

GNSS Reflectometry at GFZ GNSS Reflectometry at GFZ Achim Helm, Georg Beyerle, Ralf Stosius, Markus Rothacher (GFZ) External Partners and Contributors: Oliver Montenbruck (DLR), Estel Cardellach, Antonio Rius (IEEC), Sergei Yudanov,

More information

Potential interference from spaceborne active sensors into radionavigation-satellite service receivers in the MHz band

Potential interference from spaceborne active sensors into radionavigation-satellite service receivers in the MHz band Rec. ITU-R RS.1347 1 RECOMMENDATION ITU-R RS.1347* Rec. ITU-R RS.1347 FEASIBILITY OF SHARING BETWEEN RADIONAVIGATION-SATELLITE SERVICE RECEIVERS AND THE EARTH EXPLORATION-SATELLITE (ACTIVE) AND SPACE RESEARCH

More information

Trimble Zephyr Geodetic 2 GNSS Antenna. Trimble GNSS-Ti Choke Ring Antenna. Trimble GNSS Choke Ring Antenna. Specifications

Trimble Zephyr Geodetic 2 GNSS Antenna. Trimble GNSS-Ti Choke Ring Antenna. Trimble GNSS Choke Ring Antenna. Specifications Trimble GNSS GEODETIC ANTENNAS A SOLUTION FOR EVERY APPLICATION The choice is yours. Trimble provides three GNSS antennas for geodetic applications. Both solutions deliver long term performance with proven

More information

3D-Map Aided Multipath Mitigation for Urban GNSS Positioning

3D-Map Aided Multipath Mitigation for Urban GNSS Positioning Summer School on GNSS 2014 Student Scholarship Award Workshop August 2, 2014 3D-Map Aided Multipath Mitigation for Urban GNSS Positioning I-Wen Chu National Cheng Kung University, Taiwan. Page 1 Outline

More information

ATMOSPHERIC NUCLEAR EFFECTS

ATMOSPHERIC NUCLEAR EFFECTS EC3630 Radiowave Propagation ATMOSPHERIC NUCLEAR EFFECTS by Professor David Jenn (version 1.1) 1 Atmospheric Nuclear Effects (1) The effect of a nuclear blast on the atmosphere is a complicated function

More information

Master Thesis: Water surface monitoring using GNSS-R Opportunity Signals European Master of Research on Information and Communication Technologies

Master Thesis: Water surface monitoring using GNSS-R Opportunity Signals European Master of Research on Information and Communication Technologies Master Thesis: Water surface monitoring using GNSS-R Opportunity Signals European Master of Research on Information and Communication Technologies Title: MERIT master Author: Alberto Alonso Arroyo Advisors:

More information

ELECTROMAGNETIC PROPAGATION (ALT, TEC)

ELECTROMAGNETIC PROPAGATION (ALT, TEC) ELECTROMAGNETIC PROPAGATION (ALT, TEC) N. Picot CNES, 18 Av Ed Belin, 31401 Toulouse, France Email : Nicolas.Picot@cnes.fr ABSTRACT For electromagnetic propagation, the ionosphere plays a key role. This

More information

Remote sensing of the oceans Active sensing

Remote sensing of the oceans Active sensing Remote sensing of the oceans Active sensing Gravity Sea level Ocean tides Low frequency motion Scatterometry SAR http://daac.gsfc.nasa.gov/campaign_docs/ocdst/what_is_ocean_color.html Shape of the earth

More information

RADAR (RAdio Detection And Ranging)

RADAR (RAdio Detection And Ranging) RADAR (RAdio Detection And Ranging) CLASSIFICATION OF NONPHOTOGRAPHIC REMOTE SENSORS PASSIVE ACTIVE DIGITAL CAMERA THERMAL (e.g. TIMS) VIDEO CAMERA MULTI- SPECTRAL SCANNERS VISIBLE & NIR MICROWAVE Real

More information

PAU-SARA: a L1-GPS Band Radiometer and Reflectometer with Digital Beamforming and Polarization Synthesis

PAU-SARA: a L1-GPS Band Radiometer and Reflectometer with Digital Beamforming and Polarization Synthesis PAU-SARA: a L1-GPS Band Radiometer and Reflectometer with Digital Beamforming and Polarization Synthesis X. Bosch-Lluis, N. Rodríguez-Álvarez, A. Camps, E. Valencia, I. Ramos-Perez, H. Park. Remote Sensing

More information

Sounding the Atmosphere Ground Support for GNSS Radio-Occultation Processing

Sounding the Atmosphere Ground Support for GNSS Radio-Occultation Processing Sounding the Atmosphere Ground Support for GNSS Radio-Occultation Processing Atmospheric Sounding René Zandbergen & John M. Dow Navigation Support Office, Ground Systems Engineering Department, Directorate

More information