CEGEG046 / GEOG3051 Principles & Practice of Remote Sensing (PPRS) 8: RADAR 1

Size: px
Start display at page:

Download "CEGEG046 / GEOG3051 Principles & Practice of Remote Sensing (PPRS) 8: RADAR 1"

Transcription

1 CEGEG046 / GEOG3051 Principles & Practice of Remote Sensing (PPRS) 8: RADAR 1 Dr. Mathias (Mat) Disney UCL Geography Office: 113, Pearson Building Tel: mdisney@ucl.geog.ac.uk

2 OVERVIEW AGENDA Principles of RADAR, SLAR and SAR Characteristics of RADAR SAR interferometry Applications of SAR Summaries 2

3 PRINCIPLES AND CHARACTERISTICS OF RADAR, SLAR AND SAR Examples Definitions Principles of RADAR and SAR Resolution Frequency Geometry Radiometry 3

4 9/8/91 ERS-1 (11.25 am), Landsat (10.43 am) 4

5 The image at the top was acquired through thick cloud cover by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on April 16, The image on the bottom is an optical photograph taken by the Endeavour crew under clear conditions during the second flight of SIR-C/X-SAR on October 10,

6 Ice 6

7 Oil slick Galicia, Spain 7

8 Nicobar Islands December 2004 tsunami flooding in red 8

9 Paris 9

10 Definitions Radar - an acronym for Radio Detection And Ranging SLAR Sideways Looking Airborne Radar Measures range to scattering targets on the ground, can be used to form a low resolution image. SAR Synthetic Aperture Radar Same principle as SLAR, but uses image processing to create high resolution images IfSAR Interferometric SAR Generates X, Y, Z from two SAR images using principles of interferometry (phase difference) 10

11 References Henderson and Lewis, Principles and Applications of Imaging Radar, John Wiley and Sons Allan T D (ed) Satellite microwave remote sensing, Ellis Horwood, 1983 F. Ulaby, R. Moore and A. Fung, Microwave Remote Sensing: Active and Passive (3 vols), 1981, 1982, 1986 S. Kingsley and S. Quegan, Understanding Radar Systems, SciTech Publishing. C. Oliver and S. Quegan, Understanding Synthetic Aperture Radar Images, Artech House, Woodhouse I H (2000) Tutorial review. Stop, look and listen: auditory perception analogies for radar remote sensing, International Journal of Remote Sensing 21 (15), Jensen, J. R. (2000) Remote sensing of the Environment, Chapter 9. 11

12 Web sites Canada chapter3/01_e.php ESA spaceborne/radar_courses/ 12

13 What is RADAR? Radio Detection and Ranging Radar is a ranging instrument (range) distances inferred from time elapsed between transmission of a signal and reception of the returned signal imaging radars (side-looking) used to acquire images (~10m - 1km) altimeters (nadir-looking) to derive surface height variations scatterometers to derive reflectivity as a function of incident angle, illumination direction, polarisation, etc 13

14 What is RADAR? A Radar system has three primary functions: - It transmits microwave (radio) signals towards a scene - It receives the portion of the transmitted energy backscattered from the scene - It observes the strength (detection) and the time delay (ranging) of the return signals. Radar provides its own energy source and, therefore, can operate both day or night. This type of system is known as an active remote sensing system. 14

15 Principle of RADAR 15

16 Principle of ranging and imaging 16

17 Radar Pulse 17

18 18

19 ERS 1 and 2 geometry 19

20 Radar wavelength Most remote sensing radars operate at wavelengths between 0.5 cm and 75 cm: X-band: from 2.4 to 3.75 cm (12.5 to 8 GHz). C-band: from 3.75 to 7.5 cm (8 to 4 GHz). S-band: from 7.5 to 15 cm (4 to 2 GHz). L-band: from 15 to 30 cm (2 to 1 GHz). P-band: from 30 to 100 cm (1 to 0.3 GHz). The capability to penetrate through precipitation or into a surface layer is increased with longer wavelengths. Radars operating at wavelengths > 2 cm are not significantly affected by cloud cover. Rain does become a factor at wavelengths < 4 cm. 20

21 21

22 Comparison of C band and L band SAR C-band L-band 22

23 23

24 Choice of wave length Radar wavelength should be matched to the size of the surface features that we wish to discriminate e.g. Ice discrimination, small features, use X-band e.g. Geology mapping, large features, use L-band e.g. Foliage penetration, better at low frequencies, use P-band In general, C-band is a good compromise New airborne systems combine X and P band to give optimum measurement of vegetation 24

25 Synthetic Aperture Radar (SAR) Imaging side-looking accumulates data along path ground surface illuminated parallel and to one side of the flight direction. Data, processing is needed to produce radar images. The across-track dimension is the range. Near range edge is closest to nadir; far range edge is farthest from the radar. The along-track dimension is referred to as azimuth. Resolution is defined for both the range and azimuth directions. Digital signal processing is used to focus the image and obtain a higher resolution than achieved by conventional radar 25

26 26

27 Principle of Synthetic Aperture Radar SAR Doppler frequency due to sensor movement Use Doppler frequency shift (relative to reference pulse) due to sensor movement to recombine multiple pulses into a single coherent image from an apparently much larger (synthesised) aperture 27

28 Azimuth resolution: synthetic aperture v L a ψ R Target time spent in beam = arc length / v = Rψ / v = Rλ / vl 28 a

29 Resolution τ 29

30 Range and azimuth resolution (RAR) Range resolution (across track) Azimuth resolution (along track) R r = Tc 2cos! R a = S λ L T = duration of RADAR pulse T = o f the radar c = speed of light c = speed of light γ= depression angle ã = depression angle L = antenna length S = slant range = height/sinγ λ = wavelength cos : inverse relationship with angle 30

31 Resolution of SAR 31

32 Important point Resolution cell (i.e. the cell defined by the resolutions in the range and azimuth directions) does NOT mean the same thing as pixel. Pixel sizes need not be the same thing. This is important since (i) the independent elements in the scene are resolutions cells, (ii) neighbouring pixels may exhibit some correlation. 32

33 Some Spaceborne Systems Launch Agency properties resolution swath ERS-1 ERS (-1997) 1995 ESA C-VV 25 m 100 km Radarsat 1995 CSA C-HH m km JERS NASDA L-HH 18 m 76 km SIR-C/X-SAR 1994 (2x10 days) NASA DARA / ASI L,C, X polarimetric 30 m km 33

34 ERS 1 and 2 Specifications Geometric specifications Spatial resolution: along track <=30 m across-track <=26.3 m Swath width: km (telemetered) 80.4 km (full performance) Swath standoff: 250 km to the right of the satellite track Localisation accuracy: along track <=1 km; across-track <=0.9 km Incidence angle: near swath 20.1deg. mid swath 23deg. far swath 25.9deg Incidence angle tolerance: <=0.5 deg. Radiometric specifications: Frequency: 5.3 GHz (C-band) Wave length: 5.6 cm 34

35 Speckle Speckle appears as noisy fluctuations in brightness 35

36 Speckle Fading / speckle - noise-like processes due to coherent imaging system. Local constructive and destructive interference Average multiple independent samples, can effectively reduce the effects of speckle e.g. by Multiple-look filtering, separates the maximum synthetic aperture into smaller sub-apertures generating independent looks at target areas based on the angular position of the targets. Therefore, looks are different Doppler frequency bands. Averaging (incoherently) adjacent pixels. Reducing these effects enhances radiometric resolution at the expense of spatial resolution. 36

37 Speckle 37

38 Speckle Radar images are formed coherently and therefore inevitably have a noise-like appearance Implies that a single pixel is not representative of the backscattering Averaging needs to be done 38

39 Multi-looking Speckle can be suppressed by averaging several intensity images This is often done in SAR processing Split the synthetic aperture into N separate parts Suppressing the speckle means decreasing the width of the intensity distribution We also get a decrease in spatial resolution by the same factor (N) Note this is in the azimuth direction (because it relies on the motion of the sensor which is in this direction) 39

40 Speckle 40

41 Principle of ranging and imaging 41

42 Geometric effects 42

43 Shadow 43

44 Foreshortening 44

45 Layover 45

46 Layover 46

47 Los Angeles 47

48 Radiometric aspects the RADAR equation P r = (Power per unit area at target ) Eff. scatt. area of target Spread loss of reflected signal Eff. Antennae area Brightness is a combination of several variables. We can group these characteristics into three areas which fundamentally control radar energy/target interactions. They are: Surface roughness of the target Radar viewing and surface geometry relationship Moisture content and electrical properties of the target spaceborne/radar_courses/radar_course_iii/ radar_equation.htm 48

49 Returned energy Angle of the surface to the incident radar beam Strong from facing areas, weak from areas facing away Physical properties of the sensed surface Surface roughness Dielectric constant Water content of the surface Smooth Rough 49

50 Roughness Smooth, intermediate or rough? Jensen (2002; p314) surface height variation h Smooth: h < λ/25sin β Rough: h > λ/4.4sin β Intermediate β is depression angle, so depends on λ AND imaging geometry 50

51 Oil slick Galicia, Spain 51

52 Los Angeles 52

53 Response to soil moisture Source: Graham

54 Crop moisture SAR image In situ irrigation Source: Graham

55 Types of scattering of radar from different surfaces 55

56 Scattering 56

57 The Radar Equation The fundamental relation between the characteristics of the radar, the target, and the received signal is called the radar equation. The geometry of scattering from an isolated radar target (scatterer) is shown. When a power P t is transmitted by an antenna with gain G t, the power per unit solid angle in the direction of the scatterer is P t G t, where the value of G t in that direction is used. READ: Radar_Courses/Radar_Course_III/radar_equation.htm and Jensen Chapter 9 57

58 The Radar Equation We may rewrite the radar equation as two alternative forms, one in terms of the antenna gain and the other in terms of the antenna area R = range P = power G = gain of antenna A = area of the antenna Because Where: The Radar scattering cross section The cross-section σ is a function of the directions of the incident wave and the wave toward the receiver, as well as that of the scatterer shape and dielectric properties. f a is absorption A rs is effective area of incident beam received by scatterer G ts is gain of the scatterer in the direction of the receiver READ: radar_equation.htm And Jensen Chapter 9 58

59 Measured quantities Radar cross section [dbm 2 ] lim E! = r # $ 4" r 2 s i E 2 2 Bistatic scattering coefficient [db] "! 0 4 = lim r r $ % Acos# i 2 s 2 E i E 2 Backscattering coefficient [db]! 0 4" r = r # $ A 2 s 2 E lim i E 2 59

60 The Radar Equation: Point targets Power received 1 1 P = P G " r t t 2 2 4! R 4! R A r G t is the transmitter gain, A r is the effective area of receiving antenna and σ the effective area of the target. Assuming same transmitter and receiver, A/G=λ 2 /4π 2 2 " G! P = P $ r t 3 4 ( 4# ) R 60

61 Calibration of SAR Emphasis is on radiometric calibration to determine the radar cross section Calibration is done in the field, using test sites with transponders. 61

Synthetic aperture RADAR (SAR) principles/instruments October 31, 2018

Synthetic aperture RADAR (SAR) principles/instruments October 31, 2018 GEOL 1460/2461 Ramsey Introduction to Remote Sensing Fall, 2018 Synthetic aperture RADAR (SAR) principles/instruments October 31, 2018 I. Reminder: Upcoming Dates lab #2 reports due by the start of next

More information

Remote Sensing. Ch. 3 Microwaves (Part 1 of 2)

Remote Sensing. Ch. 3 Microwaves (Part 1 of 2) Remote Sensing Ch. 3 Microwaves (Part 1 of 2) 3.1 Introduction 3.2 Radar Basics 3.3 Viewing Geometry and Spatial Resolution 3.4 Radar Image Distortions 3.1 Introduction Microwave (1cm to 1m in wavelength)

More information

ACTIVE SENSORS RADAR

ACTIVE SENSORS RADAR ACTIVE SENSORS RADAR RADAR LiDAR: Light Detection And Ranging RADAR: RAdio Detection And Ranging SONAR: SOund Navigation And Ranging Used to image the ocean floor (produce bathymetic maps) and detect objects

More information

Acknowledgment. Process of Atmospheric Radiation. Atmospheric Transmittance. Microwaves used by Radar GMAT Principles of Remote Sensing

Acknowledgment. Process of Atmospheric Radiation. Atmospheric Transmittance. Microwaves used by Radar GMAT Principles of Remote Sensing GMAT 9600 Principles of Remote Sensing Week 4 Radar Background & Surface Interactions Acknowledgment Mike Chang Natural Resources Canada Process of Atmospheric Radiation Dr. Linlin Ge and Prof Bruce Forster

More information

ESA Radar Remote Sensing Course ESA Radar Remote Sensing Course Radar, SAR, InSAR; a first introduction

ESA Radar Remote Sensing Course ESA Radar Remote Sensing Course Radar, SAR, InSAR; a first introduction Radar, SAR, InSAR; a first introduction Ramon Hanssen Delft University of Technology The Netherlands r.f.hanssen@tudelft.nl Charles University in Prague Contents Radar background and fundamentals Imaging

More information

Microwave Remote Sensing (1)

Microwave Remote Sensing (1) Microwave Remote Sensing (1) Microwave sensing encompasses both active and passive forms of remote sensing. The microwave portion of the spectrum covers the range from approximately 1cm to 1m in wavelength.

More information

Radar Imaging Wavelengths

Radar Imaging Wavelengths A Basic Introduction to Radar Remote Sensing ~~~~~~~~~~ Rev. Ronald J. Wasowski, C.S.C. Associate Professor of Environmental Science University of Portland Portland, Oregon 3 November 2015 Radar Imaging

More information

Microwave Remote Sensing

Microwave Remote Sensing Provide copy on a CD of the UCAR multi-media tutorial to all in class. Assign Ch-7 and Ch-9 (for two weeks) as reading material for this class. HW#4 (Due in two weeks) Problems 1,2,3 and 4 (Chapter 7)

More information

RADAR REMOTE SENSING

RADAR REMOTE SENSING RADAR REMOTE SENSING Jan G.P.W. Clevers & Steven M. de Jong Chapter 8 of L&K 1 Wave theory for the EMS: Section 1.2 of L&K E = electrical field M = magnetic field c = speed of light : propagation direction

More information

Introduction Active microwave Radar

Introduction Active microwave Radar RADAR Imaging Introduction 2 Introduction Active microwave Radar Passive remote sensing systems record electromagnetic energy that was reflected or emitted from the surface of the Earth. There are also

More information

SAR Remote Sensing (Microwave Remote Sensing)

SAR Remote Sensing (Microwave Remote Sensing) iirs SAR Remote Sensing (Microwave Remote Sensing) Synthetic Aperture Radar Shashi Kumar shashi@iirs.gov.in Electromagnetic Radiation Electromagnetic radiation consists of an electrical field(e) which

More information

Imaging radar Imaging radars provide map-like coverage to one or both sides of the aircraft.

Imaging radar Imaging radars provide map-like coverage to one or both sides of the aircraft. CEE 6100 / CSS 6600 Remote Sensing Fundamentals 1 Imaging radar Imaging radars provide map-like coverage to one or both sides of the aircraft. Acronyms: RAR real aperture radar ("brute force", "incoherent")

More information

10 Radar Imaging Radar Imaging

10 Radar Imaging Radar Imaging 10 Radar Imaging Active sensors provide their own source of energy to illuminate the target. Active sensors are generally divided into two distinct categories: imaging and non-imaging. The most common

More information

EE 529 Remote Sensing Techniques. Introduction

EE 529 Remote Sensing Techniques. Introduction EE 529 Remote Sensing Techniques Introduction Course Contents Radar Imaging Sensors Imaging Sensors Imaging Algorithms Imaging Algorithms Course Contents (Cont( Cont d) Simulated Raw Data y r Processing

More information

RADAR (RAdio Detection And Ranging)

RADAR (RAdio Detection And Ranging) RADAR (RAdio Detection And Ranging) CLASSIFICATION OF NONPHOTOGRAPHIC REMOTE SENSORS PASSIVE ACTIVE DIGITAL CAMERA THERMAL (e.g. TIMS) VIDEO CAMERA MULTI- SPECTRAL SCANNERS VISIBLE & NIR MICROWAVE Real

More information

Introduction to Radar

Introduction to Radar National Aeronautics and Space Administration ARSET Applied Remote Sensing Training http://arset.gsfc.nasa.gov @NASAARSET Introduction to Radar Jul. 16, 2016 www.nasa.gov Objective The objective of this

More information

ACTIVE MICROWAVE REMOTE SENSING OF LAND SURFACE HYDROLOGY

ACTIVE MICROWAVE REMOTE SENSING OF LAND SURFACE HYDROLOGY Basics, methods & applications ACTIVE MICROWAVE REMOTE SENSING OF LAND SURFACE HYDROLOGY Annett.Bartsch@polarresearch.at Active microwave remote sensing of land surface hydrology Landsurface hydrology:

More information

Active and Passive Microwave Remote Sensing

Active and Passive Microwave Remote Sensing Active and Passive Microwave Remote Sensing Passive remote sensing system record EMR that was reflected (e.g., blue, green, red, and near IR) or emitted (e.g., thermal IR) from the surface of the Earth.

More information

Introduction to Imaging Radar INF-GEO 4310

Introduction to Imaging Radar INF-GEO 4310 Introduction to Imaging Radar INF-GEO 4310 22.9.2011 Literature Contact: yoann.paichard@ffi.no Suggested readings: Fundamentals of Radar Signal Processing, M.A. Richards, McGraw-Hill, 2005 High Resolution

More information

Specificities of Near Nadir Ka-band Interferometric SAR Imagery

Specificities of Near Nadir Ka-band Interferometric SAR Imagery Specificities of Near Nadir Ka-band Interferometric SAR Imagery Roger Fjørtoft, Alain Mallet, Nadine Pourthie, Jean-Marc Gaudin, Christine Lion Centre National d Etudes Spatiales (CNES), France Fifamé

More information

SAR Remote Sensing. Introduction into SAR. Data characteristics, challenges, and applications.

SAR Remote Sensing. Introduction into SAR. Data characteristics, challenges, and applications. SAR Remote Sensing Introduction into SAR. Data characteristics, challenges, and applications. PD Dr. habil. Christian Thiel, Friedrich-Schiller-University Jena DLR-HR Jena & Friedrich-Schiller-University

More information

MODULE 9 LECTURE NOTES 2 ACTIVE MICROWAVE REMOTE SENSING

MODULE 9 LECTURE NOTES 2 ACTIVE MICROWAVE REMOTE SENSING MODULE 9 LECTURE NOTES 2 ACTIVE MICROWAVE REMOTE SENSING 1. Introduction Satellite sensors are capable of actively emitting microwaves towards the earth s surface. An active microwave system transmits

More information

Synthetic Aperture Radar

Synthetic Aperture Radar Synthetic Aperture Radar Picture 1: Radar silhouette of a ship, produced with the ISAR-Processor of the Ocean Master A Synthetic Aperture Radar (SAR), or SAR, is a coherent mostly airborne or spaceborne

More information

Interpreting Digital RADAR Images

Interpreting Digital RADAR Images R A D A R Introduction to Interpreting Digital Radar Images I N T E R P R E T Interpreting Digital RADAR Images with TNTmips page 1 Before Getting Started Airborne and satellite radar systems are versatile

More information

Introduction to Microwave Remote Sensing

Introduction to Microwave Remote Sensing Introduction to Microwave Remote Sensing lain H. Woodhouse The University of Edinburgh Scotland Taylor & Francis Taylor & Francis Group Boca Raton London New York A CRC title, part of the Taylor & Francis

More information

Review. Guoqing Sun Department of Geography, University of Maryland ABrief

Review. Guoqing Sun Department of Geography, University of Maryland ABrief Review Guoqing Sun Department of Geography, University of Maryland gsun@glue.umd.edu ABrief Introduction Scattering Mechanisms and Radar Image Characteristics Data Availability Example of Applications

More information

Remote Sensing 1 Principles of visible and radar remote sensing & sensors

Remote Sensing 1 Principles of visible and radar remote sensing & sensors Remote Sensing 1 Principles of visible and radar remote sensing & sensors Nick Barrand School of Geography, Earth & Environmental Sciences University of Birmingham, UK Field glaciologist collecting data

More information

SATELLITE OCEANOGRAPHY

SATELLITE OCEANOGRAPHY SATELLITE OCEANOGRAPHY An Introduction for Oceanographers and Remote-sensing Scientists I. S. Robinson Lecturer in Physical Oceanography Department of Oceanography University of Southampton JOHN WILEY

More information

Active and Passive Microwave Remote Sensing

Active and Passive Microwave Remote Sensing Active and Passive Microwave Remote Sensing Passive remote sensing system record EMR that was reflected (e.g., blue, green, red, and near IR) or emitted (e.g., thermal IR) from the surface of the Earth.

More information

Design of an Airborne SLAR Antenna at X-Band

Design of an Airborne SLAR Antenna at X-Band Design of an Airborne SLAR Antenna at X-Band Markus Limbach German Aerospace Center (DLR) Microwaves and Radar Institute Oberpfaffenhofen WFMN 2007, Markus Limbach, Folie 1 Overview Applications of SLAR

More information

Radar and Satellite Remote Sensing. Chris Allen, Associate Director Technology Center for Remote Sensing of Ice Sheets The University of Kansas

Radar and Satellite Remote Sensing. Chris Allen, Associate Director Technology Center for Remote Sensing of Ice Sheets The University of Kansas Radar and Satellite Remote Sensing Chris Allen, Associate Director Technology Center for Remote Sensing of Ice Sheets The University of Kansas 2of 43 Outline Background ice sheet characterization Radar

More information

Fundamentals of Remote Sensing: the Imaging RADAR System

Fundamentals of Remote Sensing: the Imaging RADAR System INSIS Fundamentals of Remote Sensing: the Imaging RADAR System Notions fondamentales de télédétection : le RADAR imageur Gabriel VASILE Chargé de Recherche CNRS gabriel.vasile@gipsa-lab.grenoble-inp.fr

More information

Microwave remote sensing. Rudi Gens Alaska Satellite Facility Remote Sensing Support Center

Microwave remote sensing. Rudi Gens Alaska Satellite Facility Remote Sensing Support Center Microwave remote sensing Alaska Satellite Facility Remote Sensing Support Center 1 Remote Sensing Fundamental The entire range of EM radiation constitute the EM Spectrum SAR sensors sense electromagnetic

More information

Co-ReSyF RA lecture: Vessel detection and oil spill detection

Co-ReSyF RA lecture: Vessel detection and oil spill detection This project has received funding from the European Union s Horizon 2020 Research and Innovation Programme under grant agreement no 687289 Co-ReSyF RA lecture: Vessel detection and oil spill detection

More information

GMES Sentinel-1 Transponder Development

GMES Sentinel-1 Transponder Development GMES Sentinel-1 Transponder Development Paul Snoeij Evert Attema Björn Rommen Nicolas Floury Malcolm Davidson ESA/ESTEC, European Space Agency, Noordwijk, The Netherlands Outline 1. GMES Sentinel-1 overview

More information

Radar Polarimetry- Potential for Geosciences

Radar Polarimetry- Potential for Geosciences Radar Polarimetry- Potential for Geosciences Franziska Kersten Department of geology, TU Freiberg Abstract. The ability of Radar Polarimetry to obtain information about physical properties of the surface

More information

Introduction to RADAR Remote Sensing for Vegetation Mapping and Monitoring. Wayne Walker, Ph.D.

Introduction to RADAR Remote Sensing for Vegetation Mapping and Monitoring. Wayne Walker, Ph.D. Introduction to RADAR Remote Sensing for Vegetation Mapping and Monitoring Wayne Walker, Ph.D. Outline What is RADAR (and what does it measure)? RADAR as an active sensor Applications of RADAR to vegetation

More information

Introduction to SAR remote sensing Ramon Hanssen

Introduction to SAR remote sensing Ramon Hanssen 1 Introduction to SAR remote sensing Ramon Hanssen 10-9-2018 Delft University of Technology Challenge the future 1 Obectives of the module Provide the basic essentials of SAR remote sensing, and understand

More information

SCIRoCCo Scatterometry Glossary

SCIRoCCo Scatterometry Glossary Scatterometry Prepared by: The Team: Change register Version/Rev. Date Reason for Change Changes 1.0 08/05/2014 First Release. Preliminary version 1.1 20/02/2015 4 th bi-monthly Report Review Contributions

More information

ATS 351 Lecture 9 Radar

ATS 351 Lecture 9 Radar ATS 351 Lecture 9 Radar Radio Waves Electromagnetic Waves Consist of an electric field and a magnetic field Polarization: describes the orientation of the electric field. 1 Remote Sensing Passive vs Active

More information

Remote sensing of the oceans Active sensing

Remote sensing of the oceans Active sensing Remote sensing of the oceans Active sensing Gravity Sea level Ocean tides Low frequency motion Scatterometry SAR http://daac.gsfc.nasa.gov/campaign_docs/ocdst/what_is_ocean_color.html Shape of the earth

More information

remote sensing? What are the remote sensing principles behind these Definition

remote sensing? What are the remote sensing principles behind these Definition Introduction to remote sensing: Content (1/2) Definition: photogrammetry and remote sensing (PRS) Radiation sources: solar radiation (passive optical RS) earth emission (passive microwave or thermal infrared

More information

LE/ESSE Payload Design

LE/ESSE Payload Design LE/ESSE4360 - Payload Design 3.4 Spacecraft Sensors - Radar Sensors Earth, Moon, Mars, and Beyond Dr. Jinjun Shan, Professor of Space Engineering Department of Earth and Space Science and Engineering Room

More information

SAR Multi-Temporal Applications

SAR Multi-Temporal Applications SAR Multi-Temporal Applications 83230359-DOC-TAS-EN-001 Contents 2 Advantages of SAR Remote Sensing Technology All weather any time Frequencies and polarisations Interferometry and 3D mapping Change Detection

More information

Theoretical Simulations of GNSS Reflections from Bare and Vegetated Soils

Theoretical Simulations of GNSS Reflections from Bare and Vegetated Soils Theoretical Simulations of GNSS Reflections from Bare and Vegetated Soils R. Giusto 1, L. Guerriero, S. Paloscia 3, N. Pierdicca 1, A. Egido 4, N. Floury 5 1 DIET - Sapienza Univ. of Rome, Rome DISP -

More information

Calibration Assessment of RADARSAT-2 Polarimetry Using High Precision Transponders

Calibration Assessment of RADARSAT-2 Polarimetry Using High Precision Transponders Calibration Assessment of RADARSAT-2 Polarimetry Using High Precision Transponders R Touzi, S Côté, RK Hawkins CCRS/CSA Acknowledgments S Nedelcu (CCRS) S Muir (CSA) 1 Outline-Polarimetric RADARSAT-2 Independent

More information

Dynamics and Control Issues for Future Multistatic Spaceborne Radars

Dynamics and Control Issues for Future Multistatic Spaceborne Radars Dynamics and Control Issues for Future Multistatic Spaceborne Radars Dr Stephen Hobbs Space Research Centre, School of Engineering, Cranfield University, UK Abstract Concepts for future spaceborne radar

More information

Outline. Introduction. Introduction: Film Emulsions. Sensor Systems. Types of Remote Sensing. A/Prof Linlin Ge. Photographic systems (cf(

Outline. Introduction. Introduction: Film Emulsions. Sensor Systems. Types of Remote Sensing. A/Prof Linlin Ge. Photographic systems (cf( GMAT x600 Remote Sensing / Earth Observation Types of Sensor Systems (1) Outline Image Sensor Systems (i) Line Scanning Sensor Systems (passive) (ii) Array Sensor Systems (passive) (iii) Antenna Radar

More information

MULTI-CHANNEL SAR EXPERIMENTS FROM THE SPACE AND FROM GROUND: POTENTIAL EVOLUTION OF PRESENT GENERATION SPACEBORNE SAR

MULTI-CHANNEL SAR EXPERIMENTS FROM THE SPACE AND FROM GROUND: POTENTIAL EVOLUTION OF PRESENT GENERATION SPACEBORNE SAR 3 nd International Workshop on Science and Applications of SAR Polarimetry and Polarimetric Interferometry POLinSAR 2007 January 25, 2007 ESA/ESRIN Frascati, Italy MULTI-CHANNEL SAR EXPERIMENTS FROM THE

More information

THE NASA/JPL AIRBORNE SYNTHETIC APERTURE RADAR SYSTEM. Yunling Lou, Yunjin Kim, and Jakob van Zyl

THE NASA/JPL AIRBORNE SYNTHETIC APERTURE RADAR SYSTEM. Yunling Lou, Yunjin Kim, and Jakob van Zyl THE NASA/JPL AIRBORNE SYNTHETIC APERTURE RADAR SYSTEM Yunling Lou, Yunjin Kim, and Jakob van Zyl Jet Propulsion Laboratory California Institute of Technology 4800 Oak Grove Drive, MS 300-243 Pasadena,

More information

Introduction To Microwave Remote Sensing. Contents. Introduction To Microwave Remote Sensing

Introduction To Microwave Remote Sensing. Contents. Introduction To Microwave Remote Sensing Introduction To Microwave Remote Sensing David P. Lusch, Ph.D. Senior Research Specialist Center For Remote Sensing and Geographic Information Science Michigan State University November, 1999 Introduction

More information

Microwave sensors (present and future)

Microwave sensors (present and future) Proc. Indian Acad. Sci. (Engg. sea.), Vol. 6, Pt. 2, June 1983, pp. 109-119. 9 Printed in India. Microwave sensors (present and future) 1. Introduction O P N CALLA Communications Area, Space Applications

More information

China. France Oceanography S A T. Overview of the near-real time wave products of the CFOSAT mission. e l l i t e

China. France Oceanography S A T. Overview of the near-real time wave products of the CFOSAT mission. e l l i t e China Overview of the near-real time wave products of the CFOSAT mission C. Tison (1), D. Hauser (2), S. Guibert (1), T. Amiot (1), L. Aouf (3), J.M. Lefèvre (3), B. Chapron (5), N. Corcoral (1), P. Castillan

More information

The Global Imager (GLI)

The Global Imager (GLI) The Global Imager (GLI) Launch : Dec.14, 2002 Initial check out : to Apr.14, 2003 (~L+4) First image: Jan.25, 2003 Second image: Feb.6 and 7, 2003 Calibration and validation : to Dec.14, 2003(~L+4) for

More information

Observing Dry-Fallen Intertidal Flats in the German Bight Using ALOS PALSAR Together With Other Remote Sensing Sensors

Observing Dry-Fallen Intertidal Flats in the German Bight Using ALOS PALSAR Together With Other Remote Sensing Sensors Observing Dry-Fallen Intertidal Flats in the German Bight Using ALOS PALSAR Together With Other Remote Sensing Sensors Martin Gade, Institut für Meereskunde & Kerstin Stelzer Brockmann Consult Outline

More information

Biomass, a polarimetric interferometric P-band SAR mission

Biomass, a polarimetric interferometric P-band SAR mission Biomass, a polarimetric interferometric P-band SAR mission M. Arcioni, P. Bensi, M. Fehringer, F. Fois, F. Heliere, N. Miranda, K. Scipal Fringe 2015, ESRIN 27/03/2015 The Biomass Mission 1. Biomass was

More information

All rights reserved. ENVI, IDL and Jagwire are trademarks of Exelis, Inc. All other marks are the property of their respective owners.

All rights reserved. ENVI, IDL and Jagwire are trademarks of Exelis, Inc. All other marks are the property of their respective owners. SAR Analysis Made Easy with SARscape 5.1 All rights reserved. ENVI, IDL and Jagwire are trademarks of Exelis, Inc. All other marks are the property of their respective owners. 2014, Exelis Visual Information

More information

Earth Observation from a Moon based SAR: Potentials and Limitations

Earth Observation from a Moon based SAR: Potentials and Limitations Earth Observation from a Moon based SAR: Potentials and Limitations F. Bovenga 1, M. Calamia 2,3, G. Fornaro 5, G. Franceschetti 4, L. Guerriero 1, F. Lombardini 5, A. Mori 2 1 Politecnico di Bari - Dipartimento

More information

746A27 Remote Sensing and GIS

746A27 Remote Sensing and GIS 746A27 Remote Sensing and GIS Lecture 1 Concepts of remote sensing and Basic principle of Photogrammetry Chandan Roy Guest Lecturer Department of Computer and Information Science Linköping University What

More information

Change detection in cultural landscapes

Change detection in cultural landscapes 9-11 November 2015 ESA-ESRIN, Frascati (Rome), Italy 3 rd ESA-EARSeL Course on Remote Sensing for Archaeology Day 3 Change detection in cultural landscapes DeodatoTapete (1,2) & Francesca Cigna (1,2) (1)

More information

MODULE 9 LECTURE NOTES 1 PASSIVE MICROWAVE REMOTE SENSING

MODULE 9 LECTURE NOTES 1 PASSIVE MICROWAVE REMOTE SENSING MODULE 9 LECTURE NOTES 1 PASSIVE MICROWAVE REMOTE SENSING 1. Introduction The microwave portion of the electromagnetic spectrum involves wavelengths within a range of 1 mm to 1 m. Microwaves possess all

More information

Synthetic Aperture Radar (SAR) images features clustering using Fuzzy c- means (FCM) clustering algorithm

Synthetic Aperture Radar (SAR) images features clustering using Fuzzy c- means (FCM) clustering algorithm Article Synthetic Aperture Radar (SAR) images features clustering using Fuzzy c- means (FCM) clustering algorithm Rashid Hussain Faculty of Engineering Science and Technology, Hamdard University, Karachi

More information

11. RADAR REMOTE SENSING

11. RADAR REMOTE SENSING Philpot & Philipson: Remote Sensing Fundamentals Radar 1 11. RADAR REMOTE SENSING 11.1 A bit of history RADAR was initially an acronym standing for RAdio Detection And Ranging 1. Radio waves were first

More information

Microwave Sensors Subgroup (MSSG) Report

Microwave Sensors Subgroup (MSSG) Report Microwave Sensors Subgroup (MSSG) Report Feb 17-20, 2014, ESA ESRIN, Frascati, Italy DONG, Xiaolong, MSSG Chair National Space Science Center Chinese Academy of Sciences (MiRS,NSSC,CAS) Email: dongxiaolong@mirslab.cn

More information

Sources of Geographic Information

Sources of Geographic Information Sources of Geographic Information Data properties: Spatial data, i.e. data that are associated with geographic locations Data format: digital (analog data for traditional paper maps) Data Inputs: sampled

More information

Sub-Mesoscale Imaging of the Ionosphere with SMAP

Sub-Mesoscale Imaging of the Ionosphere with SMAP Sub-Mesoscale Imaging of the Ionosphere with SMAP Tony Freeman Xiaoqing Pi Xiaoyan Zhou CEOS Workshop, ASF, Fairbanks, Alaska, December 2009 1 Soil Moisture Active-Passive (SMAP) Overview Baseline Mission

More information

Synthetic Aperture Radar for Rapid Flood Extent Mapping

Synthetic Aperture Radar for Rapid Flood Extent Mapping National Aeronautics and Space Administration ARSET Applied Remote Sensing Training http://arset.gsfc.nasa.gov @NASAARSET Synthetic Aperture Radar for Rapid Flood Extent Mapping Sang-Ho Yun ARIA Team Jet

More information

Microwave Sensors Subgroup (MSSG) Report

Microwave Sensors Subgroup (MSSG) Report Microwave Sensors Subgroup (MSSG) Report CEOS WGCV-35 May 13-17, 2013, Shanghai, China DONG, Xiaolong, MSSG Chair CAS Key Laboratory of Microwave Remote Sensing National Space Science Center Chinese Academy

More information

ECE Lecture 32

ECE Lecture 32 ECE 5010 - Lecture 32 1 Microwave Radiometry 2 Properties of a Radiometer 3 Radiometric Calibration and Uncertainty 4 Types of Radiometer Measurements Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation

More information

RECOMMENDATION ITU-R S *

RECOMMENDATION ITU-R S * Rec. ITU-R S.1339-1 1 RECOMMENDATION ITU-R S.1339-1* Rec. ITU-R S.1339-1 SHARING BETWEEN SPACEBORNE PASSIVE SENSORS OF THE EARTH EXPLORATION-SATELLITE SERVICE AND INTER-SATELLITE LINKS OF GEOSTATIONARY-SATELLITE

More information

Soil moisture retrieval using ALOS PALSAR

Soil moisture retrieval using ALOS PALSAR Soil moisture retrieval using ALOS PALSAR T. J. Jackson, R. Bindlish and M. Cosh USDA ARS Hydrology and Remote Sensing Lab, Beltsville, MD J. Shi University of California Santa Barbara, CA November 6,

More information

The Potential of Synthetic Aperture Sonar in seafloor imaging

The Potential of Synthetic Aperture Sonar in seafloor imaging The Potential of Synthetic Aperture Sonar in seafloor imaging CM 2000/T:12 Ron McHugh Heriot-Watt University, Department of Computing and Electrical Engineering, Edinburgh, EH14 4AS, Scotland, U.K. Tel:

More information

Soil Moisture Observation Utilizing Reflected GNSS Signals

Soil Moisture Observation Utilizing Reflected GNSS Signals Soil Moisture Observation Utilizing Reflected GNSS Signals GNSS-R Tech in Soil Moisture New Data Processing Method Prof. Dongkai YANG Joint African/Asia-Pacific UN-Regional Centers and International Training

More information

NEXTMAP. P-Band. Airborne Radar Imaging Technology. Key Benefits & Features INTERMAP.COM. Answers Now

NEXTMAP. P-Band. Airborne Radar Imaging Technology. Key Benefits & Features INTERMAP.COM. Answers Now INTERMAP.COM Answers Now NEXTMAP P-Band Airborne Radar Imaging Technology Intermap is proud to announce the latest advancement of their Synthetic Aperture Radar (SAR) imaging technology. Leveraging over

More information

The Sentinel-1 Constellation

The Sentinel-1 Constellation The Sentinel-1 Constellation Evert Attema, Sentinel-1 Mission & System Manager AGRISAR and EAGLE Campaigns Final Workshop 15-16 October 2007 ESA/ESTECNoordwijk, The Netherlands Sentinel-1 Programme Sentinel-1

More information

Bistatic/Monostatic Synthetic Aperture Radar for Ice Sheet Measurements

Bistatic/Monostatic Synthetic Aperture Radar for Ice Sheet Measurements Bistatic/Monostatic Snthetic Aperture Radar for Ice Sheet Measurements John Paden MS Thesis Defense April 18, 003 Committee Chairperson: Dr. Chris Allen Committee Members: Dr. Prasad Gogineni Dr. Glenn

More information

Multipath Analysis of the QuikSCAT Calibration Ground Station

Multipath Analysis of the QuikSCAT Calibration Ground Station Brigham Young University Department of Electrical and Computer Engineering 459 Clyde Building Provo, Utah 8462 Multipath Analysis of the QuikSCAT Calibration Ground Station Arden Anderson 16 April 21 MERS

More information

Chapter 6 Spaceborne SAR Antennas for Earth Science

Chapter 6 Spaceborne SAR Antennas for Earth Science Chapter 6 Spaceborne SAR Antennas for Earth Science Yunjin Kim and Rolando L. Jordan 6.1 Introduction Before the development of the first synthetic aperture radar (SAR) antenna flown in space, Jet Propulsion

More information

Configuration, Capabilities, Limitations, and Examples

Configuration, Capabilities, Limitations, and Examples FUGRO EARTHDATA, Inc. Introduction to the New GeoSAR Interferometric Radar Sensor Bill Sharp GeoSAR Regional Director - Americas Becky Morton Regional Manager Configuration, Capabilities, Limitations,

More information

Radiometric and Geometric Correction Methods for Active Radar and SAR Imageries

Radiometric and Geometric Correction Methods for Active Radar and SAR Imageries Radiometric and Geometric Correction Methods for Active Radar and SAR Imageries M. Mansourpour 1, M.A. Rajabi 1, Z. Rezaee 2 1 Dept. of Geomatics Eng., University of Tehran, Tehran, Iran mansourpour@gmail.com,

More information

Generation of Fine Resolution DEM at Test Areas in Alaska Using ERS SAR Tandem Pairs and Precise Orbital Data *

Generation of Fine Resolution DEM at Test Areas in Alaska Using ERS SAR Tandem Pairs and Precise Orbital Data * Generation of Fine Resolution DEM at Test Areas in Alaska Using ERS SAR Tandem Pairs and Precise Orbital Data * O. Lawlor, T. Logan, R. Guritz, R. Fatland, S. Li, Z. Wang, and C. Olmsted Alaska SAR Facility

More information

SPATIAL MAPPING OF SOIL MOISTURE USING RADARSAT-1 DATA INTRODUCTION

SPATIAL MAPPING OF SOIL MOISTURE USING RADARSAT-1 DATA INTRODUCTION SPATIAL MAPPING OF SOIL MOISTURE USING RADARSAT-1 DATA Tarendra Lakhankar, PhD Student Hosni Ghedira, Asst. Professor Reza Khanbilvardi, Professor NOAA-CREST, City University of New York New York 10031

More information

Contribution of Sentinel-1 data for the monitoring of seasonal variations of the vegetation

Contribution of Sentinel-1 data for the monitoring of seasonal variations of the vegetation Contribution of Sentinel-1 data for the monitoring of seasonal variations of the vegetation P.-L. Frison, S. Kmiha, B. Fruneau, K. Soudani, E. Dufrêne, T. Koleck, L. Villard, M. Lepage, J.-F. Dejoux, J.-P.

More information

An Introduction to Remote Sensing & GIS. Introduction

An Introduction to Remote Sensing & GIS. Introduction An Introduction to Remote Sensing & GIS Introduction Remote sensing is the measurement of object properties on Earth s surface using data acquired from aircraft and satellites. It attempts to measure something

More information

John P. Stevens HS: Remote Sensing Test

John P. Stevens HS: Remote Sensing Test Name(s): Date: Team name: John P. Stevens HS: Remote Sensing Test 1 Scoring: Part I - /18 Part II - /40 Part III - /16 Part IV - /14 Part V - /93 Total: /181 2 I. History (3 pts. each) 1. What is the name

More information

Concept Design of Space-Borne Radars for Tsunami Detection

Concept Design of Space-Borne Radars for Tsunami Detection Concept Design of Space-Borne Radars for Tsunami Detection DLR German Aerospace Agency +Microwaves and Radar Institute *Remote Sensing Institute +Michele Galletti +Gerhard Krieger +Nicolas Marquart +Thomas

More information

Synthetic Aperture Radar. Hugh Griffiths THALES/Royal Academy of Engineering Chair of RF Sensors University College London

Synthetic Aperture Radar. Hugh Griffiths THALES/Royal Academy of Engineering Chair of RF Sensors University College London Synthetic Aperture Radar Hugh Griffiths THALES/Royal Academy of Engineering Chair of RF Sensors University College London CEOI Training Workshop Designing and Delivering and Instrument Concept 15 March

More information

Scientific Applications of Fully-Focused SAR Altimetry

Scientific Applications of Fully-Focused SAR Altimetry Scientific Applications of Fully-Focused SAR Altimetry Alejandro Egido (1,2), Walter Smith (2) (1) UMD/CICS-MD, United States (2) NOAA, United States CICS Science Conference Nov 29, 30 & Dec 1, 2016 College

More information

CURRENT APPLICATIONS OF IMAGING RADAR

CURRENT APPLICATIONS OF IMAGING RADAR CURRENT APPLICATIONS OF IMAGING RADAR M.R. Inggs and R.T. Lord Dept. Electrical Engineering, University of Cape Town, Rondebosch, 7701, South Africa mikings@ebe.uct.ac.za Commission VII, WG VII/2 KEY WORDS:

More information

SAR AUTOFOCUS AND PHASE CORRECTION TECHNIQUES

SAR AUTOFOCUS AND PHASE CORRECTION TECHNIQUES SAR AUTOFOCUS AND PHASE CORRECTION TECHNIQUES Chris Oliver, CBE, NASoftware Ltd 28th January 2007 Introduction Both satellite and airborne SAR data is subject to a number of perturbations which stem from

More information

REMOTE SENSING FOR FLOOD HAZARD STUDIES.

REMOTE SENSING FOR FLOOD HAZARD STUDIES. REMOTE SENSING FOR FLOOD HAZARD STUDIES. OPTICAL SENSORS. 1 DRS. NANETTE C. KINGMA 1 Optical Remote Sensing for flood hazard studies. 2 2 Floods & use of remote sensing. Floods often leaves its imprint

More information

Figure 1: C band and L band (SIR-C/X-SAR images of Flevoland in Holland). color scheme: HH: red, HV:green, VV: blue

Figure 1: C band and L band (SIR-C/X-SAR images of Flevoland in Holland). color scheme: HH: red, HV:green, VV: blue L-band PS analysis: JERS-1 results and TerraSAR L predictions Kenji Daito (1), Alessandro Ferretti (), Shigeki Kuzuoka (3),Fabrizio Novali (), Pietro Panzeri (), Fabio Rocca (4) (1) Daido Institute of

More information

Evaluation of Multi-Frequency and Multi-Polarization Airborne SAR data for Marsh Land and River Dyke Analysis

Evaluation of Multi-Frequency and Multi-Polarization Airborne SAR data for Marsh Land and River Dyke Analysis Photogrammetric Week '03 Dieter Fritsch (Ed.) Wichmann Verlag, Heidelberg, 2003 Müllenhoff 197 Evaluation of Multi-Frequency and Multi-Polarization Airborne SAR data for Marsh Land and River Dyke Analysis

More information

Playa del Rey, California InSAR Ground Deformation Monitoring Interim Report H

Playa del Rey, California InSAR Ground Deformation Monitoring Interim Report H Playa del Rey, California InSAR Ground Deformation Monitoring Interim Report H Ref.: RV-14524 Doc.: CM-168-01 January 31, 2013 SUBMITTED TO: Southern California Gas Company 555 W. Fifth Street (Mail Location

More information

Ultrasound Beamforming and Image Formation. Jeremy J. Dahl

Ultrasound Beamforming and Image Formation. Jeremy J. Dahl Ultrasound Beamforming and Image Formation Jeremy J. Dahl Overview Ultrasound Concepts Beamforming Image Formation Absorption and TGC Advanced Beamforming Techniques Synthetic Receive Aperture Parallel

More information

Measurements of the Propagation Parameters of Tree Canopies at. MMW Frequencies

Measurements of the Propagation Parameters of Tree Canopies at. MMW Frequencies Measurements of the Propagation Parameters of Tree Canopies at MMW Frequencies A. Y. Nashashibi, F.T. Ulaby, P. Frantzis, and Roger D. De Roo The Radiation Laboratory Department of Electrical Engineering

More information

Principles of Remote Sensing. Shuttle Radar Topography Mission S R T M. Michiel Damen. Dept. Earth Systems Analysis

Principles of Remote Sensing. Shuttle Radar Topography Mission S R T M. Michiel Damen. Dept. Earth Systems Analysis Principles of Remote Sensing Shuttle Radar Topography Mission S R T M Michiel Damen Dept. Earth Systems Analysis Contents Present problems with DEMs Advantage of SRTM Cell size Mission and system Radar

More information

Synthetic Aperture Radar Interferometry (InSAR) Technique (Lecture I- Tuesday 11 May 2010)

Synthetic Aperture Radar Interferometry (InSAR) Technique (Lecture I- Tuesday 11 May 2010) Synthetic Aperture Radar Interferometry () Technique (Lecture I- Tuesday 11 May 2010) ISNET/CRTEAN Training Course on Synthetic Aperture Radar (SAR) Imagery: Processing, Interpretation and Applications

More information

Detection of a Point Target Movement with SAR Interferometry

Detection of a Point Target Movement with SAR Interferometry Journal of the Korean Society of Remote Sensing, Vol.16, No.4, 2000, pp.355~365 Detection of a Point Target Movement with SAR Interferometry Jung-Hee Jun* and Min-Ho Ka** Agency for Defence Development*,

More information

Channel Modeling and Characteristics

Channel Modeling and Characteristics Channel Modeling and Characteristics Dr. Farid Farahmand Updated:10/15/13, 10/20/14 Line-of-Sight Transmission (LOS) Impairments The received signal is different from the transmitted signal due to transmission

More information