Radiometric and Geometric Correction Methods for Active Radar and SAR Imageries

Size: px
Start display at page:

Download "Radiometric and Geometric Correction Methods for Active Radar and SAR Imageries"

Transcription

1 Radiometric and Geometric Correction Methods for Active Radar and SAR Imageries M. Mansourpour 1, M.A. Rajabi 1, Z. Rezaee 2 1 Dept. of Geomatics Eng., University of Tehran, Tehran, Iran mansourpour@gmail.com, marajabi@ut.ac.ir 2 National Cartographic Centre (NCC), Tehran, Iran rezaee.ncc@gmail.com Abstract Radar imagery has become one of the most important data sources and efficient tools for terrain analysis and natural resource surveys since 1960s. With the development of technology in the field of radar remote sensing, new generation of radar sensors, i.e., Synthetic Aperture Radar (SAR) was born. Unique specifications of radar systems and images versus optical ones led to a whole new series of applications for radar imageries all over the world. However, the level of achievable accuracy from radar imageries is still a problem for their applications. Multiplicative noise such as speckle which is unavoidable part of coherent radar images, degrade radiometric quality and interpretability. Moreover, geometric distortions such as foreshortening, layover, shadow and other problems related to special imaging geometry of radar systems, decrease reliability of radar imageries. Thus, radiometric and geometric corrections and calibrations must be applied to the radar images before using them. This paper uses four filters with different window sizes to remove/reduce the speckle noise. These filters are Lee, Lee-Sigma, Gamma- MAP and Frost. It is shown that Gamma-MAP filter has a better performance than the other three filters, if the ratio of Mean/Std is used as a criterion. Moreover, geometric correction is done using three different methods including polynomial with five control points, geocoding with ephemeris, and orthorectification using ephemeris, DTM and control points. The results show that the last method which is called radargrammetric is more successful in removing the effects of foreshortening and layover. Besides, the accuracy of geometric correction using radargrammetry is better than the other two methods too. KEY WORDS: SAR Images, Speckle Noise, Filter, Foreshortening, Layover, Shadow, Orthorectification 1. Introduction According to Lillesand and Kiefer (2000) remote sensing is the science and art of obtaining information about an object, area, or phenomenon through the analysis of data acquired by a device that is not in contact with the object, area, or phenomenon under investigation. Based on the wavelength in which the system works, remote sensing is categorized into two different groups, i.e., optical and microwave. Optical remote sensing uses visible and infrared waves while microwave remote sensing uses radio waves [1]. As a microwave remote sensing, RADAR (Radio Detection And Ranging) sends out pulses of microwave electromagnetic radiation and measures the strength as well as time between the transmitted and reflected pulses to determine both the type of reflector and its distance from the transmitter (Raney, 1998). Different pulse intervals, different wavelengths (which range between less than 1 mm to 1 m), different geometry and polarizations can all be used to determine the roughness, geometry and moisture content of the earth surface [2]. During the past two decades different satellitesusing RADAR sensors have been put into the orbit. SEASAT, SIR-A, SIR-B, SIR-C, ERS-1, ERS-2, ALMAZ, JERS-1, and RADARSAT are some of satellite missions which use RADAR technology. 1

2 Radar remote sensing, like optical remote sensing, is used to produce the image of Earth s surface. A radar image is a record of the interaction of energy and objects at the Earth s surface. Its appearance is dependent on variables such as geometric shape, surface roughness and moisture content of the target object, as well as the sensor-target geometry and the transmission direction (look direction) of the radar sensor. There are significant differences, however, between how a radar image is formed and what is represented in that image compared to optical remote sensing imagery [3]. In compare to optical remote sensing, radar imaging has some advantages. First, as an active system, it is a day/night data acquisition system. Second, considering the behavior of electromagnetic waves in the range of RADAR wavelength, it can be seen that atmospheric characteristics such as cloud, light rain, haze, and smoke has little effect on the capability of RADAR data acquisition system. This makes RADAR as an allweather remote sensing system. Last but not least, as the RADAR signals partially penetrate into soil and vegetation canopy, in addition to surface information, it can provide subsurface information too. The returned signal (backscatter) from ground objects (targets) is primarily influenced by the characteristics of the radar signal, the geometry of the radar relative to the Earth s surface, the local geometry between the radar signal and its target, and the characteristics of the target. A radar image is a display of grey tones which are proportional to the amount of backscatter that is received from a target. Targets that produce a large amount of backscatter will appear as light grey tones on a radar image. Targets that produce little backscatter will appear as dark grey tones, and targets that reflect intermediate amounts of backscatter will appear as intermediate grey tones. A Synthetic Aperture Radar (SAR) system illuminates a scene with microwaves and records both the amplitude and the phase of the back-scattered radiation, making it a coherent imaging process. The received signal is sampled and converted into a digital image. The field recorded at pixel x, denoted E(x), can be written as [4] E ( x) = a( s) exp( iϕ ( s)) h( s, x) (1) s Where the summation ranges over the scatterers, a(s) and are respectively the amplitude and phase of the signal received from scatterer s, and h is the instrument (or point-spread) function. The value of h is near 1 when s is in or near the resolving cell corresponding to pixel x, and near zero otherwise. Assuming that h is translation-invariant (does not depend on x) then it can be written as a oneparameter function h(s-x). The detected field E is an array of complex numbers. The square of the modulus of the field at x is called the detected intensity at x; the square-root of the intensity is called the envelope or the amplitude. This is not the same as the amplitude of the received signal because the received field is perturbed by the instrument function. The amplitude of the received signal, a(s), is called the reflectivity, and its square is called the surface cross-section. Unfortunately, this is contaminated with speckle noise and the goal of all speckle noise reduction methods is to recover it. Inherent with all RADAR imageries is speckle noise which is nothing else but variation in backscatter from inhomogeneous cells. Speckle noise gives a grainy appearance to radar imageries. It reduces the image contrast which has a direct negative effect on texture based analysis of the imageries [3]. Meanwhile, speckle noise also changes the spatial statistics of the underlying scene backscatter which in turn makes the classification of imageries a difficult task [5]. Obviously, it is seen that to interpret RADAR imageries correctly one has to reduce (ideally remove!) the effect of speckle noise. However, as the speckle noise reduction/removal process changes the image as well, one should use proper filter to keep the image degradation minimum. This paper reviews the speckle noise reduction methods and 2

3 among all studies the effect of Lee-sigma, Lee, Gamma-MAP, and Frost filters with different kernel sizes on the SAR imageries. 2. SPECKLE NOISE AND ITS REDUCTION Radar waves can interfere constructively or destructively to produce light and dark pixels known as speckle noise. Speckle noise is commonly observed in radar (microwave or millimeter wave) sensing systems, although it may appear in any type of remotely sensed image utilizing coherent radiation. Like the light from a laser, the waves emitted by active sensors travel in phase and interact minimally on their way to the target area. After interaction with the target area, these waves are no longer in phase because of the different distances they travel from targets, or single versus multiple bounce scattering. Once out of phase, radar waves can interact to produce light and dark pixels known as speckle noise. Speckle noise in radar data is assumed to have multiplicative error model and must be reduced before the data can be utilized otherwise the noise is incorporated into and degrades the image quality. Ideally, speckle noise in radar images must be completely removed. However, in practice it can be reduced significantly. Reducing the effect of speckle noise permits both better discrimination of scene targets and easier automatic image segmentation[3][5]. The spatial filters are categorized into two different groups, i.e., non-adaptive and adaptive. Non-adaptive filters take the parameters of the whole image signal into consideration and leave out the local properties of the terrain backscatter or the nature of the sensor. These kinds of filters are not appropriate for non-stationary scene signal. Fast Fourier Transform (FFT) is an example of such filters. On the other hand, adaptive filters accommodate changes in local properties of the terrain backscatter as well as the nature of the sensor. In these types of filters, the speckle noise is considered as being stationary but the changes in the mean backscatters due to changes in the type of target are taken into consideration. Adaptive filters reduce speckles while preserving the edges (sharp contrast variation). These filters modify the image based on statistics extracted from the local environment of each pixel [6]. Adaptive filter varies the contrast stretch for each pixel depending upon the Digital Number (DN) values in the surrounding moving kernel. Obviously, a filter that adapts the stretch to the region of interest (the area within the moving kernel) would produce a better enhancement. Lee-Sigma, Lee, Gamma MAP, Frost are examples of such filters. Studying the effects of these filters are the subject of this paper therefore they are studied in a bit more detailed in the next section SPECKLE FILTERING As implicitly mentioned above, speckle filtering consists of moving a kernel over each pixel in the image and applying a mathematical calculation using the pixel values under the kernel and replacing the central pixel with the calculated value. The kernel is moved along the image one pixel at a time until the entire image has been covered. By applying the filter a smoothing effect is achieved and the visual appearance of the speckle is reduced Lee-Sigma and Lee Filters: The Lee-Sigma and Lee filters utilize the statistical distribution of the DN values within the moving kernel to estimate the value of the pixel of interest. These two filters assume a Gaussian distribution for the noise in the image data. The Lee filter is based on the assumption that the mean and variance of the pixel of interest is equal to the local mean and variance of all pixels within the user-selected moving kernel. The formula used for the Lee filter is [7]. 3

4 DN out = [Mean] + K[DN in - Mean] (2) where Mean = average of pixels in a moving window Var( x) Variance within window K = And Var (x) = 2 2 [ Mean] σ + Var( x) [ ] + [ Mean within window] 2 [ Sigma] [ Mean within window] 2 The Sigma filter is based on the probability of a Gaussian distribution. It is assumed that 95.5% of random samples are within a 2 standard deviation range. This noise suppression filter replaces the pixel of interest with the average of all DN values within the moving kernel that fall within the designated range [8] Gamma-MAP Filter: The Maximum A Posteriori (MAP) filter is based on a multiplicative noise model with non-stationary mean and variance parameters. This filter assumes that the original DN value lies between the DN of the pixel of interest and the average DN of the moving kernel. Moreover, many speckle reduction filters assume a Gaussian distribution for the speckle noise. However, recent works have shown this to be invalid assumption. Natural vegetated areas have been shown to be more properly modeled as having a Gamma distributed cross section. The Gamma-Map algorithm incorporates this assumption and its exact formula is the following cubic equation [9]: ) 3 I IIˆ2 + σ ( Iˆ DN ) = 0 Where I ) = sought value, I = local mean, DN = input value, σ = the original image variance. (3) The Gamma-MAP logic maximizes the a posteriori probability density function with respect to the original image. It combines both geometrical and statistical properties of the local area [9]. The filtering is controlled by both the variation coefficient and the geometrical ratio operators extended to the line detection [10] Frost Filter: The Frost filter replaces the pixel of interest with a weighted sum of the values within the nxn moving kernel. The weighting factors decrease with distance from the pixel of interest. The weighting factors increase for the central pixels as variance within the kernel increases. This filter assumes multiplicative noise and stationary noise statistics and follows the following formula: DN = k n n α t e α (4) where α = ( 4 / nσ )( σ / I ), k = normalization constant, I = local mean, σ =local variance, σ = image coefficient of variation value, t = X-X 0 + Y-Y 0, and n = moving kernel size [11]. 3. SAR GEOMETRY The SAR viewing geometry refers to the geometry between the transmitted SAR pulse and ground targets. The main parameter in this geometry is local incidence angle, defined as the angle between the 4

5 SAR range vector and the surface normal to each terrain element imaged by the SAR. It can be observed that any slope on the specific ground surface being imaged will significantly alter the geometry of the signal-target interaction [2] [3]. A SAR is a distance-measuring device. The SAR system measures the time delay between transmission and reception of a pulse in order to determine where targets are relative to one another in the range direction. So when a satellite SAR is imaging a steep relief feature such as a mountain, the radar pulse could reach the top of the mountain first and the bottom of the mountain last. Thus, from the SAR s perspective, the top of the mountain is closer than the base of the mountain. When subsequently portrayed on a two dimensional image, the mountain appears to be leaning towards the sensor, resulting in the displacement of mountain tops and other topographic features from their true orthographic positions. These distortions can become quite large. These possible distortions are referred to as shadow, foreshortening, and layover. Shadows on a SAR image indicate those areas on the ground which has not been illuminated by the SAR signal. Foreshortening occurs when the local incidence angle is smaller than the illumination angle, but larger than 0. This type of distortion appears on an image as if the sensor-facing slope is shortened and the feature is leaning towards the sensor (hence the term foreshortening). Layover is an extreme form of foreshortening. For small incidence angles or very steep ground relief features, the backscatter often returns from the top of the feature before the base. This occurs where the local incidence angle is greater than incidence angle. On the SAR image, this appears as if the highest point of the vertical feature is laid over top of its base in the direction of the sensor. As with foreshortening, features that exhibit layover have very bright sensor-facing slopes [3]. 4. GEOMETRIC CORRECTIONS Radar systems are side-looking distance measuring systems, thus key geometric parameters are the incident angle, local incident angle and look direction. The side-looking geometry of radar results in several geometric distortions, such as slant range scale distortions and relief distortions. Geometric corrections include slant to ground range, registration, and local incident angle corrections (if topographic information is available). Generally speaking, geometric correction algorithms are classified into three methods: Slant to ground method Polynomial method (best fit approximations) Radargrammetric method (known sensor geometry) Ground Control Points (GCPs) are used to establish and/or refine the transformation. 4.1 Slant/Ground Range Conversion SAR data are acquired in slant range. Slant to ground range conversion is used to project the acquired image to the ground system. To do this, one needs to know (or assume) imaging geometry, platform altitude, range delay and terrain elevation. Resampling is used to give uniform pixel spacing (in ground range) across the image swath. Slant to ground range conversion can be done during signal processing or during image processing. Generally, it is applied after radiometric correction. Approaches and algorithms used are a function of analysis objectives. RADARSAT ground range products assume a sea level ellipsoid earth model with zero relief. 5

6 4.2. Image Registration Polynomial Transforms Polynomial transform uses a best-fit model. First order polynomial is a shift-rotation of the image, whereas the third order polynomial is a complex warping of the image. Second order polynomials are used for images requiring nonlinear warping. Third and higher order polynomials create a more complex image transformation. Higher order transforms require a greater number of ground control points (GCPs) in order to produce the transform model. High order does not guarantee higher accuracy. Higher order usually ties the image down at the GCPs, but can increase errors between the GCPs. 4.3 Radargrammetric Method Geocoding is the geometric correction of image data to a map projection. Traditional method of geocoding is the polynomial transform. This method does neither model the viewing geometry nor use elevation data to correct for topography. The most accurate geocoding method is the radargrammetric method. The radargrammetric process consists of three steps as following: Ephemeris modeling and refinement (if GCPs are provided) Sparse mapping grid generation Output formation (including terrain corrections) Radargrammetric method uses analytical formulation of the distortions during image formation. Therefore, the geometric correction is done using the platform (ephemeris and ancillary data), sensor (integration time, pulse length, depression angle), and DEM information. Output of radargrammetry is an Ortho-image corrected for all distortions, including relief. The planimetric accuracy of the final ortho-image is dependent on the accuracy of GCPs and the DEM [12][13]. The advantages of radargrammetric method are as following: Unified projection system. Direct image to terrain correction. Only one resampling of an image (slant range to map projection is directly done, no intermediate conversion to ground is required). Homogeneity in the ortho - image generation. Use of a DEM or a mean altitude. Better integration with GIS or digital maps. Comprehension and control of the full geometric process and of the resulting errors. 5. NUMERICAL RESULTS 5.1 Radiometric Correction The real imagery used for numerical experimentation is a 185 by 119 pixel raw SAR image from Death Valley located at longitude of N and latitude of W. The spatial resolution of this SAR image is 12.5 m (Figure 1). 6

7 Figure 1. Raw image with speckle noise To remove or reduce the speckle noise, all of above mentioned filters are used. These tests are used with two different filter size, i.e., 3x3 and 5x5. Table 1. shows the results. Figure 3 shows the ratio of Mean/Stdv which has been used as a criterion for the evaluation of the performance of the filters. Based on the results it is seen that the 5x5 Gamma-MAP filter has a better performance than the other filters. The filtered image is shown in Figure 2. Figure 2. Filtered image with Gamma-MAP Table 1. Statistical values for filtered images MEAN STDV Mean/STDV Raw image Gamma-MAP 3x Frost 3x Lee 3x Lee-Sigma 3x Gamma-MAP 5x Frost 5x Lee 5x Lee-Sigma 5x raw image Gamma- MAP 3x3 Mean/STDV Frost 3x3 Lee 3x3 Lee-Sigma 3x3 Gamma- MAP 5x5 Frost 5x5 Lee 5x5 Lee-Sigma 5x5 Figure 3. Mean/Stdv values for the filtered image 7

8 5.3. Geometric Correction The above mentioned geometric correction shave been applied to the radiometrically corrected image. Figure 4 shows the corrected image. As the image is in the ground range format, there is no need to apply slant to ground range conversion. Different geometric correction methods are used to evaluate their performance. These methods include: Polynomial with 5 GCPs Geocoding using ephemeris Orthorectification using radargrammetry (using ephemeris, GCPs and DEM) Table 2, Figure 5 and 6 show the results. It is seen that radargrammetric method is more efficient than the other two geometric correction methods. In this method the relief distortion is eliminated because of using DEM. It is also seen that polynomial with 5 GCPs has better results than geocoding using ephemeris. Moreover, it is seen that RMS error in X direction is larger than the corresponding value in Y direction. The reason is that the relief distortion is more in X direction because of imaging geometry. Figure 6 shows the orthorectified image. It is clearly seen that the relief distortions are eliminated. Figure 4. Radarsat image of Death Valley, California. Pixel size 12.5m in range and azimuth direction. Acquisition date , C Band.Image is in ground range Table 2. RMS Errors for Geometric correction methods Geometric Correction Method Geocoding with Orbit and Satellite Parameter with 5 check point Polynomial(with 5 GCPs) Orthorectification with DEM and 5 GCP X RMS Error(m) Y RMS Error(m) RMS Error(m)

9 X RMS Error(meter) Geocoding with Orbit and Satellite Parameter with 5 check point Polynomial(with 5 GCPs) Orthorectification with DEM and 5 GCP Y RMS Error(meter) RMS Error(meter) Figure 5. RMS Errors for three geometric correction methods Figure 6.Orthorectified image with DEM and GCP 6. Conclusions and Remarks Radar remote sensing systems provide us relatively new source of information. Because of its unique capabilities in compare to optical systems, it is worth putting more effort to study the radiometric and geometric characteristics of them. Speckle noises are inherent part of radar images. There are different methods to reduce these speckle noises. This paper used four different filters with two different sizes. The results of numerical experimentation show that Gamma-MAP provides better results in compare to the other three filters used here. One of the reasons seems to be use of Gamma distribution for speckle noise by this filter. Geometric corrections in radar imageries are different than optical ones as the geometry of the imageries are different. Three different geometric corrections have been used here. The results show that radargrammetric method has a better performance in compare to the other two methods. The reason seems to be obvious as radargrammetry considers geometry of imaging, uses both orbital parameters of the sensor, and DEM of the region. Last but not least, it is suggested to repeat these tests with other radar imageries. 9

10 References 1. Lillesand, M.T., Kiefer, R.W., Remote Sensing and Image Interpretation. Fourth Edition. John Wiley & Sons, New York. 2. Henderson, F.M., Lewis, A.J., Principles and Application of Imaging Radar.Volume1, John Wiley & Sons Inc., New York. 3. Raney, R.K., Radar Fundamentals: Technical Perspective. Chapter 2 in Principles and Applications of Imaging Radar, Manual of Remote Sensing, Third Edition, Volume 2, ASPRS, John Wiley and Sons Inc., Toronto. 4. InfoSAR Ltd, InfoPACK User Guide Version 1.0, (accessed 27 Jan. 2006). 5. Durand, M.J., Gimonet, B.J., Perbos, J.R., SAR Data Filtering for Classification. IEE, GE25 (5), Lopes A., E. Nezry, R. Touzi, and H. Laur, Structure Detection and Statistical Adaptive Speckle Filtering in SAR Images. International Journal of Remote Sensing, Vol. 14, No. 9, pp Lee, J.S., Speckle Analysis and Smoothing of Synthetic Aperture Radar Images. Computer Graphics and Image Processing, Vol. 17: Lee, J. S., Digital Image Smoothing and the Sigma Filter. Computer Vision, Graphics and Image Processing, 24, Lopes A., Nezry, E., Touzi, R., and Laur, H., Maximum A Posteriori Speckle Filtering and First Order texture Models in SAR Images. International Geoscience and Remote Sensing Symposium (IGARSS). 10. Touzi, R., Lopes, A., Bousquet, P., A statistical and geometrical edge detector for SAR image. IEEE Transactions on Geoscience and Remote Sensing, Vol. 26, No. 6, pp Frost, V.S., Stiles, J.A., Josephine, A., Shanmugan, K. S., and Holtzman, J.C., A Model for Radar Images and Its Application to Adaptive Digital Filtering of Multiplicative Noise. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-4, No. 2, March Toutin, Th. and Y. Carbonneau, MOS and SEASAT Image Geometric Correction. IEEE Transactions on Geoscience and Remote Sensing, Vol. 30, No. 3, pp Toutin Th. and B. Rivard, Value Added RADARSAT Products for Geoscientific Applications", Canadian Journal of Remote Sensing, Vol. 23, Nol. 1, pp , 14. ERDAS IMAGINE 8.5 Software, help document,

ACTIVE SENSORS RADAR

ACTIVE SENSORS RADAR ACTIVE SENSORS RADAR RADAR LiDAR: Light Detection And Ranging RADAR: RAdio Detection And Ranging SONAR: SOund Navigation And Ranging Used to image the ocean floor (produce bathymetic maps) and detect objects

More information

Acknowledgment. Process of Atmospheric Radiation. Atmospheric Transmittance. Microwaves used by Radar GMAT Principles of Remote Sensing

Acknowledgment. Process of Atmospheric Radiation. Atmospheric Transmittance. Microwaves used by Radar GMAT Principles of Remote Sensing GMAT 9600 Principles of Remote Sensing Week 4 Radar Background & Surface Interactions Acknowledgment Mike Chang Natural Resources Canada Process of Atmospheric Radiation Dr. Linlin Ge and Prof Bruce Forster

More information

Remote Sensing. Ch. 3 Microwaves (Part 1 of 2)

Remote Sensing. Ch. 3 Microwaves (Part 1 of 2) Remote Sensing Ch. 3 Microwaves (Part 1 of 2) 3.1 Introduction 3.2 Radar Basics 3.3 Viewing Geometry and Spatial Resolution 3.4 Radar Image Distortions 3.1 Introduction Microwave (1cm to 1m in wavelength)

More information

Microwave Remote Sensing (1)

Microwave Remote Sensing (1) Microwave Remote Sensing (1) Microwave sensing encompasses both active and passive forms of remote sensing. The microwave portion of the spectrum covers the range from approximately 1cm to 1m in wavelength.

More information

Introduction Active microwave Radar

Introduction Active microwave Radar RADAR Imaging Introduction 2 Introduction Active microwave Radar Passive remote sensing systems record electromagnetic energy that was reflected or emitted from the surface of the Earth. There are also

More information

Synthetic aperture RADAR (SAR) principles/instruments October 31, 2018

Synthetic aperture RADAR (SAR) principles/instruments October 31, 2018 GEOL 1460/2461 Ramsey Introduction to Remote Sensing Fall, 2018 Synthetic aperture RADAR (SAR) principles/instruments October 31, 2018 I. Reminder: Upcoming Dates lab #2 reports due by the start of next

More information

NOISE REMOVAL TECHNIQUES FOR MICROWAVE REMOTE SENSING RADAR DATA AND ITS EVALUATION

NOISE REMOVAL TECHNIQUES FOR MICROWAVE REMOTE SENSING RADAR DATA AND ITS EVALUATION NOISE REMOVAL TECHNIQUES FOR MICROWAVE REMOTE SENSING RADAR DATA AND ITS EVALUATION Arundhati Misra 1, Dr. B Kartikeyan 2, Prof. S Garg* Space Applications Centre, ISRO, Ahmedabad,India. *HOD of Computer

More information

Performance evaluation of several adaptive speckle filters for SAR imaging. Markus Robertus de Leeuw 1 Luis Marcelo Tavares de Carvalho 2

Performance evaluation of several adaptive speckle filters for SAR imaging. Markus Robertus de Leeuw 1 Luis Marcelo Tavares de Carvalho 2 Performance evaluation of several adaptive speckle filters for SAR imaging Markus Robertus de Leeuw 1 Luis Marcelo Tavares de Carvalho 2 1 Utrecht University UU Department Physical Geography Postbus 80125

More information

Radar Imaging Wavelengths

Radar Imaging Wavelengths A Basic Introduction to Radar Remote Sensing ~~~~~~~~~~ Rev. Ronald J. Wasowski, C.S.C. Associate Professor of Environmental Science University of Portland Portland, Oregon 3 November 2015 Radar Imaging

More information

Application of GIS to Fast Track Planning and Monitoring of Development Agenda

Application of GIS to Fast Track Planning and Monitoring of Development Agenda Application of GIS to Fast Track Planning and Monitoring of Development Agenda Radiometric, Atmospheric & Geometric Preprocessing of Optical Remote Sensing 13 17 June 2018 Outline 1. Why pre-process remotely

More information

Radar Imagery Filtering with Use of the Mathematical Morphology Operations

Radar Imagery Filtering with Use of the Mathematical Morphology Operations From the SelectedWorks of Przemysław Kupidura 2008 Radar Imagery Filtering with Use of the Mathematical Morphology Operations Przemysław Kupidura Piotr Koza Available at: https://works.bepress.com/przemyslaw_kupidura/7/

More information

RADAR (RAdio Detection And Ranging)

RADAR (RAdio Detection And Ranging) RADAR (RAdio Detection And Ranging) CLASSIFICATION OF NONPHOTOGRAPHIC REMOTE SENSORS PASSIVE ACTIVE DIGITAL CAMERA THERMAL (e.g. TIMS) VIDEO CAMERA MULTI- SPECTRAL SCANNERS VISIBLE & NIR MICROWAVE Real

More information

Introduction to Radar

Introduction to Radar National Aeronautics and Space Administration ARSET Applied Remote Sensing Training http://arset.gsfc.nasa.gov @NASAARSET Introduction to Radar Jul. 16, 2016 www.nasa.gov Objective The objective of this

More information

RADAR REMOTE SENSING

RADAR REMOTE SENSING RADAR REMOTE SENSING Jan G.P.W. Clevers & Steven M. de Jong Chapter 8 of L&K 1 Wave theory for the EMS: Section 1.2 of L&K E = electrical field M = magnetic field c = speed of light : propagation direction

More information

10 Radar Imaging Radar Imaging

10 Radar Imaging Radar Imaging 10 Radar Imaging Active sensors provide their own source of energy to illuminate the target. Active sensors are generally divided into two distinct categories: imaging and non-imaging. The most common

More information

CEGEG046 / GEOG3051 Principles & Practice of Remote Sensing (PPRS) 8: RADAR 1

CEGEG046 / GEOG3051 Principles & Practice of Remote Sensing (PPRS) 8: RADAR 1 CEGEG046 / GEOG3051 Principles & Practice of Remote Sensing (PPRS) 8: RADAR 1 Dr. Mathias (Mat) Disney UCL Geography Office: 113, Pearson Building Tel: 7670 05921 Email: mdisney@ucl.geog.ac.uk www.geog.ucl.ac.uk/~mdisney

More information

Microwave Remote Sensing

Microwave Remote Sensing Provide copy on a CD of the UCAR multi-media tutorial to all in class. Assign Ch-7 and Ch-9 (for two weeks) as reading material for this class. HW#4 (Due in two weeks) Problems 1,2,3 and 4 (Chapter 7)

More information

ANALYSIS OF SRTM HEIGHT MODELS

ANALYSIS OF SRTM HEIGHT MODELS ANALYSIS OF SRTM HEIGHT MODELS Sefercik, U. *, Jacobsen, K.** * Karaelmas University, Zonguldak, Turkey, ugsefercik@hotmail.com **Institute of Photogrammetry and GeoInformation, University of Hannover,

More information

Microwave remote sensing. Rudi Gens Alaska Satellite Facility Remote Sensing Support Center

Microwave remote sensing. Rudi Gens Alaska Satellite Facility Remote Sensing Support Center Microwave remote sensing Alaska Satellite Facility Remote Sensing Support Center 1 Remote Sensing Fundamental The entire range of EM radiation constitute the EM Spectrum SAR sensors sense electromagnetic

More information

EE 529 Remote Sensing Techniques. Introduction

EE 529 Remote Sensing Techniques. Introduction EE 529 Remote Sensing Techniques Introduction Course Contents Radar Imaging Sensors Imaging Sensors Imaging Algorithms Imaging Algorithms Course Contents (Cont( Cont d) Simulated Raw Data y r Processing

More information

Remote sensing image correction

Remote sensing image correction Remote sensing image correction Introductory readings remote sensing http://www.microimages.com/documentation/tutorials/introrse.pdf 1 Preprocessing Digital Image Processing of satellite images can be

More information

Preparing Remote Sensing Data for Natural Resources Mapping (image enhancement, rectifications )

Preparing Remote Sensing Data for Natural Resources Mapping (image enhancement, rectifications ) Preparing Remote Sensing Data for Natural Resources Mapping (image enhancement, rectifications ) Why is this important What are the major approaches Examples of digital image enhancement Follow up exercises

More information

Introduction to Imaging Radar INF-GEO 4310

Introduction to Imaging Radar INF-GEO 4310 Introduction to Imaging Radar INF-GEO 4310 22.9.2011 Literature Contact: yoann.paichard@ffi.no Suggested readings: Fundamentals of Radar Signal Processing, M.A. Richards, McGraw-Hill, 2005 High Resolution

More information

An Introduction to Geomatics. Prepared by: Dr. Maher A. El-Hallaq خاص بطلبة مساق مقدمة في علم. Associate Professor of Surveying IUG

An Introduction to Geomatics. Prepared by: Dr. Maher A. El-Hallaq خاص بطلبة مساق مقدمة في علم. Associate Professor of Surveying IUG An Introduction to Geomatics خاص بطلبة مساق مقدمة في علم الجيوماتكس Prepared by: Dr. Maher A. El-Hallaq Associate Professor of Surveying IUG 1 Airborne Imagery Dr. Maher A. El-Hallaq Associate Professor

More information

SAR IMAGE ANALYSIS FOR MICROWAVE C-BAND FINE QUAD POLARISED RADARSAT-2 USING DECOMPOSITION AND SPECKLE FILTER TECHNIQUE

SAR IMAGE ANALYSIS FOR MICROWAVE C-BAND FINE QUAD POLARISED RADARSAT-2 USING DECOMPOSITION AND SPECKLE FILTER TECHNIQUE SAR IMAGE ANALYSIS FOR MICROWAVE C-BAND FINE QUAD POLARISED RADARSAT-2 USING DECOMPOSITION AND SPECKLE FILTER TECHNIQUE ABSTRACT Mudassar Shaikh Department of Electronics Science, New Arts, Commerce &

More information

Remote Sensing. The following figure is grey scale display of SPOT Panchromatic without stretching.

Remote Sensing. The following figure is grey scale display of SPOT Panchromatic without stretching. Remote Sensing Objectives This unit will briefly explain display of remote sensing image, geometric correction, spatial enhancement, spectral enhancement and classification of remote sensing image. At

More information

SATELLITE OCEANOGRAPHY

SATELLITE OCEANOGRAPHY SATELLITE OCEANOGRAPHY An Introduction for Oceanographers and Remote-sensing Scientists I. S. Robinson Lecturer in Physical Oceanography Department of Oceanography University of Southampton JOHN WILEY

More information

Synthetic Aperture Radar

Synthetic Aperture Radar Synthetic Aperture Radar Picture 1: Radar silhouette of a ship, produced with the ISAR-Processor of the Ocean Master A Synthetic Aperture Radar (SAR), or SAR, is a coherent mostly airborne or spaceborne

More information

Imaging radar Imaging radars provide map-like coverage to one or both sides of the aircraft.

Imaging radar Imaging radars provide map-like coverage to one or both sides of the aircraft. CEE 6100 / CSS 6600 Remote Sensing Fundamentals 1 Imaging radar Imaging radars provide map-like coverage to one or both sides of the aircraft. Acronyms: RAR real aperture radar ("brute force", "incoherent")

More information

All rights reserved. ENVI, IDL and Jagwire are trademarks of Exelis, Inc. All other marks are the property of their respective owners.

All rights reserved. ENVI, IDL and Jagwire are trademarks of Exelis, Inc. All other marks are the property of their respective owners. SAR Analysis Made Easy with SARscape 5.1 All rights reserved. ENVI, IDL and Jagwire are trademarks of Exelis, Inc. All other marks are the property of their respective owners. 2014, Exelis Visual Information

More information

SAR Othorectification and Mosaicking

SAR Othorectification and Mosaicking White Paper SAR Othorectification and Mosaicking John Wessels: Senior Scientist PCI Geomatics SAR Othorectification and Mosaicking This study describes the high-speed orthorectification and mosaicking

More information

ESA Radar Remote Sensing Course ESA Radar Remote Sensing Course Radar, SAR, InSAR; a first introduction

ESA Radar Remote Sensing Course ESA Radar Remote Sensing Course Radar, SAR, InSAR; a first introduction Radar, SAR, InSAR; a first introduction Ramon Hanssen Delft University of Technology The Netherlands r.f.hanssen@tudelft.nl Charles University in Prague Contents Radar background and fundamentals Imaging

More information

The techniques with ERDAS IMAGINE include:

The techniques with ERDAS IMAGINE include: The techniques with ERDAS IMAGINE include: 1. Data correction - radiometric and geometric correction 2. Radiometric enhancement - enhancing images based on the values of individual pixels 3. Spatial enhancement

More information

Mod. 2 p. 1. Prof. Dr. Christoph Kleinn Institut für Waldinventur und Waldwachstum Arbeitsbereich Fernerkundung und Waldinventur

Mod. 2 p. 1. Prof. Dr. Christoph Kleinn Institut für Waldinventur und Waldwachstum Arbeitsbereich Fernerkundung und Waldinventur Histograms of gray values for TM bands 1-7 for the example image - Band 4 and 5 show more differentiation than the others (contrast=the ratio of brightest to darkest areas of a landscape). - Judging from

More information

Edge Detection in SAR Images using Phase Stretch Transform

Edge Detection in SAR Images using Phase Stretch Transform Edge Detection in SAR Images using Phase Stretch Transform Christos V Ilioudis, Carmine Clemente, Mohammad H Asghari, Bahram Jalali and John J Soraghan Center for Excellence in Signal and Image Processing,

More information

Introduction to Microwave Remote Sensing

Introduction to Microwave Remote Sensing Introduction to Microwave Remote Sensing lain H. Woodhouse The University of Edinburgh Scotland Taylor & Francis Taylor & Francis Group Boca Raton London New York A CRC title, part of the Taylor & Francis

More information

An edge-enhancing nonlinear filter for reducing multiplicative noise

An edge-enhancing nonlinear filter for reducing multiplicative noise An edge-enhancing nonlinear filter for reducing multiplicative noise Mark A. Schulze Perceptive Scientific Instruments, Inc. League City, Texas ABSTRACT This paper illustrates the design of a nonlinear

More information

TerraSAR-X. Value Added Product Specification

TerraSAR-X. Value Added Product Specification Doc. No.: 0009 Page: 1 / 26 TerraSAR-X Value Added Doc. No.: 0009 Page: 2 / 26 TABLE OF CONTENTS 1 INTRODUCTION... 4 1.1 Objective... 4 1.2 Reference Documents... 4 1.3 Definitions and Abbreviations...

More information

Basic Digital Image Processing. The Structure of Digital Images. An Overview of Image Processing. Image Restoration: Line Drop-outs

Basic Digital Image Processing. The Structure of Digital Images. An Overview of Image Processing. Image Restoration: Line Drop-outs Basic Digital Image Processing A Basic Introduction to Digital Image Processing ~~~~~~~~~~ Rev. Ronald J. Wasowski, C.S.C. Associate Professor of Environmental Science University of Portland Portland,

More information

SAR AUTOFOCUS AND PHASE CORRECTION TECHNIQUES

SAR AUTOFOCUS AND PHASE CORRECTION TECHNIQUES SAR AUTOFOCUS AND PHASE CORRECTION TECHNIQUES Chris Oliver, CBE, NASoftware Ltd 28th January 2007 Introduction Both satellite and airborne SAR data is subject to a number of perturbations which stem from

More information

Active and Passive Microwave Remote Sensing

Active and Passive Microwave Remote Sensing Active and Passive Microwave Remote Sensing Passive remote sensing system record EMR that was reflected (e.g., blue, green, red, and near IR) or emitted (e.g., thermal IR) from the surface of the Earth.

More information

remote sensing? What are the remote sensing principles behind these Definition

remote sensing? What are the remote sensing principles behind these Definition Introduction to remote sensing: Content (1/2) Definition: photogrammetry and remote sensing (PRS) Radiation sources: solar radiation (passive optical RS) earth emission (passive microwave or thermal infrared

More information

Correcting topography effects on terrestrial radar maps

Correcting topography effects on terrestrial radar maps Correcting topography effects on terrestrial radar maps M. Jaud, R. Rouveure, P. Faure, M-O. Monod, L. Moiroux-Arvis UR TSCF Irstea, National Research Institute of Science and Technology for Environment

More information

Feature Variance Based Filter For Speckle Noise Removal

Feature Variance Based Filter For Speckle Noise Removal IOSR Journal of Computer Engineering (IOSR-JCE) e-issn: 2278-0661,p-ISSN: 2278-8727, Volume 16, Issue 5, Ver. I (Sep Oct. 2014), PP 15-19 Feature Variance Based Filter For Speckle Noise Removal P.Shanmugavadivu

More information

Digital Image Processing

Digital Image Processing Digital Image Processing 1 Patrick Olomoshola, 2 Taiwo Samuel Afolayan 1,2 Surveying & Geoinformatic Department, Faculty of Environmental Sciences, Rufus Giwa Polytechnic, Owo. Nigeria Abstract: This paper

More information

Govt. Engineering College Jhalawar Model Question Paper Subject- Remote Sensing & GIS

Govt. Engineering College Jhalawar Model Question Paper Subject- Remote Sensing & GIS Govt. Engineering College Jhalawar Model Question Paper Subject- Remote Sensing & GIS Time: Max. Marks: Q1. What is remote Sensing? Explain the basic components of a Remote Sensing system. Q2. What is

More information

Planet Labs Inc 2017 Page 2

Planet Labs Inc 2017 Page 2 SKYSAT IMAGERY PRODUCT SPECIFICATION: ORTHO SCENE LAST UPDATED JUNE 2017 SALES@PLANET.COM PLANET.COM Disclaimer This document is designed as a general guideline for customers interested in acquiring Planet

More information

SAR Remote Sensing (Microwave Remote Sensing)

SAR Remote Sensing (Microwave Remote Sensing) iirs SAR Remote Sensing (Microwave Remote Sensing) Synthetic Aperture Radar Shashi Kumar shashi@iirs.gov.in Electromagnetic Radiation Electromagnetic radiation consists of an electrical field(e) which

More information

[GEOMETRIC CORRECTION, ORTHORECTIFICATION AND MOSAICKING]

[GEOMETRIC CORRECTION, ORTHORECTIFICATION AND MOSAICKING] 2013 Ogis-geoInfo Inc. IBEABUCHI NKEMAKOLAM.J [GEOMETRIC CORRECTION, ORTHORECTIFICATION AND MOSAICKING] [Type the abstract of the document here. The abstract is typically a short summary of the contents

More information

Specificities of Near Nadir Ka-band Interferometric SAR Imagery

Specificities of Near Nadir Ka-band Interferometric SAR Imagery Specificities of Near Nadir Ka-band Interferometric SAR Imagery Roger Fjørtoft, Alain Mallet, Nadine Pourthie, Jean-Marc Gaudin, Christine Lion Centre National d Etudes Spatiales (CNES), France Fifamé

More information

The Radar Ortho Suite is an add-on to Geomatica. It requires Geomatica Core or Geomatica Prime as a pre-requisite.

The Radar Ortho Suite is an add-on to Geomatica. It requires Geomatica Core or Geomatica Prime as a pre-requisite. Technical Specifications Radar Ortho Suite The Radar Ortho Suite includes rigorous and rational function models developed to compensate for distortions and produce orthorectified radar images. Distortions

More information

746A27 Remote Sensing and GIS

746A27 Remote Sensing and GIS 746A27 Remote Sensing and GIS Lecture 1 Concepts of remote sensing and Basic principle of Photogrammetry Chandan Roy Guest Lecturer Department of Computer and Information Science Linköping University What

More information

Radar Imagery for Forest Cover Mapping

Radar Imagery for Forest Cover Mapping Purdue University Purdue e-pubs LARS Symposia Laboratory for Applications of Remote Sensing 1-1-1981 Radar magery for Forest Cover Mapping D. J. Knowlton R. M. Hoffer Follow this and additional works at:

More information

Noise Reduction Technique in Synthetic Aperture Radar Datasets using Adaptive and Laplacian Filters

Noise Reduction Technique in Synthetic Aperture Radar Datasets using Adaptive and Laplacian Filters RESEARCH ARTICLE OPEN ACCESS Noise Reduction Technique in Synthetic Aperture Radar Datasets using Adaptive and Laplacian Filters Sakshi Kukreti*, Amit Joshi*, Sudhir Kumar Chaturvedi* *(Department of Aerospace

More information

MODULE 9 LECTURE NOTES 2 ACTIVE MICROWAVE REMOTE SENSING

MODULE 9 LECTURE NOTES 2 ACTIVE MICROWAVE REMOTE SENSING MODULE 9 LECTURE NOTES 2 ACTIVE MICROWAVE REMOTE SENSING 1. Introduction Satellite sensors are capable of actively emitting microwaves towards the earth s surface. An active microwave system transmits

More information

SARscape Modules for ENVI

SARscape Modules for ENVI Visual Information Solutions SARscape Modules for ENVI Read, process, analyze, and output products from SAR data. ENVI. Easy to Use Tools. Proven Functionality. Fast Results. DEM, based on TerraSAR-X-1

More information

Interpreting Digital RADAR Images

Interpreting Digital RADAR Images R A D A R Introduction to Interpreting Digital Radar Images I N T E R P R E T Interpreting Digital RADAR Images with TNTmips page 1 Before Getting Started Airborne and satellite radar systems are versatile

More information

TerraSAR-X Applications Guide

TerraSAR-X Applications Guide TerraSAR-X Applications Guide Extract: Change Detection and Monitoring: Geospatial / Image Intelligence April 2015 Airbus Defence and Space Geo-Intelligence Programme Line Change Detection and Monitoring:

More information

Image interpretation and analysis

Image interpretation and analysis Image interpretation and analysis Grundlagen Fernerkundung, Geo 123.1, FS 2014 Lecture 7a Rogier de Jong Michael Schaepman Why are snow, foam, and clouds white? Why are snow, foam, and clouds white? Today

More information

Enhanced Noise Removal Technique Based on Window Size for SAR Data

Enhanced Noise Removal Technique Based on Window Size for SAR Data Volume 114 No. 7 2017, 227-235 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu Enhanced Noise Removal Technique Based on Window Size for SAR Data

More information

A. Dalrin Ampritta 1 and Dr. S.S. Ramakrishnan 2 1,2 INTRODUCTION

A. Dalrin Ampritta 1 and Dr. S.S. Ramakrishnan 2 1,2 INTRODUCTION Improving the Thematic Accuracy of Land Use and Land Cover Classification by Image Fusion Using Remote Sensing and Image Processing for Adapting to Climate Change A. Dalrin Ampritta 1 and Dr. S.S. Ramakrishnan

More information

ENVI Tutorial: Orthorectifying Aerial Photographs

ENVI Tutorial: Orthorectifying Aerial Photographs ENVI Tutorial: Orthorectifying Aerial Photographs Table of Contents OVERVIEW OF THIS TUTORIAL...2 ORTHORECTIFYING AERIAL PHOTOGRAPHS IN ENVI...2 Building the interior orientation...3 Building the exterior

More information

Generation of Fine Resolution DEM at Test Areas in Alaska Using ERS SAR Tandem Pairs and Precise Orbital Data *

Generation of Fine Resolution DEM at Test Areas in Alaska Using ERS SAR Tandem Pairs and Precise Orbital Data * Generation of Fine Resolution DEM at Test Areas in Alaska Using ERS SAR Tandem Pairs and Precise Orbital Data * O. Lawlor, T. Logan, R. Guritz, R. Fatland, S. Li, Z. Wang, and C. Olmsted Alaska SAR Facility

More information

Active and Passive Microwave Remote Sensing

Active and Passive Microwave Remote Sensing Active and Passive Microwave Remote Sensing Passive remote sensing system record EMR that was reflected (e.g., blue, green, red, and near IR) or emitted (e.g., thermal IR) from the surface of the Earth.

More information

Review. Guoqing Sun Department of Geography, University of Maryland ABrief

Review. Guoqing Sun Department of Geography, University of Maryland ABrief Review Guoqing Sun Department of Geography, University of Maryland gsun@glue.umd.edu ABrief Introduction Scattering Mechanisms and Radar Image Characteristics Data Availability Example of Applications

More information

Estimation of Ocean Current Velocity near Incheon using Radarsat-1 SAR and HF-radar Data

Estimation of Ocean Current Velocity near Incheon using Radarsat-1 SAR and HF-radar Data Korean Journal of Remote Sensing, Vol.23, No.5, 2007, pp.421~430 Estimation of Ocean Current Velocity near Incheon using Radarsat-1 SAR and HF-radar Data Moon-Kyung Kang and Hoonyol Lee Department of Geophysics,

More information

Co-ReSyF RA lecture: Vessel detection and oil spill detection

Co-ReSyF RA lecture: Vessel detection and oil spill detection This project has received funding from the European Union s Horizon 2020 Research and Innovation Programme under grant agreement no 687289 Co-ReSyF RA lecture: Vessel detection and oil spill detection

More information

THE NASA/JPL AIRBORNE SYNTHETIC APERTURE RADAR SYSTEM. Yunling Lou, Yunjin Kim, and Jakob van Zyl

THE NASA/JPL AIRBORNE SYNTHETIC APERTURE RADAR SYSTEM. Yunling Lou, Yunjin Kim, and Jakob van Zyl THE NASA/JPL AIRBORNE SYNTHETIC APERTURE RADAR SYSTEM Yunling Lou, Yunjin Kim, and Jakob van Zyl Jet Propulsion Laboratory California Institute of Technology 4800 Oak Grove Drive, MS 300-243 Pasadena,

More information

Image Fusion. Pan Sharpening. Pan Sharpening. Pan Sharpening: ENVI. Multi-spectral and PAN. Magsud Mehdiyev Geoinfomatics Center, AIT

Image Fusion. Pan Sharpening. Pan Sharpening. Pan Sharpening: ENVI. Multi-spectral and PAN. Magsud Mehdiyev Geoinfomatics Center, AIT 1 Image Fusion Sensor Merging Magsud Mehdiyev Geoinfomatics Center, AIT Image Fusion is a combination of two or more different images to form a new image by using certain algorithms. ( Pohl et al 1998)

More information

Index 275. K Ka-band, 250, 259 Knowledge-based concepts, 110

Index 275. K Ka-band, 250, 259 Knowledge-based concepts, 110 Index A Acquisition planning, 225 Across-track, 30, 41, 88, 90 93 Across-track interferometry, 30 Along-track, 3, 10, 19, 41, 88, 90, 91, 93, 94, 103 Along-track interferometry, 41 Ambiguous elevation

More information

TEMPORAL ANALYSIS OF MULTI EPOCH LANDSAT GEOCOVER IMAGES IN ZONGULDAK TESTFIELD

TEMPORAL ANALYSIS OF MULTI EPOCH LANDSAT GEOCOVER IMAGES IN ZONGULDAK TESTFIELD TEMPORAL ANALYSIS OF MULTI EPOCH LANDSAT GEOCOVER IMAGES IN ZONGULDAK TESTFIELD Şahin, H. a*, Oruç, M. a, Büyüksalih, G. a a Zonguldak Karaelmas University, Zonguldak, Turkey - (sahin@karaelmas.edu.tr,

More information

Remote Sensing 1 Principles of visible and radar remote sensing & sensors

Remote Sensing 1 Principles of visible and radar remote sensing & sensors Remote Sensing 1 Principles of visible and radar remote sensing & sensors Nick Barrand School of Geography, Earth & Environmental Sciences University of Birmingham, UK Field glaciologist collecting data

More information

An Introduction to Remote Sensing & GIS. Introduction

An Introduction to Remote Sensing & GIS. Introduction An Introduction to Remote Sensing & GIS Introduction Remote sensing is the measurement of object properties on Earth s surface using data acquired from aircraft and satellites. It attempts to measure something

More information

SAR Imagery: Airborne or Spaceborne? Presenter: M. Lorraine Tighe PhD

SAR Imagery: Airborne or Spaceborne? Presenter: M. Lorraine Tighe PhD SAR Imagery: Airborne or Spaceborne? Presenter: M. Lorraine Tighe PhD Introduction The geospatial community has seen a plethora of spaceborne SAR imagery systems where there are now extensive archives

More information

Introduction to Remote Sensing

Introduction to Remote Sensing Introduction to Remote Sensing Spatial, spectral, temporal resolutions Image display alternatives Vegetation Indices Image classifications Image change detections Accuracy assessment Satellites & Air-Photos

More information

ACTIVE MICROWAVE REMOTE SENSING OF LAND SURFACE HYDROLOGY

ACTIVE MICROWAVE REMOTE SENSING OF LAND SURFACE HYDROLOGY Basics, methods & applications ACTIVE MICROWAVE REMOTE SENSING OF LAND SURFACE HYDROLOGY Annett.Bartsch@polarresearch.at Active microwave remote sensing of land surface hydrology Landsurface hydrology:

More information

DEMS BASED ON SPACE IMAGES VERSUS SRTM HEIGHT MODELS. Karsten Jacobsen. University of Hannover, Germany

DEMS BASED ON SPACE IMAGES VERSUS SRTM HEIGHT MODELS. Karsten Jacobsen. University of Hannover, Germany DEMS BASED ON SPACE IMAGES VERSUS SRTM HEIGHT MODELS Karsten Jacobsen University of Hannover, Germany jacobsen@ipi.uni-hannover.de Key words: DEM, space images, SRTM InSAR, quality assessment ABSTRACT

More information

An Approach To Correct The Raw FCC Satellite Image

An Approach To Correct The Raw FCC Satellite Image An Approach To Correct The Raw FCC Satellite Image Satyanarayana Chanagala 1, Yedukondalu Kamatham 2, Appala Raju Uppala 3 And Najeemulla Baig 4 Dept. of ECE, ACE Engineering College, Ankushapur, Ghatkesar

More information

Fringe 2015 Workshop

Fringe 2015 Workshop Fringe 2015 Workshop On the Estimation and Interpretation of Sentinel-1 TOPS InSAR Coherence Urs Wegmüller, Maurizio Santoro, Charles Werner and Oliver Cartus Gamma Remote Sensing AG - S1 IWS InSAR and

More information

Remote Sensing. Odyssey 7 Jun 2012 Benjamin Post

Remote Sensing. Odyssey 7 Jun 2012 Benjamin Post Remote Sensing Odyssey 7 Jun 2012 Benjamin Post Definitions Applications Physics Image Processing Classifiers Ancillary Data Data Sources Related Concepts Outline Big Picture Definitions Remote Sensing

More information

INTEGRATED DEM AND PAN-SHARPENED SPOT-4 IMAGE IN URBAN STUDIES

INTEGRATED DEM AND PAN-SHARPENED SPOT-4 IMAGE IN URBAN STUDIES INTEGRATED DEM AND PAN-SHARPENED SPOT-4 IMAGE IN URBAN STUDIES G. Doxani, A. Stamou Dept. Cadastre, Photogrammetry and Cartography, Aristotle University of Thessaloniki, GREECE gdoxani@hotmail.com, katerinoudi@hotmail.com

More information

GEOMETRIC RECTIFICATION OF EUROPEAN HISTORICAL ARCHIVES OF LANDSAT 1-3 MSS IMAGERY

GEOMETRIC RECTIFICATION OF EUROPEAN HISTORICAL ARCHIVES OF LANDSAT 1-3 MSS IMAGERY GEOMETRIC RECTIFICATION OF EUROPEAN HISTORICAL ARCHIVES OF LANDSAT -3 MSS IMAGERY Torbjörn Westin Satellus AB P.O.Box 427, SE-74 Solna, Sweden tw@ssc.se KEYWORDS: Landsat, MSS, rectification, orbital model

More information

GEO 428: DEMs from GPS, Imagery, & Lidar Tuesday, September 11

GEO 428: DEMs from GPS, Imagery, & Lidar Tuesday, September 11 GEO 428: DEMs from GPS, Imagery, & Lidar Tuesday, September 11 Global Positioning Systems GPS is a technology that provides Location coordinates Elevation For any location with a decent view of the sky

More information

Compression Method for High Dynamic Range Intensity to Improve SAR Image Visibility

Compression Method for High Dynamic Range Intensity to Improve SAR Image Visibility Compression Method for High Dynamic Range Intensity to Improve SAR Image Visibility Satoshi Hisanaga, Koji Wakimoto and Koji Okamura Abstract It is possible to interpret the shape of buildings based on

More information

Ground Truth for Calibrating Optical Imagery to Reflectance

Ground Truth for Calibrating Optical Imagery to Reflectance Visual Information Solutions Ground Truth for Calibrating Optical Imagery to Reflectance The by: Thomas Harris Whitepaper Introduction: Atmospheric Effects on Optical Imagery Remote sensing of the Earth

More information

Detection of a Point Target Movement with SAR Interferometry

Detection of a Point Target Movement with SAR Interferometry Journal of the Korean Society of Remote Sensing, Vol.16, No.4, 2000, pp.355~365 Detection of a Point Target Movement with SAR Interferometry Jung-Hee Jun* and Min-Ho Ka** Agency for Defence Development*,

More information

Geomatica OrthoEngine Orthorectifying SPOT6 data

Geomatica OrthoEngine Orthorectifying SPOT6 data Geomatica OrthoEngine Orthorectifying SPOT6 data On September 9, 2012, SPOT 6 was launched adding to the constellation of Earthimaging satellites designed to provide 1.5m high-resolution data. The architecture

More information

PLANET IMAGERY PRODUCT SPECIFICATIONS PLANET.COM

PLANET IMAGERY PRODUCT SPECIFICATIONS PLANET.COM PLANET IMAGERY PRODUCT SPECIFICATIONS SUPPORT@PLANET.COM PLANET.COM LAST UPDATED JANUARY 2018 TABLE OF CONTENTS LIST OF FIGURES 3 LIST OF TABLES 4 GLOSSARY 5 1. OVERVIEW OF DOCUMENT 7 1.1 Company Overview

More information

SAR Remote Sensing. Introduction into SAR. Data characteristics, challenges, and applications.

SAR Remote Sensing. Introduction into SAR. Data characteristics, challenges, and applications. SAR Remote Sensing Introduction into SAR. Data characteristics, challenges, and applications. PD Dr. habil. Christian Thiel, Friedrich-Schiller-University Jena DLR-HR Jena & Friedrich-Schiller-University

More information

Introduction to Remote Sensing Fundamentals of Satellite Remote Sensing. Mads Olander Rasmussen

Introduction to Remote Sensing Fundamentals of Satellite Remote Sensing. Mads Olander Rasmussen Introduction to Remote Sensing Fundamentals of Satellite Remote Sensing Mads Olander Rasmussen (mora@dhi-gras.com) 01. Introduction to Remote Sensing DHI What is remote sensing? the art, science, and technology

More information

Use of Synthetic Aperture Radar images for Crisis Response and Management

Use of Synthetic Aperture Radar images for Crisis Response and Management 2012 IEEE Global Humanitarian Technology Conference Use of Synthetic Aperture Radar images for Crisis Response and Management Gerardo Di Martino, Antonio Iodice, Daniele Riccio, Giuseppe Ruello Department

More information

DIFFERENTIAL APPROACH FOR MAP REVISION FROM NEW MULTI-RESOLUTION SATELLITE IMAGERY AND EXISTING TOPOGRAPHIC DATA

DIFFERENTIAL APPROACH FOR MAP REVISION FROM NEW MULTI-RESOLUTION SATELLITE IMAGERY AND EXISTING TOPOGRAPHIC DATA DIFFERENTIAL APPROACH FOR MAP REVISION FROM NEW MULTI-RESOLUTION SATELLITE IMAGERY AND EXISTING TOPOGRAPHIC DATA Costas ARMENAKIS Centre for Topographic Information - Geomatics Canada 615 Booth Str., Ottawa,

More information

Detection of traffic congestion in airborne SAR imagery

Detection of traffic congestion in airborne SAR imagery Detection of traffic congestion in airborne SAR imagery Gintautas Palubinskas and Hartmut Runge German Aerospace Center DLR Remote Sensing Technology Institute Oberpfaffenhofen, 82234 Wessling, Germany

More information

Geomatica OrthoEngine v10.2 Tutorial Orthorectifying ALOS PRISM Data Rigorous and RPC Modeling

Geomatica OrthoEngine v10.2 Tutorial Orthorectifying ALOS PRISM Data Rigorous and RPC Modeling Geomatica OrthoEngine v10.2 Tutorial Orthorectifying ALOS PRISM Data Rigorous and RPC Modeling ALOS stands for Advanced Land Observing Satellite and was developed by the Japan Aerospace Exploration Agency

More information

Outline Remote Sensing Defined Resolution Electromagnetic Energy (EMR) Types Interpretation Applications

Outline Remote Sensing Defined Resolution Electromagnetic Energy (EMR) Types Interpretation Applications Introduction to Remote Sensing Outline Remote Sensing Defined Resolution Electromagnetic Energy (EMR) Types Interpretation Applications Remote Sensing Defined Remote Sensing is: The art and science of

More information

MODULE 4 LECTURE NOTES 4 DENSITY SLICING, THRESHOLDING, IHS, TIME COMPOSITE AND SYNERGIC IMAGES

MODULE 4 LECTURE NOTES 4 DENSITY SLICING, THRESHOLDING, IHS, TIME COMPOSITE AND SYNERGIC IMAGES MODULE 4 LECTURE NOTES 4 DENSITY SLICING, THRESHOLDING, IHS, TIME COMPOSITE AND SYNERGIC IMAGES 1. Introduction Digital image processing involves manipulation and interpretation of the digital images so

More information

IMAGINE StereoSAR DEM TM

IMAGINE StereoSAR DEM TM IMAGINE StereoSAR DEM TM Accuracy Evaluation age 1 of 12 IMAGINE StereoSAR DEM Product Description StereoSAR DEM is part of the IMAGINE Radar Mapping Suite and is designed to auto-correlate stereo pairs

More information

APPLICATION OF REMOTE SENSING DATA FOR OIL SPILL MONITORING IN THE GUANABARA BAY, RIO DE JANEIRO, BRAZIL

APPLICATION OF REMOTE SENSING DATA FOR OIL SPILL MONITORING IN THE GUANABARA BAY, RIO DE JANEIRO, BRAZIL APPLICATION OF REMOTE SENSING DATA FOR OIL SPILL MONITORING IN THE GUANABARA BAY, RIO DE JANEIRO, BRAZIL CRISTINA MARIA BENTZ 1 FERNANDO PELLON DE MIRANDA 1 1 PETROBRAS/CEGEQ (Center of Excellence in Geochemistry

More information

CanImage. (Landsat 7 Orthoimages at the 1: Scale) Standards and Specifications Edition 1.0

CanImage. (Landsat 7 Orthoimages at the 1: Scale) Standards and Specifications Edition 1.0 CanImage (Landsat 7 Orthoimages at the 1:50 000 Scale) Standards and Specifications Edition 1.0 Centre for Topographic Information Customer Support Group 2144 King Street West, Suite 010 Sherbrooke, QC

More information

Playa del Rey, California InSAR Ground Deformation Monitoring Interim Report H

Playa del Rey, California InSAR Ground Deformation Monitoring Interim Report H Playa del Rey, California InSAR Ground Deformation Monitoring Interim Report H Ref.: RV-14524 Doc.: CM-168-01 January 31, 2013 SUBMITTED TO: Southern California Gas Company 555 W. Fifth Street (Mail Location

More information