Basic Digital Image Processing. The Structure of Digital Images. An Overview of Image Processing. Image Restoration: Line Drop-outs

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Basic Digital Image Processing. The Structure of Digital Images. An Overview of Image Processing. Image Restoration: Line Drop-outs"

Transcription

1 Basic Digital Image Processing A Basic Introduction to Digital Image Processing ~~~~~~~~~~ Rev. Ronald J. Wasowski, C.S.C. Associate Professor of Environmental Science University of Portland Portland, Oregon 24 September 2015 The structure of digital images An image processing overview Image restoration Image enhancement Information extraction Image processing hardware & software The Structure of Digital Images An array of pixels Picture elements Rows & columns of pixels Rows are horizontal Columns are vertical Lines & samples of pixels Lines are horizontal Samples are vertical Pixels contain a numerical value DN Digital number Lowest value is black Highest value is white An Overview of Image Processing Three fundamental categories Image restoration Images often include defects of various kinds Image enhancement Images often need to be made more readable Information extraction This is always the ultimate goal Image Restoration: Line Drop-outs Part or all of some image lines are missing Scanner or recorder malfunction Data transmission drop-outs Reconstruct the missing data Use filters to estimate missing pixel values Linear, bilinear & cubic interpolation algorithms Multiple adjacent image lines are missing Landsat 7 scan line corrector failure Image Restoration: Banding All sensors change over time & at different rates Multiple sensors in every scanner system 6 image lines per EW scan for Landsat MSS data 16 image lines per EW scan for Landsat TM data 2048 image lines per NS path for pushbroom sensors Calculate DN x & σ for each scan line set Force x & σ to be equal for entire scan line set Worst just before sensor recalibration Satellite pushbroom scanners almost impossible Landsat images rotated to North almost impossible

2 Image Restoration: Line Offsets Satellites orbit from N ~11 E to S ~11 W Constant sunlight illumination azimuth Satellite s orbit precesses exactly once per year Earth rotates from W to E under the satellite Image acquisition takes 7 to 25 seconds Image provider offsets scan lines Use appropriate software Every satellite scanner system is different Satellite roll may introduce additional offsets Landsat ETM+ Scan Edge Effects Landsat ETM+ Scan Line Pattern Image Restoration: Random Noise Imaging sensor instabilities Satellite electronic subsystem instabilities Voltage spikes & dips Data transmission instabilities Severe thunderstorms in data transmission path Improved subsystems quality Appropriate filtering of resulting image data Satellites are not designed to be serviceable Severe degradation makes imagery useless Restoration: Atmospheric Scattering Scattering degrades information content Scattering is selective Rayleigh scattering Blue light scattered most & reflected infrared light least Discard blue spectral band Scattergrams estimate amount of scattering Pixels from very dark areas (e.g., water & lava) Calculate least squares regression line Subtract intercept DN value from every pixel No dark areas available to calculate intercept Variable scattering in different image areas Restoration: Geometric Distortions Relief displacement High elevations displaced away from center Low elevations displaced toward center Imaging platform motions Roll Wing tips up or down Pitch Nose tips up or down Yaw Nose turns into the wind Imaging system malfunctions Failure to properly offset scan lines Landsat 7 scan line corrector failure

3 Relief Displacement Geometry Aerial Photo Relief Displacement Imaging Platform Roll, Pitch & Yaw Landsat 7 Scan Line Corrector (SLC) Mount Hood: 25 August 2012 Image Enhancement: Contrast Common Contrast Stretches Entire brightness range seldom used Distinguish details in both lava fields & glacier ice Most images appear quite dark & low in contrast Spread out DN values over brightness range Force some pixels to black & others to white Saturate some number or percent of pixels to 0 & 255 Default is often 1.00% saturation or 0.39% saturation Spread out other DN s using various algorithms Linear, Gaussian, histogram equalization Everyone s visual perception is different Linear DN s are spread evenly between 0 & 255 Decisions are made regarding percent saturation Gaussian DN s nearly a bell curve between 0 & 255 Some flexibility in choosing the value for σ Histogram equalization DN s are spread unevenly between 0 & 255 Cumulative frequency distribution a straight line

4 Image Enhancement: Density Slicing The human eye has limited color perception Human eyes only perceive ~ 1,500 colors Computer screens have great color capability Computer screens display ~ 16 million colors Drastically reduce number of displayed colors Inaccurate color representation Inherent limitations of 3-color displays RGB Sharp Aquos televisions are 4-color displays RGBY Image Enhancement: Edges Linear features on images are often subtle All satellite imagery tends to be low contrast Use filters that increase contrast along edges Directional algorithms Only enhance lines trending in a particular direction Selectively accentuate faults zones, joint sets, ridges Non-directional algorithms Equally enhance lines trending in all directions Non-linear features may remain low contrast Image Enhancement: Sharpening Non-linear images features are often subtle Tendency of satellite imagery to be low contrast Employ filters that increase local contrast High-pass filters Low-pass filters Linear features may remain low contrast Image Enhancement: Digital Mosaics Entire area not covered by one image Obtain enough images to cover entire area Stitch the images together into a mosaic Match geometry at edges of images Match contrast of adjacent images Match color of adjacent images Lighting differences in different seasons Land cover differences in different seasons Image Enhancement: Data Merging Spatial resolution seldom as good as desired Satellites acquire high-resolution pan band Typically twice as good as multispectral bands Landsat ETM+ 30 m multispectral & 15 m pan French SPOT 20 m multispectral & 10 m pan Use of alternative color spaces RGB Human eyes sensitive to red, green & blue IHS Intensity, hue [ color ] & saturation [vividness] Procedure Convert 3 appropriate bands from RGB into IHS Double band size by pixel replication Replace intensity with high-resolution pan band Convert from IHS back into RGB Image Enhancement: Synthetic Stereo Visual interpretation may benefit from stereo Obtain appropriate satellite image Obtain appropriate DEM Generate synthetic left & right stereo images Print & view with traditional stereo viewers View on-screen with special hardware & software DEM s may have poor resolution DEM spacing much larger than image pixel size Vertical accuracy may be especially bad

5 Information Extraction: PCA Principal Components Analysis The problem of spectral autocorrelation Adjacent bands may contain same information Visually apparent in scattergrams DN values of two spectral bands displayed on a graph Procedure Generate new set of synthetic spectral bands Input as many bands as desired Usually all available spectral bands Output as many bands as desired Usually only 3 spectral bands No more than the number of input spectral bands Successive PCA images look less like the original scene Minimize autocorrelation between spectral bands Specify the percent information content in each PCA band Information Extraction: Ratio Images Spectral bands pairs may contain information Both positive & negative correlations Carefully design ratio images Simple ratios Normalized ratios Vegetation index images VI images NDVI Normalized difference vegetation index NDVI = (IR1 Red) / (IR1 + Red) Confusing influence of soil moisture Specialized VI algorithms Information Extraction: Classification Abundant information in multispectral data Supervised multispectral classification The user does know what is in the scene The user designates areas of each land cover/use type Training sites Multispectral color definitions calculated from training sites Unsupervised multispectral classification The user does not know what is in the scene The computer finds colors that are actually there Multispectral color definitions calculated by sampling pixels Assumption that color correlates with land cover Fresh asphalt & deep clear water are indistinguishable Information Extraction: Change Monitor various kinds of environmental change Use multi-date imagery Raw spectral bands Classified or transformed images Calculation of change vectors Similar to statistical trend lines Appropriate imagery in not always available Mount St. Helens Generic Image Processing Software Adobe PhotoShop Import a wide variety of image formats Limited to BSQ (band sequential) format Monochrome, RGB color & CMYK color Wide variety of image enhancements Contrast, color, sharpness, filters etc. Export a wide variety of image formats BMP, GIF, JPG, TIF & many others Irfanview Excellent public domain software Windows only Dedicated Image Processing Software Public domain MicroMSI Attempt to do things better Designed as a teaching tool Works only under Windows Proprietary Erdas Imagine De facto world standard Works under Windows & Unix operating systems Steep learning curve

Remote sensing image correction

Remote sensing image correction Remote sensing image correction Introductory readings remote sensing http://www.microimages.com/documentation/tutorials/introrse.pdf 1 Preprocessing Digital Image Processing of satellite images can be

More information

Enhancement of Multispectral Images and Vegetation Indices

Enhancement of Multispectral Images and Vegetation Indices Enhancement of Multispectral Images and Vegetation Indices ERDAS Imagine 2016 Description: We will use ERDAS Imagine with multispectral images to learn how an image can be enhanced for better interpretation.

More information

Images and Graphics. 4. Images and Graphics - Copyright Denis Hamelin - Ryerson University

Images and Graphics. 4. Images and Graphics - Copyright Denis Hamelin - Ryerson University Images and Graphics Images and Graphics Graphics and images are non-textual information that can be displayed and printed. Graphics (vector graphics) are an assemblage of lines, curves or circles with

More information

Section 2 Image quality, radiometric analysis, preprocessing

Section 2 Image quality, radiometric analysis, preprocessing Section 2 Image quality, radiometric analysis, preprocessing Emmanuel Baltsavias Radiometric Quality (refers mostly to Ikonos) Preprocessing by Space Imaging (similar by other firms too): Modulation Transfer

More information

MODULE 4 LECTURE NOTES 4 DENSITY SLICING, THRESHOLDING, IHS, TIME COMPOSITE AND SYNERGIC IMAGES

MODULE 4 LECTURE NOTES 4 DENSITY SLICING, THRESHOLDING, IHS, TIME COMPOSITE AND SYNERGIC IMAGES MODULE 4 LECTURE NOTES 4 DENSITY SLICING, THRESHOLDING, IHS, TIME COMPOSITE AND SYNERGIC IMAGES 1. Introduction Digital image processing involves manipulation and interpretation of the digital images so

More information

Preparing Remote Sensing Data for Natural Resources Mapping (image enhancement, rectifications )

Preparing Remote Sensing Data for Natural Resources Mapping (image enhancement, rectifications ) Preparing Remote Sensing Data for Natural Resources Mapping (image enhancement, rectifications ) Why is this important What are the major approaches Examples of digital image enhancement Follow up exercises

More information

Remote Sensing. Odyssey 7 Jun 2012 Benjamin Post

Remote Sensing. Odyssey 7 Jun 2012 Benjamin Post Remote Sensing Odyssey 7 Jun 2012 Benjamin Post Definitions Applications Physics Image Processing Classifiers Ancillary Data Data Sources Related Concepts Outline Big Picture Definitions Remote Sensing

More information

Image Band Transformations

Image Band Transformations Image Band Transformations Content Band math Band ratios Vegetation Index Tasseled Cap Transform Principal Component Analysis (PCA) Decorrelation Stretch Image Band Transformation Purposes Image band transforms

More information

An Introduction to Remote Sensing & GIS. Introduction

An Introduction to Remote Sensing & GIS. Introduction An Introduction to Remote Sensing & GIS Introduction Remote sensing is the measurement of object properties on Earth s surface using data acquired from aircraft and satellites. It attempts to measure something

More information

Introduction to Remote Sensing Part 1

Introduction to Remote Sensing Part 1 Introduction to Remote Sensing Part 1 A Primer on Electromagnetic Radiation Digital, Multi-Spectral Imagery The 4 Resolutions Displaying Images Corrections and Enhancements Passive vs. Active Sensors Radar

More information

Digital Image Processing

Digital Image Processing Digital Image Processing 1 Patrick Olomoshola, 2 Taiwo Samuel Afolayan 1,2 Surveying & Geoinformatic Department, Faculty of Environmental Sciences, Rufus Giwa Polytechnic, Owo. Nigeria Abstract: This paper

More information

NON-PHOTOGRAPHIC SYSTEMS: Multispectral Scanners Medium and coarse resolution sensor comparisons: Landsat, SPOT, AVHRR and MODIS

NON-PHOTOGRAPHIC SYSTEMS: Multispectral Scanners Medium and coarse resolution sensor comparisons: Landsat, SPOT, AVHRR and MODIS NON-PHOTOGRAPHIC SYSTEMS: Multispectral Scanners Medium and coarse resolution sensor comparisons: Landsat, SPOT, AVHRR and MODIS CLASSIFICATION OF NONPHOTOGRAPHIC REMOTE SENSORS PASSIVE ACTIVE DIGITAL

More information

Background. Computer Vision & Digital Image Processing. Improved Bartlane transmitted image. Example Bartlane transmitted image

Background. Computer Vision & Digital Image Processing. Improved Bartlane transmitted image. Example Bartlane transmitted image Background Computer Vision & Digital Image Processing Introduction to Digital Image Processing Interest comes from two primary backgrounds Improvement of pictorial information for human perception How

More information

CHAPTER 7: Multispectral Remote Sensing

CHAPTER 7: Multispectral Remote Sensing CHAPTER 7: Multispectral Remote Sensing REFERENCE: Remote Sensing of the Environment John R. Jensen (2007) Second Edition Pearson Prentice Hall Overview of How Digital Remotely Sensed Data are Transformed

More information

STRIPING NOISE REMOVAL OF IMAGES ACQUIRED BY CBERS 2 CCD CAMERA SENSOR

STRIPING NOISE REMOVAL OF IMAGES ACQUIRED BY CBERS 2 CCD CAMERA SENSOR STRIPING NOISE REMOVAL OF IMAGES ACQUIRED BY CBERS 2 CCD CAMERA SENSOR a E. Amraei a, M. R. Mobasheri b MSc. Electrical Engineering department, Khavaran Higher Education Institute, erfan.amraei7175@gmail.com

More information

Urban Classification of Metro Manila for Seismic Risk Assessment using Satellite Images

Urban Classification of Metro Manila for Seismic Risk Assessment using Satellite Images Urban Classification of Metro Manila for Seismic Risk Assessment using Satellite Images Fumio YAMAZAKI/ yamazaki@edm.bosai.go.jp Hajime MITOMI/ mitomi@edm.bosai.go.jp Yalkun YUSUF/ yalkun@edm.bosai.go.jp

More information

USE OF HISTOGRAM EQUALIZATION IN IMAGE PROCESSING FOR IMAGE ENHANCEMENT

USE OF HISTOGRAM EQUALIZATION IN IMAGE PROCESSING FOR IMAGE ENHANCEMENT USE OF HISTOGRAM EQUALIZATION IN IMAGE PROCESSING FOR IMAGE ENHANCEMENT Sapana S. Bagade M.E,Computer Engineering, Sipna s C.O.E.T,Amravati, Amravati,India sapana.bagade@gmail.com Vijaya K. Shandilya Assistant

More information

Remote Sensing Exam 2 Study Guide

Remote Sensing Exam 2 Study Guide Remote Sensing Exam 2 Study Guide Resolution Analog to digital Instantaneous field of view (IFOV) f ( cone angle of optical system ) Everything in that area contributes to spectral response mixels Sampling

More information

Aerial photography: Principles. Frame capture sensors: Analog film and digital cameras

Aerial photography: Principles. Frame capture sensors: Analog film and digital cameras Aerial photography: Principles Frame capture sensors: Analog film and digital cameras Overview Introduction Frame vs scanning sensors Cameras (film and digital) Photogrammetry Orthophotos Air photos are

More information

Improving the Quality of Satellite Image Maps by Various Processing Techniques RUEDIGER TAUCH AND MARTIN KAEHLER

Improving the Quality of Satellite Image Maps by Various Processing Techniques RUEDIGER TAUCH AND MARTIN KAEHLER Improving the Quality of Satellite Image Maps by Various Processing Techniques RUEDIGER TAUCH AND MARTIN KAEHLER Technical University of Berlin Photogrammetry and Cartography StraBe des 17.Juni 135 Berlin,

More information

Module 11 Digital image processing

Module 11 Digital image processing Introduction Geo-Information Science Practical Manual Module 11 Digital image processing 11. INTRODUCTION 11-1 START THE PROGRAM ERDAS IMAGINE 11-2 PART 1: DISPLAYING AN IMAGE DATA FILE 11-3 Display of

More information

REMOTE SENSING FOR FLOOD HAZARD STUDIES.

REMOTE SENSING FOR FLOOD HAZARD STUDIES. REMOTE SENSING FOR FLOOD HAZARD STUDIES. OPTICAL SENSORS. 1 DRS. NANETTE C. KINGMA 1 Optical Remote Sensing for flood hazard studies. 2 2 Floods & use of remote sensing. Floods often leaves its imprint

More information

CSC 170 Introduction to Computers and Their Applications. Lecture #3 Digital Graphics and Video Basics. Bitmap Basics

CSC 170 Introduction to Computers and Their Applications. Lecture #3 Digital Graphics and Video Basics. Bitmap Basics CSC 170 Introduction to Computers and Their Applications Lecture #3 Digital Graphics and Video Basics Bitmap Basics As digital devices gained the ability to display images, two types of computer graphics

More information

Image acquisition. In both cases, the digital sensing element is one of the following: Line array Area array. Single sensor

Image acquisition. In both cases, the digital sensing element is one of the following: Line array Area array. Single sensor Image acquisition Digital images are acquired by direct digital acquisition (digital still/video cameras), or scanning material acquired as analog signals (slides, photographs, etc.). In both cases, the

More information

APPLICATION OF COMPUTER VISION FOR DETERMINATION OF SYMMETRICAL OBJECT POSITION IN THREE DIMENSIONAL SPACE

APPLICATION OF COMPUTER VISION FOR DETERMINATION OF SYMMETRICAL OBJECT POSITION IN THREE DIMENSIONAL SPACE APPLICATION OF COMPUTER VISION FOR DETERMINATION OF SYMMETRICAL OBJECT POSITION IN THREE DIMENSIONAL SPACE Najirah Umar 1 1 Jurusan Teknik Informatika, STMIK Handayani Makassar Email : najirah_stmikh@yahoo.com

More information

Planet Labs Inc 2017 Page 2

Planet Labs Inc 2017 Page 2 SKYSAT IMAGERY PRODUCT SPECIFICATION: ORTHO SCENE LAST UPDATED JUNE 2017 SALES@PLANET.COM PLANET.COM Disclaimer This document is designed as a general guideline for customers interested in acquiring Planet

More information

typical spectral signatures of photosynthetically active and non-photosynthetically active vegetation (Beeri et al., 2007)

typical spectral signatures of photosynthetically active and non-photosynthetically active vegetation (Beeri et al., 2007) typical spectral signatures of photosynthetically active and non-photosynthetically active vegetation (Beeri et al., 2007) Xie, Y. et al. J Plant Ecol 2008 1:9-23; doi:10.1093/jpe/rtm005 Copyright restrictions

More information

Geometry of Aerial Photographs

Geometry of Aerial Photographs Geometry of Aerial Photographs Aerial Cameras Aerial cameras must be (details in lectures): Geometrically stable Have fast and efficient shutters Have high geometric and optical quality lenses They can

More information

746A27 Remote Sensing and GIS. Multi spectral, thermal and hyper spectral sensing and usage

746A27 Remote Sensing and GIS. Multi spectral, thermal and hyper spectral sensing and usage 746A27 Remote Sensing and GIS Lecture 3 Multi spectral, thermal and hyper spectral sensing and usage Chandan Roy Guest Lecturer Department of Computer and Information Science Linköping University Multi

More information

DEM GENERATION WITH WORLDVIEW-2 IMAGES

DEM GENERATION WITH WORLDVIEW-2 IMAGES DEM GENERATION WITH WORLDVIEW-2 IMAGES G. Büyüksalih a, I. Baz a, M. Alkan b, K. Jacobsen c a BIMTAS, Istanbul, Turkey - (gbuyuksalih, ibaz-imp)@yahoo.com b Zonguldak Karaelmas University, Zonguldak, Turkey

More information

Image Optimization for Print and Web

Image Optimization for Print and Web There are two distinct types of computer graphics: vector images and raster images. Vector Images Vector images are graphics that are rendered through a series of mathematical equations. These graphics

More information

BV NNET User manual. V0.2 (Draft) Rémi Lecerf, Marie Weiss

BV NNET User manual. V0.2 (Draft) Rémi Lecerf, Marie Weiss BV NNET User manual V0.2 (Draft) Rémi Lecerf, Marie Weiss 1. Introduction... 2 2. Installation... 2 3. Prerequisites... 2 3.1. Image file format... 2 3.2. Retrieving atmospheric data... 3 3.2.1. Using

More information

Artificial Neural Network Model for Prediction of Land Surface Temperature from Land Use/Cover Images

Artificial Neural Network Model for Prediction of Land Surface Temperature from Land Use/Cover Images Artificial Neural Network Model for Prediction of Land Surface Temperature from Land Use/Cover Images 1 K.Sundara Kumar*, 2 K.Padma Kumari, 3 P.Udaya Bhaskar 1 Research Scholar, Dept. of Civil Engineering,

More information

MULTIRESOLUTION SPOT-5 DATA FOR BOREAL FOREST MONITORING

MULTIRESOLUTION SPOT-5 DATA FOR BOREAL FOREST MONITORING MULTIRESOLUTION SPOT-5 DATA FOR BOREAL FOREST MONITORING M. G. Rosengren, E. Willén Metria Miljöanalys, P.O. Box 24154, SE-104 51 Stockholm, Sweden - (mats.rosengren, erik.willen)@lm.se KEY WORDS: Remote

More information

Geometric Quality Assessment of CBERS-2. Julio d Alge Ricardo Cartaxo Guaraci Erthal

Geometric Quality Assessment of CBERS-2. Julio d Alge Ricardo Cartaxo Guaraci Erthal Geometric Quality Assessment of CBERS-2 Julio d Alge Ricardo Cartaxo Guaraci Erthal Contents Monitoring CBERS-2 scene centers Satellite orbit control Band-to-band registration accuracy Detection and control

More information

USE OF COLOR IN REMOTE SENSING

USE OF COLOR IN REMOTE SENSING 1 USE OF COLOR IN REMOTE SENSING (David Sandwell, Copyright, 2004) Display of large data sets - Most remote sensing systems create arrays of numbers representing an area on the surface of the Earth. The

More information

Remote Sensing Instruction Laboratory

Remote Sensing Instruction Laboratory Laboratory Session 217513 Geographic Information System and Remote Sensing - 1 - Remote Sensing Instruction Laboratory Assist.Prof.Dr. Weerakaset Suanpaga Department of Civil Engineering, Faculty of Engineering

More information

Center for Advanced Land Management Information Technologies (CALMIT), School of Natural Resources, University of Nebraska-Lincoln

Center for Advanced Land Management Information Technologies (CALMIT), School of Natural Resources, University of Nebraska-Lincoln Geoffrey M. Henebry, Andrés Viña, and Anatoly A. Gitelson Center for Advanced Land Management Information Technologies (CALMIT), School of Natural Resources, University of Nebraska-Lincoln Introduction

More information

Introduction to Remote Sensing Fundamentals of Satellite Remote Sensing. Mads Olander Rasmussen

Introduction to Remote Sensing Fundamentals of Satellite Remote Sensing. Mads Olander Rasmussen Introduction to Remote Sensing Fundamentals of Satellite Remote Sensing Mads Olander Rasmussen (mora@dhi-gras.com) 01. Introduction to Remote Sensing DHI What is remote sensing? the art, science, and technology

More information

Lecture 19: Depth Cameras. Kayvon Fatahalian CMU : Graphics and Imaging Architectures (Fall 2011)

Lecture 19: Depth Cameras. Kayvon Fatahalian CMU : Graphics and Imaging Architectures (Fall 2011) Lecture 19: Depth Cameras Kayvon Fatahalian CMU 15-869: Graphics and Imaging Architectures (Fall 2011) Continuing theme: computational photography Cheap cameras capture light, extensive processing produces

More information

ECE/OPTI533 Digital Image Processing class notes 288 Dr. Robert A. Schowengerdt 2003

ECE/OPTI533 Digital Image Processing class notes 288 Dr. Robert A. Schowengerdt 2003 Motivation Large amount of data in images Color video: 200Mb/sec Landsat TM multispectral satellite image: 200MB High potential for compression Redundancy (aka correlation) in images spatial, temporal,

More information

RADIOMETRIC AND GEOMETRIC CHARACTERISTICS OF PLEIADES IMAGES

RADIOMETRIC AND GEOMETRIC CHARACTERISTICS OF PLEIADES IMAGES RADIOMETRIC AND GEOMETRIC CHARACTERISTICS OF PLEIADES IMAGES K. Jacobsen a, H. Topan b, A.Cam b, M. Özendi b, M. Oruc b a Leibniz University Hannover, Institute of Photogrammetry and Geoinformation, Germany;

More information

PLANET IMAGERY PRODUCT SPECIFICATIONS PLANET.COM

PLANET IMAGERY PRODUCT SPECIFICATIONS PLANET.COM PLANET IMAGERY PRODUCT SPECIFICATIONS SUPPORT@PLANET.COM PLANET.COM LAST UPDATED JANUARY 2018 TABLE OF CONTENTS LIST OF FIGURES 3 LIST OF TABLES 4 GLOSSARY 5 1. OVERVIEW OF DOCUMENT 7 1.1 Company Overview

More information

USE OF PC.. ERDAS IN SATELLITE MAPPING/GIS EDUCATION

USE OF PC.. ERDAS IN SATELLITE MAPPING/GIS EDUCATION USE OF PC.. ERDAS IN SATELLITE MAPPING/GIS EDUCATION 0ystein B. Dick Department of surveying Agricultural University of Norway WG VII7 ABSTRACT: In the Satellite-Mapping 1 Remote Sensing education at the

More information

Applying mathematics to digital image processing using a spreadsheet

Applying mathematics to digital image processing using a spreadsheet Jeff Waldock Applying mathematics to digital image processing using a spreadsheet Jeff Waldock Department of Engineering and Mathematics Sheffield Hallam University j.waldock@shu.ac.uk Introduction When

More information

Image and Video Processing

Image and Video Processing Image and Video Processing () Image Representation Dr. Miles Hansard miles.hansard@qmul.ac.uk Segmentation 2 Today s agenda Digital image representation Sampling Quantization Sub-sampling Pixel interpolation

More information

DESIS Applications & Processing Extracted from Teledyne & DLR Presentations to JACIE April 14, Ray Perkins, Teledyne Brown Engineering

DESIS Applications & Processing Extracted from Teledyne & DLR Presentations to JACIE April 14, Ray Perkins, Teledyne Brown Engineering DESIS Applications & Processing Extracted from Teledyne & DLR Presentations to JACIE April 14, 2016 Ray Perkins, Teledyne Brown Engineering 1 Presentation Agenda Imaging Spectroscopy Applications of DESIS

More information

Spectral and Polarization Configuration Guide for MS Series 3-CCD Cameras

Spectral and Polarization Configuration Guide for MS Series 3-CCD Cameras Spectral and Polarization Configuration Guide for MS Series 3-CCD Cameras Geospatial Systems, Inc (GSI) MS 3100/4100 Series 3-CCD cameras utilize a color-separating prism to split broadband light entering

More information

DIGITAL-MICROSCOPY CAMERA SOLUTIONS USB 3.0

DIGITAL-MICROSCOPY CAMERA SOLUTIONS USB 3.0 DIGITAL-MICROSCOPY CAMERA SOLUTIONS USB 3.0 PixeLINK for Microscopy Applications PixeLINK will work with you to choose and integrate the optimal USB 3.0 camera for your microscopy project. Ideal for use

More information

Background Objectives Study area Methods. Conclusions and Future Work Acknowledgements

Background Objectives Study area Methods. Conclusions and Future Work Acknowledgements A DIGITAL PROCESSING AND DATA COMPILATION APPROACH FOR USING REMOTELY SENSED IMAGERY TO IDENTIFY GEOLOGICAL LINEAMENTS IN HARD-ROCK ROCK TERRAINS: AN APPLICATION FOR GROUNDWATER EXPLORATION IN NICARAGUA

More information

Color & Compression. Robin Strand Centre for Image analysis Swedish University of Agricultural Sciences Uppsala University

Color & Compression. Robin Strand Centre for Image analysis Swedish University of Agricultural Sciences Uppsala University Color & Compression Robin Strand Centre for Image analysis Swedish University of Agricultural Sciences Uppsala University Outline Color Color spaces Multispectral images Pseudocoloring Color image processing

More information

IMAGE PROCESSING PAPER PRESENTATION ON IMAGE PROCESSING

IMAGE PROCESSING PAPER PRESENTATION ON IMAGE PROCESSING IMAGE PROCESSING PAPER PRESENTATION ON IMAGE PROCESSING PRESENTED BY S PRADEEP K SUNIL KUMAR III BTECH-II SEM, III BTECH-II SEM, C.S.E. C.S.E. pradeep585singana@gmail.com sunilkumar5b9@gmail.com CONTACT:

More information

Background Adaptive Band Selection in a Fixed Filter System

Background Adaptive Band Selection in a Fixed Filter System Background Adaptive Band Selection in a Fixed Filter System Frank J. Crosby, Harold Suiter Naval Surface Warfare Center, Coastal Systems Station, Panama City, FL 32407 ABSTRACT An automated band selection

More information

Image Enhancement Using Histogram Equalization and Histogram Specification on Different Color Spaces

Image Enhancement Using Histogram Equalization and Histogram Specification on Different Color Spaces Image Enhancement Using Histogram Equalization and Histogram Specification on Different Color Spaces Pankaj Kumar Roll. 109CS0596 A thesis submitted in partial fulfillment for the degree of Bachelor of

More information

T I P S F O R I M P R O V I N G I M A G E Q U A L I T Y O N O Z O F O O T A G E

T I P S F O R I M P R O V I N G I M A G E Q U A L I T Y O N O Z O F O O T A G E T I P S F O R I M P R O V I N G I M A G E Q U A L I T Y O N O Z O F O O T A G E Updated 20 th Jan. 2017 References Creator V1.4.0 2 Overview This document will concentrate on OZO Creator s Image Parameter

More information

Lecture Series SGL 308: Introduction to Geological Mapping Lecture 8 LECTURE 8 REMOTE SENSING METHODS: THE USE AND INTERPRETATION OF SATELLITE IMAGES

Lecture Series SGL 308: Introduction to Geological Mapping Lecture 8 LECTURE 8 REMOTE SENSING METHODS: THE USE AND INTERPRETATION OF SATELLITE IMAGES LECTURE 8 REMOTE SENSING METHODS: THE USE AND INTERPRETATION OF SATELLITE IMAGES LECTURE OUTLINE Page 8.0 Introduction 114 8.1 Objectives 115 115 8.2 Remote Sensing: Method of Operation 8.3 Importance

More information

Digital Imaging and Image Editing

Digital Imaging and Image Editing Digital Imaging and Image Editing A digital image is a representation of a twodimensional image as a finite set of digital values, called picture elements or pixels. The digital image contains a fixed

More information

Viewing Landsat TM images with Adobe Photoshop

Viewing Landsat TM images with Adobe Photoshop Viewing Landsat TM images with Adobe Photoshop Reformatting images into GeoTIFF format Of the several formats in which Landsat TM data are available, only a few formats (primarily TIFF or GeoTIFF) can

More information

Color Transformations

Color Transformations Color Transformations It is useful to think of a color image as a vector valued image, where each pixel has associated with it, as vector of three values. Each components of this vector corresponds to

More information

Radiometric Use of WorldView-3 Imagery. Technical Note. 1 WorldView-3 Instrument. 1.1 WorldView-3 Relative Radiance Response

Radiometric Use of WorldView-3 Imagery. Technical Note. 1 WorldView-3 Instrument. 1.1 WorldView-3 Relative Radiance Response Radiometric Use of WorldView-3 Imagery Technical Note Date: 2016-02-22 Prepared by: Michele Kuester This technical note discusses the radiometric use of WorldView-3 imagery. The first two sections briefly

More information

Remote Sensing. Measuring an object from a distance. For GIS, that means using photographic or satellite images to gather spatial data

Remote Sensing. Measuring an object from a distance. For GIS, that means using photographic or satellite images to gather spatial data Remote Sensing Measuring an object from a distance For GIS, that means using photographic or satellite images to gather spatial data Remote Sensing measures electromagnetic energy reflected or emitted

More information

IMPROVEMENT IN THE DETECTION OF LAND COVER CLASSES USING THE WORLDVIEW-2 IMAGERY

IMPROVEMENT IN THE DETECTION OF LAND COVER CLASSES USING THE WORLDVIEW-2 IMAGERY IMPROVEMENT IN THE DETECTION OF LAND COVER CLASSES USING THE WORLDVIEW-2 IMAGERY Ahmed Elsharkawy 1,2, Mohamed Elhabiby 1,3 & Naser El-Sheimy 1,4 1 Dept. of Geomatics Engineering, University of Calgary

More information

INCREASING THE DETAIL OF LAND USE CLASSIFICATION: THE IOWA 2002 LAND COVER PRODUCT INTRODUCTION

INCREASING THE DETAIL OF LAND USE CLASSIFICATION: THE IOWA 2002 LAND COVER PRODUCT INTRODUCTION INCREASING THE DETAIL OF LAND USE CLASSIFICATION: THE IOWA 2002 LAND COVER PRODUCT R. Peter Kollasch, Remote Sensing Analyst Iowa Geological Survey Iowa Department of Natural Resources 109 Trowbridge Hall

More information

ImageJ, A Useful Tool for Image Processing and Analysis Joel B. Sheffield

ImageJ, A Useful Tool for Image Processing and Analysis Joel B. Sheffield ImageJ, A Useful Tool for Image Processing and Analysis Joel B. Sheffield Temple University Dedicated to the memory of Dan H. Moore (1909-2008) Presented at the 2008 meeting of the Microscopy and Microanalytical

More information

Important Missions. weather forecasting and monitoring communication navigation military earth resource observation LANDSAT SEASAT SPOT IRS

Important Missions. weather forecasting and monitoring communication navigation military earth resource observation LANDSAT SEASAT SPOT IRS Fundamentals of Remote Sensing Pranjit Kr. Sarma, Ph.D. Assistant Professor Department of Geography Mangaldai College Email: prangis@gmail.com Ph. No +91 94357 04398 Remote Sensing Remote sensing is defined

More information

AmericaView EOD 2016 page 1 of 16

AmericaView EOD 2016 page 1 of 16 Remote Sensing Flood Analysis Lesson Using MultiSpec Online By Larry Biehl Systems Manager, Purdue Terrestrial Observatory (biehl@purdue.edu) v Objective The objective of these exercises is to analyze

More information

Dynamic Range. H. David Stein

Dynamic Range. H. David Stein Dynamic Range H. David Stein Dynamic Range What is dynamic range? What is low or limited dynamic range (LDR)? What is high dynamic range (HDR)? What s the difference? Since we normally work in LDR Why

More information

Guidance on Using Scanning Software: Part 5. Epson Scan

Guidance on Using Scanning Software: Part 5. Epson Scan Guidance on Using Scanning Software: Part 5. Epson Scan Version of 4/29/2012 Epson Scan comes with Epson scanners and has simple manual adjustments, but requires vigilance to control the default settings

More information

Image Processing (EA C443)

Image Processing (EA C443) Image Processing (EA C443) OBJECTIVES: To study components of the Image (Digital Image) To Know how the image quality can be improved How efficiently the image data can be stored and transmitted How the

More information

Evaluation of FLAASH atmospheric correction. Note. Note no SAMBA/10/12. Authors. Øystein Rudjord and Øivind Due Trier

Evaluation of FLAASH atmospheric correction. Note. Note no SAMBA/10/12. Authors. Øystein Rudjord and Øivind Due Trier Evaluation of FLAASH atmospheric correction Note Note no Authors SAMBA/10/12 Øystein Rudjord and Øivind Due Trier Date 16 February 2012 Norsk Regnesentral Norsk Regnesentral (Norwegian Computing Center,

More information

Basics of Photogrammetry Note#6

Basics of Photogrammetry Note#6 Basics of Photogrammetry Note#6 Photogrammetry Art and science of making accurate measurements by means of aerial photography Analog: visual and manual analysis of aerial photographs in hard-copy format

More information

CHANGE DETECTION BY THE IR-MAD AND KERNEL MAF METHODS IN LANDSAT TM DATA COVERING A SWEDISH FOREST REGION

CHANGE DETECTION BY THE IR-MAD AND KERNEL MAF METHODS IN LANDSAT TM DATA COVERING A SWEDISH FOREST REGION CHANGE DETECTION BY THE IR-MAD AND KERNEL MAF METHODS IN LANDSAT TM DATA COVERING A SWEDISH FOREST REGION Allan A. NIELSEN a, Håkan OLSSON b a Technical University of Denmark, National Space Institute

More information

[Use Element Selection tool to move raster towards green block.]

[Use Element Selection tool to move raster towards green block.] Demo.dgn 01 High Performance Display Bentley Descartes has been designed to seamlessly integrate into the Raster Manager and all tool boxes, menus, dialog boxes, and other interface operations are consistent

More information

USING MULTISPECTRAL SATELLITE IMAGES FOR UP-DATING VECTOR DATA IN A GEODATABASE

USING MULTISPECTRAL SATELLITE IMAGES FOR UP-DATING VECTOR DATA IN A GEODATABASE JOURNAL OF APPLIED ENGINEERING SCIENCES VOL. 1(14), issue 4_2011 ISSN 2247-3769 ISSN-L 2247-3769 (Print) / e-issn:2284-7197 USING MULTISPECTRAL SATELLITE IMAGES FOR VAIS Manuel Bucharest University, e-mail:

More information

Spectral and spatial quality analysis of pansharpening algorithms: A case study in Istanbul

Spectral and spatial quality analysis of pansharpening algorithms: A case study in Istanbul European Journal of Remote Sensing ISSN: (Print) 2279-7254 (Online) Journal homepage: http://www.tandfonline.com/loi/tejr20 Spectral and spatial quality analysis of pansharpening algorithms: A case study

More information

IMAGE ENHANCEMENT. Component-I(A) - Personal Details. Component-I (B) - Description of Module. Role Name Affiliation

IMAGE ENHANCEMENT. Component-I(A) - Personal Details. Component-I (B) - Description of Module. Role Name Affiliation Component-I(A) - Personal Details Role Name Affiliation Principal Investigator Prof.MasoodAhsanSiddiqui Department of Geography, JamiaMilliaIslamia, New Delhi Paper Coordinator, if any Dr. M P Punia Head,

More information

A Comparison of DG AComp, FLAASH and QUAC Atmospheric Compensation Algorithms Using WorldView-2 Imagery

A Comparison of DG AComp, FLAASH and QUAC Atmospheric Compensation Algorithms Using WorldView-2 Imagery A Comparison of DG AComp, FLAASH and QUAC Atmospheric Compensation Algorithms Using WorldView-2 Imagery Michael J. Smith Department of Civil Engineering Master s Report University of Colorado Spring 2015

More information

Technical information about PhoToPlan

Technical information about PhoToPlan Technical information about PhoToPlan The following pages shall give you a detailed overview of the possibilities using PhoToPlan. kubit GmbH Fiedlerstr. 36, 01307 Dresden, Germany Fon: +49 3 51/41 767

More information

Digital Image Processing

Digital Image Processing Digital Image Processing Digital Imaging Fundamentals Christophoros Nikou cnikou@cs.uoi.gr Images taken from: R. Gonzalez and R. Woods. Digital Image Processing, Prentice Hall, 2008. Digital Image Processing

More information

Microwave Remote Sensing (1)

Microwave Remote Sensing (1) Microwave Remote Sensing (1) Microwave sensing encompasses both active and passive forms of remote sensing. The microwave portion of the spectrum covers the range from approximately 1cm to 1m in wavelength.

More information

B.Digital graphics. Color Models. Image Data. RGB (the additive color model) CYMK (the subtractive color model)

B.Digital graphics. Color Models. Image Data. RGB (the additive color model) CYMK (the subtractive color model) Image Data Color Models RGB (the additive color model) CYMK (the subtractive color model) Pixel Data Color Depth Every pixel is assigned to one specific color. The amount of data stored for every pixel,

More information

Camera Image Processing Pipeline: Part II

Camera Image Processing Pipeline: Part II Lecture 14: Camera Image Processing Pipeline: Part II Visual Computing Systems Today Finish image processing pipeline Auto-focus / auto-exposure Camera processing elements Smart phone processing elements

More information

Mahdi Amiri. March Sharif University of Technology

Mahdi Amiri. March Sharif University of Technology Course Presentation Multimedia Systems Image I (Acquisition and Representation) Mahdi Amiri March 2014 Sharif University of Technology Image Representation Color Depth The number of bits used to represent

More information

Digital Image Fundamentals. Digital Image Processing. Human Visual System. Contents. Structure Of The Human Eye (cont.) Structure Of The Human Eye

Digital Image Fundamentals. Digital Image Processing. Human Visual System. Contents. Structure Of The Human Eye (cont.) Structure Of The Human Eye Digital Image Processing 2 Digital Image Fundamentals Digital Imaging Fundamentals Christophoros Nikou cnikou@cs.uoi.gr Those who wish to succeed must ask the right preliminary questions Aristotle Images

More information

Interpolation of CFA Color Images with Hybrid Image Denoising

Interpolation of CFA Color Images with Hybrid Image Denoising 2014 Sixth International Conference on Computational Intelligence and Communication Networks Interpolation of CFA Color Images with Hybrid Image Denoising Sasikala S Computer Science and Engineering, Vasireddy

More information

Camera Image Processing Pipeline

Camera Image Processing Pipeline Lecture 13: Camera Image Processing Pipeline Visual Computing Systems Today (actually all week) Operations that take photons hitting a sensor to a high-quality image Processing systems used to efficiently

More information

HYPERSPECTRAL TRANSFORMATION FROM EO-1 ALI IMAGERY USING PSEUDO-HYPERSPECTRAL IMAGE SYNTHESIS ALGORITHM

HYPERSPECTRAL TRANSFORMATION FROM EO-1 ALI IMAGERY USING PSEUDO-HYPERSPECTRAL IMAGE SYNTHESIS ALGORITHM HYPERSPECTRAL TRANSFORMATION FROM EO-1 ALI IMAGERY USING PSEUDO-HYPERSPECTRAL IMAGE SYNTHESIS ALGORITHM Nguyen Tien Hoang a,b, Katsuaki Koike a, a Graduate School of Engineering, Kyoto University, Katsura

More information

Evaluating Commercial Scanners for Astronomical Images. The underlying technology of the scanners: Pixel sizes:

Evaluating Commercial Scanners for Astronomical Images. The underlying technology of the scanners: Pixel sizes: Evaluating Commercial Scanners for Astronomical Images Robert J. Simcoe Associate Harvard College Observatory rjsimcoe@cfa.harvard.edu Introduction: Many organizations have expressed interest in using

More information

GEOMETRIC PERFORMANCE COMPARISON BETWEEN THE OLI AND THE ETM+ INTRODUCTION

GEOMETRIC PERFORMANCE COMPARISON BETWEEN THE OLI AND THE ETM+ INTRODUCTION GEOMETRIC PERFORMANCE COMPARISON BETWEEN THE OLI AND THE ETM+ James Storey, Michael Choate Stinger Ghaffarian Technologies, contractor to USGS EROS, Sioux Falls, SD Work performed under USGS Contract Number

More information

HARRIS GEOSPATIAL MARKETPLACE. HarrisGeospatial.com

HARRIS GEOSPATIAL MARKETPLACE. HarrisGeospatial.com HARRIS GEOSPATIAL MARKETPLACE HarrisGeospatial.com Satellite image of Washington, D.C. Image courtesy of DigitalGlobe GET IT ALL IN ONE PLACE Data for Any Project Map Products Vis/Sim Products Geospatial

More information

Title pseudo-hyperspectral image synthesi. Author(s) Hoang, Nguyen Tien; Koike, Katsuaki.

Title pseudo-hyperspectral image synthesi. Author(s) Hoang, Nguyen Tien; Koike, Katsuaki. Title Hyperspectral transformation from E pseudo-hyperspectral image synthesi Author(s) Hoang, Nguyen Tien; Koike, Katsuaki International Archives of the Photo Citation and Spatial Information Sciences

More information

A Study of Slanted-Edge MTF Stability and Repeatability

A Study of Slanted-Edge MTF Stability and Repeatability A Study of Slanted-Edge MTF Stability and Repeatability Jackson K.M. Roland Imatest LLC, 2995 Wilderness Place Suite 103, Boulder, CO, USA ABSTRACT The slanted-edge method of measuring the spatial frequency

More information

The effects of uncertainty in forest inventory plot locations. Ronald E. McRoberts, Geoffrey R. Holden, and Greg C. Liknes

The effects of uncertainty in forest inventory plot locations. Ronald E. McRoberts, Geoffrey R. Holden, and Greg C. Liknes The effects of uncertainty in forest inventory plot locations Ronald E. McRoberts, Geoffrey R. Holden, and Greg C. Liknes North Central Research Station, USDA Forest Service, Saint Paul, Minnesota 55108

More information

Correction of Clipped Pixels in Color Images

Correction of Clipped Pixels in Color Images Correction of Clipped Pixels in Color Images IEEE Transaction on Visualization and Computer Graphics, Vol. 17, No. 3, 2011 Di Xu, Colin Doutre, and Panos Nasiopoulos Presented by In-Yong Song School of

More information

Particle Image Velocimetry

Particle Image Velocimetry Markus Raffel Christian E. Willert Steve T. Wereley Jiirgen Kompenhans Particle Image Velocimetry A Practical Guide Second Edition With 288 Figures and 42 Tables < J Springer Contents Preface V 1 Introduction

More information

Hyperspectral Image Data

Hyperspectral Image Data CEE 615: Digital Image Processing Lab 11: Hyperspectral Noise p. 1 Hyperspectral Image Data Files needed for this exercise (all are standard ENVI files): Images: cup95eff.int &.hdr Spectral Library: jpl1.sli

More information

PLANET IMAGERY PRODUCT SPECIFICATION: PLANETSCOPE & RAPIDEYE

PLANET IMAGERY PRODUCT SPECIFICATION: PLANETSCOPE & RAPIDEYE PLANET IMAGERY PRODUCT SPECIFICATION: PLANETSCOPE & RAPIDEYE LAST UPDATED OCTOBER 2016 SALES@PLANET.COM PLANET.COM Table of Contents LIST OF FIGURES 3 LIST OF TABLES 3 GLOSSARY 5 1. OVERVIEW OF DOCUMENT

More information

Reconstruction of Multispatial, MuItispectraI Image Data Using

Reconstruction of Multispatial, MuItispectraI Image Data Using R. A. SCHOWENGERDT* Office of Arid Lands Studies and Systems and Zndustrial Engineering Department University of Arizona Tucson, AZ 8571 9 Reconstruction of Multispatial, MuItispectraI Image Data Using

More information

Correcting topography effects on terrestrial radar maps

Correcting topography effects on terrestrial radar maps Correcting topography effects on terrestrial radar maps M. Jaud, R. Rouveure, P. Faure, M-O. Monod, L. Moiroux-Arvis UR TSCF Irstea, National Research Institute of Science and Technology for Environment

More information

Histogram Equalization: A Strong Technique for Image Enhancement

Histogram Equalization: A Strong Technique for Image Enhancement , pp.345-352 http://dx.doi.org/10.14257/ijsip.2015.8.8.35 Histogram Equalization: A Strong Technique for Image Enhancement Ravindra Pal Singh and Manish Dixit Dept. of Comp. Science/IT MITS Gwalior, 474005

More information