GNSS Reflections over Ocean Surfaces

Size: px
Start display at page:

Download "GNSS Reflections over Ocean Surfaces"

Transcription

1 GNSS Reflections over Ocean Surfaces State of the Art F. Soulat CCT Space Reflectometry December 1st 2010 Page n 1

2 Outline Concept GNSS-R Signal On-going Activities ( Applications) CLS GNSS-R Studies CCT Space Reflectometry December 1st 2010 Page n 2

3 GNSS-R R Concept (0/3) transmitter transmitter transmitter transmitter transmitter CCT Space Reflectometry December 1st 2010 Page n 3

4 GNSS-R R Concept (1/3) Def1: GNSS = Global Navigation Satellite System Def2: GNSS-R = a bistatic radar technique using GNSS as sources of opportunity for the monitoring of reflective surfaces, especially the Ocean. Other signals can be considered (e.g., mobile telecommunication) Potential applications: Atmosphere (ionospheric electron content, tropospheric WV) Surface Topography (SSH) Surface Roughness (wind, wave) Surface Dielectric Properties (salinity, pollution, soil moisture, ice) Surface Motion (orbital velocity, large scale currents) Target detection on sea surface CCT Space Reflectometry December 1st 2010 Page n 4

5 GNSS-R R Concept (2/3) Reception Ground, airborne, spaceborne reference Signal characteristics GPS/GALILEO/ Signal Processing Altimetry, Scatterometry, Surface model EM interaction model CCT Space Reflectometry December 1st 2010 Page n 5

6 GNSS-R R Concept (3/3) Winning themes - Coverage, time/space resolution Soon, GPS and Galileo plus augmentation systems (EGNOS/WAAS) will provide more than 50 sources - L-band: Rain immune Potential synergy with existing missions - High quality signals: dual frequency, long-term availability and stability - Inexpensive: passive, off-the-shelf technology Limitations - Low SNR from space - Bandwidth (GPS: C/A 1MHz, P 10MHz) e.g., smaller wrt. RA better performance expected with Galileo CCT Space Reflectometry December 1st 2010 Page n 6

7 GNSS-R R Signals CCT Space Reflectometry December 1st 2010 Page n 7

8 Waveform Generation Direct GPS signal processing - code despreading (Doppler frequency f 0 corrected) Same processing applied on reflected signal (same Doppler correction) Data Satellite i PRN Code Satellite i delay Delay Doppler Map (DDM) built as a series of power waveforms at differents Doppler frequencies (around f 0 ) direct DDM reflected Delay delay Doppler CCT Space Reflectometry December 1st 2010 Page n 8

9 Bistatic Radar Equation Antenna gain Radar function (WAF) 2 G( ) ( t tspec ) sin c WF ( t, f ) c R R ( T f ( )) 2 I p 0 o ( s t r Geometry Scattering ) ds [Zavorotny and Voronovitch, 2000] [Picardi et al., 1998] [Soulat, 2004] Zavorotny, V. U. and A. G. Voronovich, Scattering of GPS Signals from the Ocean with Wind Remote Sensing Application, IEEE Transactions on Geoscience and Remote Sensing, Vol. 38, No. 2, , CCT Space Reflectometry December 1st 2010 Page n 9

10 Waveforms and Applications GNSS-R 2008 Workshop Sept, 2008, ESTEC C. Buck, ESA CCT Space Reflectometry December 1st 2010 Page n 10

11 2D Surface Roughness 1D waveform 2D waveform Low roughness High roughness Reflected Signal (Doppler fo) Specular Point delay Specular Point delay CCT Space Reflectometry December 1st 2010 Page n 11

12 «Glistening Zone» Airborne experiment («Eddy Experiment Flight», Contrat ESA PARIS-Gamma, [Germain et al., 2003]). Integration time: 20 ms, Doppler step: 20 Hz. CCT Space Reflectometry December 1st 2010 Page n 12

13 GNSS-R R Signal Summary GNSS-R signal is characterized by: Reception: antenna (surface weighting by antenna gain) Signal structure: autocorrelation function (iso-delay ellipses) Reception effect: plateform velocity, integration time (iso-doppler hyperbols) Surface effect: roughness ( Glistening Zone ) + 2 strong phenomena: Coherence time e.g., GNSS-R mission 500 km altitude, code C/A : 0.7 ms (nadir) < Tc < 2.3 ms (30 elevation) Impact on integration time v Speckle noise multiplicative noise from scatterers contribrution (I/Q) Impact on incoherent averaging CCT Space Reflectometry December 1st 2010 Page n 13

14 On-Going Activities CCT Space Reflectometry December 1st 2010 Page n 14

15 GNSS-R R Community Europe Spain: IEEC/C-SIC, UPC, Starlab, University of Valence Germany: DLR, GFZ, Astrium UK: NOCS, University of Surrey, SSTL, Astrium Italy: Univ. Studi del Sannio Sweden: University of Lulea France: CNES, CLS, Ifremer, Telecom Bretagne, ULCO, US NOAA, JPL Boulder University, Purdue University. GNSS-R 10 Workshop, Oct. 2010, UPC, Barcelona GNSS-R workshop every 2 years CCT Space Reflectometry December 1st 2010 Page n 15

16 Spaceborne Altimetry Objective: mesoscale ocean topography measurements Techniques - Eddies monitoring (overall ocean circulation), climate studies,... - Tsunamis detection - [Martin-Neira et al., 1993]: PARIS interferometric system - [Rius et al., 2010]: new concept based on the cross-correlation of direct and reflected signals. Benefit from the full available bandwidth (military signals). Expected precision (~18 cm, including ionospheric, tropospheric, orbital errors, ). Relies on beam forming. ESA PARIS In Orbit Demonstrator: ITTs CCT Space Reflectometry December 1st 2010 Page n 16

17 ESA Altimetric Mission Presentation M. Martin-Neira GNSS-R 10 CCT Space Reflectometry December 1st 2010 Page n 17

18 ESA PARIS IoD Presentation M. Martin-Neira GNSS-R 10 CCT Space Reflectometry December 1st 2010 Page n 18

19 Airborne Altimetry Eddy Experiment, [Ruffini et al., GRL 2004] Starlab Reception from Zeppelin (ZOIS campaigns) GFZ/DLER. Sea-surface height (SSH) over the ellipsoid [m] MSL GPS buoy Jason SSH GNSS-R SSH (average of 3 SVs) CCT Space Reflectometry December 1st 2010 Page n 19

20 Ground Altimetry Several ESA ground experiments - Coastal demonstration of the PARIS system Zeeland Bridge, The Netherlands, 35 m altitude Precision: second (one order of magniture of gain wrt. conventional processing) Phase altimetry - Over calm surfaces (e.g., reservoirs in mountain regions) - Hydrological services developed when accessibility and maintenance not easy (e.g., Starlab) CCT Space Reflectometry December 1st 2010 Page n 20

21 Phase Altimetry: Example GNSS-R 2008 Workshop Sept, 2008, ESTEC GFZ CCT Space Reflectometry December 1st Page n 21

22 Ocean Scatterometry Objective: L-band characterisation of the surface roughness - Wave: Directional Mean Square Slope -Wind Complementary to other missions: - L-band radiometry (SMOS) Data source for L-band sea-roughness in salinity retrieval CCT Space Reflectometry December 1st 2010 Page n 22

23 Spaceborne Reflectometry: CHAMP, SIR-C Few data sets! CHAMP (2000) SIR-C (US spacecraft): 2002 GNSS-R 2008 Workshop Sept, 2008, ESTEC S. Lowe, JPL/Caltech CCT Space Reflectometry December 1st 2010 Page n 23

24 Spaceborne Reflectometry: UK-DMC Reflection over ice GNSS-R 2008 Workshop Sept, 2008, ESTEC SSTL Reflection over ocean CCT Space Reflectometry December 1st 2010 Page n 24

25 Spaceborne Reflectometry: Galileo Utilisation de Galileo (Giove-A) Direct signal acquired and tracked Ocean reflected signal Coherent addition of L1B and L1C signals CCT Space Reflectometry December 1st 2010 Page n 25

26 Airborne Reflectometry: Set-up RHCP LHCP GNSS-R RHCP/LHCP 3 db antennas, TurboRogue receivers, SONY recorders ( Mbits/s), INS data. 1 min data set 300 MB (dir+ref). GNSS-R 2008 Workshop Sept, 2008, ESTEC Starlab, Eddy Experiment Flight CCT Space Reflectometry December 1st 2010 Page n 26

27 Airborne Reflectometry: Sea Roughness Many flights performed in US [Garrison et al., 2002], - Focus on 1D waveform and wind estimates IEEC/CSIC : GOLD-RTR = GPS Open Loop Differential Real-Time Receiver Starlab : Eddy Experiment [Germain et al., 2003], CCT Space Reflectometry December 1st 2010 Page n 27

28 Coastal Reception: Sea State Estimations of SWH (ex: harbour station, Starlab) CCT Space Reflectometry December 1st Page n 28

29 Occultations Objective: GNSS Radio Occultation (RO) data provide limb sounding of the atmosphere: temperature, pressure, wet component - Because of the signal coherence, the reflected-to-direct delay can be estimated using phase-delay interferometry, a few-cm delay precision. GNSS-R 2010 Workshop Oct, 2010, UPC IEEC Missions - COSMIC RO constellation will be replaced by COSMIC-2 starting in ~2014: 12 satellites equipped with GNSS limboriented antennas, capturing ~8000 RO events every day, globally distributed. - ACES on ISS: primary objective is POD but RO measurements are recorded (A. Helm, Astrium-D) From E. Cardellach, GNSS-R10 Workshop, Barcelona CCT Space Reflectometry December 1st 2010 Page n 29

30 Other Applications Soil Moisture - Many experimental campaigns (cf. Starlab s presentation) - Use of GPS geodesy network (K. Larson, Colorado University): clear signature in interference patterns, pseudo-ranges statistics) Ice - Freeboard - Layers (cf. IEEC s presentation) - Ice age, sea ice extent (scatterometry mode) - Altimetry (low elevation interferometry) CCT Space Reflectometry December 1st 2010 Page n 30

31 CLS GNSS-R R Studies CCT Space Reflectometry December 1st 2010 Page n 31

32 Past Studies ESA PARIS Gamma (in years ) - Impact analysis of the GNSS-R measurements in the altimetric error budget (conventional+gnss-r altimetry) - Consortium: Astrium-UK, IEEC, Starlab, CLS, CNES (2006) - Analysis of the altimetric performances with GNSS-R (2006) Theoretical SNR and link with the precision in delay Mission scenario analysis - Consortium: Starlab, CLS Radar Division (BOOST-Technologies) CCT Space Reflectometry December 1st 2010 Page n 32

33 Recent Study GNSSDETEC: Ship Detection (2010) - Maritime security context Cost-effective system to provide complementary information for validation and in support to existing systems (e.g., AIS) - Feasibility study and simulations: SNR Measurements density Detection algorithm (DDM Bistatic SAR processing target detection) - Consortium: CLS, Télécom Bretagne CCT Space Reflectometry December 1st 2010 Page n 33

34 Thank you for your attention CCT Space Reflectometry December 1st 2010 Page n 34

The Typhoon Investigation using GNSS-R Interferometric Signals (TIGRIS)

The Typhoon Investigation using GNSS-R Interferometric Signals (TIGRIS) The Typhoon Investigation using GNSS-R Interferometric Signals (TIGRIS) F. Fabra 1, W. Li 2, M. Martín-Neira 3, S. Oliveras 1, A. Rius 1, W. Yang 2, D. Yang 2 and Estel Cardellach 1 1 Institute of Space

More information

Earth Remote Sensing using Surface-Reflected GNSS Signals (Part II)

Earth Remote Sensing using Surface-Reflected GNSS Signals (Part II) Jet Propulsion Laboratory California Institute of Technology National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena, California Earth Remote

More information

GNSS Reflectometry at GFZ

GNSS Reflectometry at GFZ GNSS Reflectometry at GFZ Achim Helm, Georg Beyerle, Ralf Stosius, Markus Rothacher (GFZ) External Partners and Contributors: Oliver Montenbruck (DLR), Estel Cardellach, Antonio Rius (IEEC), Sergei Yudanov,

More information

OBSERVATION PERFORMANCE OF A PARIS ALTIMETER IN-ORBIT DEMONSTRATOR

OBSERVATION PERFORMANCE OF A PARIS ALTIMETER IN-ORBIT DEMONSTRATOR OBSERVATION PERFORMANCE OF A PARIS ALTIMETER IN-ORBIT DEMONSTRATOR Salvatore D Addio, Manuel Martin-Neira Acknowledgment to: Nicolas Floury, Roberto Pietro Cerdeira TEC-ETP, ETP, Electrical Engineering

More information

Analysis of GNSS-R delay-doppler maps from the UK-DMC satellite over the ocean

Analysis of GNSS-R delay-doppler maps from the UK-DMC satellite over the ocean Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 36, L02608, doi:10.1029/2008gl036292, 2009 Analysis of GNSS-R delay-doppler maps from the UK-DMC satellite over the ocean M. P. Clarizia,

More information

GNSS-R for Ocean and Cryosphere Applications

GNSS-R for Ocean and Cryosphere Applications GNSS-R for Ocean and Cryosphere Applications E.Cardellach and A. Rius Institut de Ciències de l'espai (ICE/IEEC-CSIC), Spain Contents Altimetry with Global Navigation Satellite Systems: Model correlation

More information

GEROS-ISS: GNSS REflectometry, Radio Occultation and Scatterometry onboard the International Space Station

GEROS-ISS: GNSS REflectometry, Radio Occultation and Scatterometry onboard the International Space Station GEROS-ISS: GNSS REflectometry, Radio Occultation and Scatterometry onboard the International Space Station J. Wickert, O. Andersen, L. Bertino, A. Camps, E. Cardellach, B. Chapron, C. Gommenginger, J.

More information

Preparation for Flight of Next Generation Space GNSS Receivers

Preparation for Flight of Next Generation Space GNSS Receivers Changing the economics of space Preparation for Flight of Next Generation Space GNSS Receivers ICGPSRO, 14-16 th May 2013 Taiwan #0205691 Commercial in Confidence 1 Overview SSTL and Spaceborne GNSS Small

More information

Developments in GNSS Reflectometry from the SGR-ReSI on TDS-1

Developments in GNSS Reflectometry from the SGR-ReSI on TDS-1 Changing the economics of space Developments in GNSS Reflectometry from the SGR-ReSI on TDS-1 Martin Unwin Philip Jales, Jason Tye (SSTL), Brent Abbott SST-US Christine Gommenginger, Giuseppe Foti (NOC)

More information

GNSS-R for studies of the cryosphere

GNSS-R for studies of the cryosphere GNSS-R for studies of the cryosphere F. Fabra 1, E. Cardellach 1, O. Nogués-Correig 1, S. Oliveras 1, S. Ribó 1, J.C. Arco 1, A. Rius 1, M. Belmonte-Rivas 2, M. Semmling 3, G. Macelloni 4, S. Pettinato

More information

2 INTRODUCTION TO GNSS REFLECTOMERY

2 INTRODUCTION TO GNSS REFLECTOMERY 2 INTRODUCTION TO GNSS REFLECTOMERY 2.1 Introduction The use of Global Navigation Satellite Systems (GNSS) signals reflected by the sea surface for altimetry applications was first suggested by Martín-Neira

More information

GNSS remote sensing (GNSS-RS)

GNSS remote sensing (GNSS-RS) GPS Galileo GLONASS Beidou GNSS remote sensing (GNSS-RS) Shuanggen Jin ( 金双根 ) Shanghai Astronomical Observatory, CAS, Shanghai 200030, China Email: sgjin@shao.ac.cn Website: http://www.shao.ac.cn/geodesy

More information

PARIS Interferometric Technique - Proof of Concept PIT-PoC

PARIS Interferometric Technique - Proof of Concept PIT-PoC PARIS Interferometric Technique - Proof of Concept PIT-PoC O. Nogués-Correig 1, S. Ribó 1, J.C. Arco 1, E. Cardellach 1, A. Rius 1 E. València 2, J.M. Tarongí 2, A. Camps 2, H. van der Marel 3, M. Martín-Neira

More information

Innovative Sea Surface Monitoring with GNSS-Reflectometry aboard ISS: Overview and Recent Results from GEROS-ISS

Innovative Sea Surface Monitoring with GNSS-Reflectometry aboard ISS: Overview and Recent Results from GEROS-ISS Innovative Sea Surface Monitoring with GNSS-Reflectometry aboard ISS: Overview and Recent Results from GEROS-ISS J. Wickert, O. Andersen, L. Bertoni, B. Chapron, E. Cardellach, N. Catarinho, C. Gommenginger,

More information

Airborne Experiments to study GNSS-R Phase Observations as part of the GEOHALO Mission

Airborne Experiments to study GNSS-R Phase Observations as part of the GEOHALO Mission Airborne Experiments to study GNSS-R Phase Observations as part of the GEOHALO Mission M. Semmling1, G. Beyerle1, J. Beckheinrich1, J. Wickert1, F. Fabra2, S. Ribó2, M. Scheinert3 GFZ 2 IEEC 3 TUD 1 Deutsches

More information

PARIS Ocean Altimeter

PARIS Ocean Altimeter PARIS Ocean Altimeter M. Martín-Neira, S. D Addio (TEC-ETP) European Space Agency Acknowledgment: C. Buck (TEC-ETP) N. Floury, R. Prieto (TEC-EEP) GNSS-R10 Workshop, UPC, Barcelona, 21-22 October 2010

More information

GNSS Reflectometry: Innovative Remote Sensing

GNSS Reflectometry: Innovative Remote Sensing GNSS Reflectometry: Innovative Remote Sensing J. Beckheinrich 1, G. Beyerle 1, S. Schön 2, H. Apel 1, M. Semmling 1, J. Wickert 1 1.GFZ, German Research Center for Geosciences, Potsdam, Germany 2.Leibniz

More information

Remote Sensing with Reflected Signals

Remote Sensing with Reflected Signals Remote Sensing with Reflected Signals GNSS-R Data Processing Software and Test Analysis Dongkai Yang, Yanan Zhou, and Yan Wang (airplane) istockphoto.com/mark Evans; gpsiff background Authors from a leading

More information

A Global System for Detecting Dangerous Seas Using GNSS Bi-static Radar Technology

A Global System for Detecting Dangerous Seas Using GNSS Bi-static Radar Technology A Global System for Detecting Dangerous Seas Using GNSS Bi-static Radar Technology Scott Gleason, Ka Bian, Alex da Silva Curiel Stephen Mackin and Martin Sweeting 20 th AIAA/USU Smallsat Conference, Logan,

More information

GNSS Remo Sensing in ensin a 6U Cubesat

GNSS Remo Sensing in ensin a 6U Cubesat GNSS Remote Sensing in a 6U Cubesat Andrew Dempster Remote Sensing using GNSS Radio occultation Well established, with existing missions, v useful for input to weather models Reflectometry Experimental,

More information

GNSS Reflectometry and Passive Radar at DLR

GNSS Reflectometry and Passive Radar at DLR ACES and FUTURE GNSS-Based EARTH OBSERVATION and NAVIGATION 26./27. May 2008, TU München Dr. Thomas Börner, Microwaves and Radar Institute, DLR Overview GNSS Reflectometry a joined proposal of DLR and

More information

GNSS-R for Land Bio-Geophysical Parameters Monitoring: the LEiMON Project

GNSS-R for Land Bio-Geophysical Parameters Monitoring: the LEiMON Project GNSS-R for Land Bio-Geophysical Parameters Monitoring: the LEiMON Project Alejandro Egido(1), Marco Caparrini(1), Leila Guerriero(2), Nazzareno Pierdicca(2), Simonetta Paloscia(3), Marco Brogioni(3), Nicolas

More information

An overview of the COSMIC follow-on mission (COSMIC-II) and its potential for GNSS-R

An overview of the COSMIC follow-on mission (COSMIC-II) and its potential for GNSS-R An overview of the COSMIC follow-on mission (COSMIC-II) and its potential for GNSS-R Lidia Cucurull (1), Dave Ector (2), and Estel Cardellach (3) (1) NOAA/NWS/NCEP/EMC (2) NOAA/NESDIS/OSD (3) IEEC/ICE-CSIC

More information

Theoretical Simulations of GNSS Reflections from Bare and Vegetated Soils

Theoretical Simulations of GNSS Reflections from Bare and Vegetated Soils Theoretical Simulations of GNSS Reflections from Bare and Vegetated Soils R. Giusto 1, L. Guerriero, S. Paloscia 3, N. Pierdicca 1, A. Egido 4, N. Floury 5 1 DIET - Sapienza Univ. of Rome, Rome DISP -

More information

Galileo signal reflections used for monitoring waves and weather at sea

Galileo signal reflections used for monitoring waves and weather at sea Press Release Monday 26 th November 2007 Galileo signal reflections used for monitoring waves and weather at sea Surrey Satellite Technology Ltd (SSTL) and the University of Surrey have succeeded for the

More information

ESA Study GNSS Reflectometry Instrument & Algorithms NCEO/CEOI Conference, 19 th Sept 2012

ESA Study GNSS Reflectometry Instrument & Algorithms NCEO/CEOI Conference, 19 th Sept 2012 Changing the economics of space ESA Study GNSS Reflectometry Instrument & Algorithms NCEO/CEOI Conference, 19 th Sept 2012 #01xxxxx Overview GNSS for Remote Sensing Concept and UK-DMC Experiment Scientific

More information

THE GNSS OCCULTATION, REFLECTOMETRY, AND SCATTEROMETRY SPACE RECEIVER GORS: CURRENT STATUS AND FUTURE PLANS WITHIN GITEWS

THE GNSS OCCULTATION, REFLECTOMETRY, AND SCATTEROMETRY SPACE RECEIVER GORS: CURRENT STATUS AND FUTURE PLANS WITHIN GITEWS THE GNSS OCCULTATION, REFLECTOMETRY, AND SCATTEROMETRY SPACE RECEIVER GORS: CURRENT STATUS AND FUTURE PLANS WITHIN GITEWS A. Helm (1), G. Beyerle (1), R. Stosius (1), O. Montenbruck (2), S. Yudanov (3),

More information

Soil Moisture Observation Utilizing Reflected GNSS Signals

Soil Moisture Observation Utilizing Reflected GNSS Signals Soil Moisture Observation Utilizing Reflected GNSS Signals GNSS-R Tech in Soil Moisture New Data Processing Method Prof. Dongkai YANG Joint African/Asia-Pacific UN-Regional Centers and International Training

More information

Recent GNSS Reflectometry Results from the UK TDS-1 Satellite

Recent GNSS Reflectometry Results from the UK TDS-1 Satellite CHANGING THE ECONOMICS OF SPACE Recent GNSS Reflectometry Results from the UK TDS-1 Satellite Martin Unwin ICGPSRO2018, Taipei, 18-20 April 2018 SSTL 2018 Ack: SSTL, NOC, ESA, Surrey, CEOI, UKSA, InnovateUK,

More information

A Zeppelin-based Study on GNSS Reflectometry for Altimetric Application

A Zeppelin-based Study on GNSS Reflectometry for Altimetric Application A Zeppelin-based Study on GNSS Reflectometry for Altimetric Application M. Semmling 1 G. Beyerle 1 J. Beckheinrich 1 J. Wickert 1 M. Ge 1 S. Schön 2 1 GFZ Deutsches GeoForschungsZentrum, Potsdam 2 IfE

More information

The signals from the GPS constellation

The signals from the GPS constellation INNOVATION Remote Sensing Reflecting on GPS Sensing Land and Ice from Low Earth Orbit Scott T. Gleason GPS IS NOT YOUR PARENTS POSITIONING SYSTEM. Today, GPS is being used in a variety of unconventional

More information

Specificities of Near Nadir Ka-band Interferometric SAR Imagery

Specificities of Near Nadir Ka-band Interferometric SAR Imagery Specificities of Near Nadir Ka-band Interferometric SAR Imagery Roger Fjørtoft, Alain Mallet, Nadine Pourthie, Jean-Marc Gaudin, Christine Lion Centre National d Etudes Spatiales (CNES), France Fifamé

More information

CYGNSS Wind Retrieval Performance

CYGNSS Wind Retrieval Performance International Ocean Vector Wind Science Team Meeting Kailua-Kona, Hawaii USA 6-8 May 2013 CYGNSS Wind Retrieval Performance Chris Ruf (1), Maria-Paola Clarizia (1,2), Andrew O Brien (3), Joel Johnson (3),

More information

Ionospheric H-Atom Tomography: a Feasibility Study using GNSS Reflections. G. Ruffini, Josep Marco, L. Ruffini ESTEC, Dec 17th 2002

Ionospheric H-Atom Tomography: a Feasibility Study using GNSS Reflections. G. Ruffini, Josep Marco, L. Ruffini ESTEC, Dec 17th 2002 Ionospheric H-Atom Tomography: a Feasibility Study using GNSS Reflections. G. Ruffini, Josep Marco, L. Ruffini ESTEC, Dec 17th 2002 Goals of the GIOS-1 study ESTEC Tech Officer: Bertram Arbesser-Rastburg

More information

GNSS Remote Sensing: CubeSat case study

GNSS Remote Sensing: CubeSat case study GNSS Remote Sensing: CubeSat case study P-GRESSION system and its background at PoliTo CubeSat Team Lorenzo Feruglio PhD student, Aerospace Engineering LIST OF ACRONYMS LIST OF FIGURES Introduction GNSS

More information

PARIS In-Orbit Demonstrator

PARIS In-Orbit Demonstrator 1/52 PARIS In-Orbit Demonstrator Manuel Martín-Neira Neira,, Salvatore D Addio,, Christopher Buck (TEC-ETP) ETP) Acknowledgments: F. Coromina (TEC-ETP) ETP) N. Floury (TEC-EEP) EEP) J. Santiago Prowald

More information

Geodetics Measurements within the Scope of Current and Future Perspectives of GNSS-Reflectometry and GNSS-Radio Occultation

Geodetics Measurements within the Scope of Current and Future Perspectives of GNSS-Reflectometry and GNSS-Radio Occultation Geodetics Measurements within the Scope of Current and Future Perspectives of GNSS-Reflectometry and GNSS-Radio Occultation Danijela IGNJATOVIC STUPAR, France, Karishma INAMDAR, India, Andrew LEE CHEE

More information

Rec. ITU-R P RECOMMENDATION ITU-R P *

Rec. ITU-R P RECOMMENDATION ITU-R P * Rec. ITU-R P.682-1 1 RECOMMENDATION ITU-R P.682-1 * PROPAGATION DATA REQUIRED FOR THE DESIGN OF EARTH-SPACE AERONAUTICAL MOBILE TELECOMMUNICATION SYSTEMS (Question ITU-R 207/3) Rec. 682-1 (1990-1992) The

More information

On the Achievable Accuracy for Estimating the Ocean Surface Roughness using Multi-GPS Bistatic Radar

On the Achievable Accuracy for Estimating the Ocean Surface Roughness using Multi-GPS Bistatic Radar On the Achievable Accuracy for Estimating the Ocean Surface Roughness using Multi-GPS Bistatic Radar Nima Alam, Kegen Yu, Andrew G. Dempster Australian Centre for Space Engineering Research (ACSER) University

More information

GNSS Ocean Reflected Signals

GNSS Ocean Reflected Signals GNSS Ocean Reflected Signals Per Høeg DTU Space Technical University of Denmark Content Experimental setup Instrument Measurements and observations Spectral characteristics, analysis and retrieval method

More information

OCEAN SURFACE ROUGHNESS REFLECTOMETRY WITH GPS MULTISTATIC RADAR FROM HIGH-ALTITUDE AIRCRAFT

OCEAN SURFACE ROUGHNESS REFLECTOMETRY WITH GPS MULTISTATIC RADAR FROM HIGH-ALTITUDE AIRCRAFT OCEAN SURFACE ROUGHNESS REFLECTOMETRY WITH GPS MULTISTATIC RADAR FROM HIGH-ALTITUDE AIRCRAFT VALERY U. ZAVOROTNY 1, DENNIS M. AKOS 2, HANNA MUNTZING 3 1 NOAA/Earth System Research Laboratory/ Physical

More information

Prototype Software-based Receiver for Remote Sensing using Reflected GPS Signals. Dinesh Manandhar The University of Tokyo

Prototype Software-based Receiver for Remote Sensing using Reflected GPS Signals. Dinesh Manandhar The University of Tokyo Prototype Software-based Receiver for Remote Sensing using Reflected GPS Signals Dinesh Manandhar The University of Tokyo dinesh@qzss.org 1 Contents Background Remote Sensing Capability System Architecture

More information

Remote Sensing: John Wilkin IMCS Building Room 211C ext 251. Active microwave systems (1) Satellite Altimetry

Remote Sensing: John Wilkin IMCS Building Room 211C ext 251. Active microwave systems (1) Satellite Altimetry Remote Sensing: John Wilkin wilkin@marine.rutgers.edu IMCS Building Room 211C 732-932-6555 ext 251 Active microwave systems (1) Satellite Altimetry Active microwave instruments Scatterometer (scattering

More information

Active microwave systems (2) Satellite Altimetry * range data processing * applications

Active microwave systems (2) Satellite Altimetry * range data processing * applications Remote Sensing: John Wilkin wilkin@marine.rutgers.edu IMCS Building Room 211C 732-932-6555 ext 251 Active microwave systems (2) Satellite Altimetry * range data processing * applications Satellite Altimeters

More information

CNES PRIORITIES IN POLAR AND CRYOSPHERE RESEARCH

CNES PRIORITIES IN POLAR AND CRYOSPHERE RESEARCH Polar Space Task Group 3rd Session CNES PRIORITIES IN POLAR AND CRYOSPHERE RESEARCH Juliette Lambin, Steven Hosford Wednesday, May 22th, 2013 Paris, France 1 OUTLINE CNES MISSIONS FOR POLAR/CRYOSPHERE

More information

Microwave Sensors Subgroup (MSSG) Report

Microwave Sensors Subgroup (MSSG) Report Microwave Sensors Subgroup (MSSG) Report Feb 17-20, 2014, ESA ESRIN, Frascati, Italy DONG, Xiaolong, MSSG Chair National Space Science Center Chinese Academy of Sciences (MiRS,NSSC,CAS) Email: dongxiaolong@mirslab.cn

More information

The Delay-Doppler Altimeter

The Delay-Doppler Altimeter Briefing for the Coastal Altimetry Workshop The Delay-Doppler Altimeter R. K. Raney Johns Hopkins University Applied Physics Laboratory 05-07 February 2008 1 What is a Delay-Doppler altimeter? Precision

More information

Microwave Sensors Subgroup (MSSG) Report

Microwave Sensors Subgroup (MSSG) Report Microwave Sensors Subgroup (MSSG) Report CEOS WGCV-35 May 13-17, 2013, Shanghai, China DONG, Xiaolong, MSSG Chair CAS Key Laboratory of Microwave Remote Sensing National Space Science Center Chinese Academy

More information

Technical Note on POlarimetric Phase Interferometry (POPI)

Technical Note on POlarimetric Phase Interferometry (POPI) arxiv:physics/0606099 v2 16 Jun 2006 Technical Note on POlarimetric Phase Interferometry (POPI) Estel Cardellach, Serni Ribó, and Antonio Rius Institut de Ciències de l Espai (IEEC-CSIC) 1 Chapter 1 POlarimetric

More information

Scientific Applications of Fully-Focused SAR Altimetry

Scientific Applications of Fully-Focused SAR Altimetry Scientific Applications of Fully-Focused SAR Altimetry Alejandro Egido (1,2), Walter Smith (2) (1) UMD/CICS-MD, United States (2) NOAA, United States CICS Science Conference Nov 29, 30 & Dec 1, 2016 College

More information

Active microwave systems (1) Satellite Altimetry

Active microwave systems (1) Satellite Altimetry Remote Sensing: John Wilkin Active microwave systems (1) Satellite Altimetry jwilkin@rutgers.edu IMCS Building Room 214C 732-932-6555 ext 251 Active microwave instruments Scatterometer (scattering from

More information

Remote Sensing using Bistatic GPS and a Digital Beam Steering Receiver

Remote Sensing using Bistatic GPS and a Digital Beam Steering Receiver Remote Sensing using Bistatic GPS and a Digital Beam Steering Receiver Alison Brown and Ben Mathews, NAVSYS Corporation BIOGRAPHY Alison Brown is the President and Chief Executive Officer of NAVSYS Corporation.

More information

Remote Sensing: John Wilkin IMCS Building Room 211C ext 251. Active microwave systems (1) Satellite Altimetry

Remote Sensing: John Wilkin IMCS Building Room 211C ext 251. Active microwave systems (1) Satellite Altimetry Remote Sensing: John Wilkin wilkin@marine.rutgers.edu IMCS Building Room 211C 732-932-6555 ext 251 Active microwave systems (1) Satellite Altimetry Active microwave instruments Scatterometer (scattering

More information

PARFAIT: GNSS-R coastal altimetry

PARFAIT: GNSS-R coastal altimetry PARFAIT: GNSS-R coastal altimetry M. Caparrini, L. Ruffini, G. Ruffini Starlab, C. de l Observatori Fabra s/n, 835 Barcelona, Spain, http://starlab.es. arxiv:physics/31152v1 [physics.ao-ph] 12 Nov 23 Abstract

More information

Dynamics and Control Issues for Future Multistatic Spaceborne Radars

Dynamics and Control Issues for Future Multistatic Spaceborne Radars Dynamics and Control Issues for Future Multistatic Spaceborne Radars Dr Stephen Hobbs Space Research Centre, School of Engineering, Cranfield University, UK Abstract Concepts for future spaceborne radar

More information

Microwave Remote Sensing

Microwave Remote Sensing Provide copy on a CD of the UCAR multi-media tutorial to all in class. Assign Ch-7 and Ch-9 (for two weeks) as reading material for this class. HW#4 (Due in two weeks) Problems 1,2,3 and 4 (Chapter 7)

More information

Using Emulated Bistatic Radar in Highly Coherent Applications: Overview of Results

Using Emulated Bistatic Radar in Highly Coherent Applications: Overview of Results Using Emulated Bistatic Radar in Highly Coherent Applications: Overview of Results James Palmer 1,2, Marco Martorella 3, Brad Littleton 4, and John Homer 1 1 The School of ITEE, The University of Queensland,

More information

Target Detection Using GPS Signals of Opportunity

Target Detection Using GPS Signals of Opportunity 18th International Conference on Information Fusion Washington, DC - July 6-9, 2015 Target Detection Using GPS Signals of Opportunity Maria-Paola Clarizia Atmospheric, Oceanic and Space Sciences University

More information

Friendly Reflections Monitoring Water Level with GNSS

Friendly Reflections Monitoring Water Level with GNSS Friendly Reflections Monitoring Water Level with GNSS Alejandro Egido and Marco Caparrini Why is the sky blue? This is an age-old question, interesting to anyone with a curiosity about his or her surroundings.

More information

New Technologies for Future EO Instrumentation Mick Johnson

New Technologies for Future EO Instrumentation Mick Johnson New Technologies for Future EO Instrumentation Mick Johnson Director of CEOI Monitoring the Earth from Space What data do EO satellites provide? Earth Observation science Operational services Weather,

More information

SAR Formation Flying

SAR Formation Flying 3 th June 13 SAR Formation Flying Annex 4. Bistatic Sensor Experiment Document Version: v1_1 Dr. Kegen Yu, Prof. Chris Rizos & Prof. Andrew Dempster Australian Centre for Space Engineering Research (ACSER)

More information

Ocean SAR altimetry. from SIRAL2 on CryoSat2 to Poseidon-4 on Jason-CS

Ocean SAR altimetry. from SIRAL2 on CryoSat2 to Poseidon-4 on Jason-CS Ocean SAR altimetry from SIRAL2 on CryoSat2 to Poseidon-4 on Jason-CS Template reference : 100181670S-EN L. Phalippou, F. Demeestere SAR Altimetry EGM NOC, Southampton, 26 June 2013 History of SAR altimetry

More information

Test Results from a Novel Passive Bistatic GPS Radar Using a Phased Sensor Array

Test Results from a Novel Passive Bistatic GPS Radar Using a Phased Sensor Array Test Results from a Novel Passive Bistatic GPS Radar Using a Phased Sensor Array Alison Brown and Ben Mathews, NAVSYS Corporation BIOGRAPHY Alison Brown is the Chief Visionary Officer of NAVSYS Corporation.

More information

GNSS-Reflectometry for Observation and Monitoring of Earth surface

GNSS-Reflectometry for Observation and Monitoring of Earth surface GNSS-Reflectometry for Observation and Monitoring of Earth surface Global Navigation meets Geoinformation ESA ESOC Darmstadt, 28-04-2017 Dr. Ing. Domenico Schiavulli INR engineer support at EUMETSAT Outline

More information

FIRST SPACEBORNE OBSERVATION OF SEA SURFACE HEIGHT USING GPS-REFLECTOMETRY. University of Michigan, Ann Arbor USA

FIRST SPACEBORNE OBSERVATION OF SEA SURFACE HEIGHT USING GPS-REFLECTOMETRY. University of Michigan, Ann Arbor USA FIRST SPACEBORNE OBSERVATION OF SEA SURFACE HEIGHT USING GPS-REFLECTOMETRY Maria Paola Clarizia 1, Christopher Ruf 1, Paolo Cipollini 2 and Cinzia Zuffada 3 1 University of Michigan, Ann Arbor USA 2 National

More information

CYGNSS Mission Update

CYGNSS Mission Update International Ocean Vector Wind Science Team Meeting Portland, OR 19-21 May 2015 CYGNSS Mission Update Chris Ruf (1) CYGNSS Principal Investigator Paul Chang (2), Maria Paola Clarizia (1), Scott Gleason

More information

SAOCOM-CS Mission and ESA Airborne Campaign Data

SAOCOM-CS Mission and ESA Airborne Campaign Data SAOCOM-CS Mission and ESA Airborne Campaign Data Malcolm Davidson Head of the EOP Campaign Section Malcolm.Davidson@esa.int Objectives of presentation Introduce a new type of ESA SAR mission with Polarimetrice,

More information

Passive Microwave Sensors LIDAR Remote Sensing Laser Altimetry. 28 April 2003

Passive Microwave Sensors LIDAR Remote Sensing Laser Altimetry. 28 April 2003 Passive Microwave Sensors LIDAR Remote Sensing Laser Altimetry 28 April 2003 Outline Passive Microwave Radiometry Rayleigh-Jeans approximation Brightness temperature Emissivity and dielectric constant

More information

PARIS Alpha. PARIS altimetry with L1 frequency data from the Bridge 2 campaign

PARIS Alpha. PARIS altimetry with L1 frequency data from the Bridge 2 campaign arxiv:physics/21255v1 [physics.ao-ph] 16 Dec 22 PARIS Alpha ESA/ESTEC Contract No. 14285/85/nl/pb PARIS altimetry with L1 frequency data from the Bridge 2 campaign CCN3-WP3 Technical Report Abridged version

More information

Research Article GNSS-R Delay-Doppler Map Simulation Based on the 2004 Sumatra-Andaman Tsunami Event

Research Article GNSS-R Delay-Doppler Map Simulation Based on the 2004 Sumatra-Andaman Tsunami Event Journal of Sensors Volume 6, Article ID 786, pages http://dx.doi.org/./6/786 Research Article GNSS-R Delay-Doppler Map Simulation Based on the Sumatra-Andaman Tsunami Event Qingyun Yan and Weimin Huang

More information

GNSS in Remote Sensing and Earth Science

GNSS in Remote Sensing and Earth Science GNSS in Remote Sensing and Earth Science James L Garrison School of Aeronau:cs and Astronau:cs Division of Environmental and Ecological Engineering School of Electrical and Computer Engineering (courtesy)

More information

3D Multi-static SAR System for Terrain Imaging Based on Indirect GPS Signals

3D Multi-static SAR System for Terrain Imaging Based on Indirect GPS Signals Journal of Global Positioning Systems (00) Vol. 1, No. 1: 34-39 3D Multi-static SA System for errain Imaging Based on Indirect GPS Signals Yonghong Li, Chris izos School of Surveying and Spatial Information

More information

CEGEG046 / GEOG3051 Principles & Practice of Remote Sensing (PPRS) 8: RADAR 1

CEGEG046 / GEOG3051 Principles & Practice of Remote Sensing (PPRS) 8: RADAR 1 CEGEG046 / GEOG3051 Principles & Practice of Remote Sensing (PPRS) 8: RADAR 1 Dr. Mathias (Mat) Disney UCL Geography Office: 113, Pearson Building Tel: 7670 05921 Email: mdisney@ucl.geog.ac.uk www.geog.ucl.ac.uk/~mdisney

More information

The Radio Occultation and Heavy Precipitation experiment aboard PAZ (ROHP-PAZ): after launch activities

The Radio Occultation and Heavy Precipitation experiment aboard PAZ (ROHP-PAZ): after launch activities The Radio Occultation and Heavy Precipitation experiment aboard PAZ (ROHP-PAZ): after launch activities http://www.ice.csic.es/paz E. Cardellach¹ ², M. de la Torre-Juárez³, S. Tomás¹ ², S. Oliveras¹ ²,

More information

Executive Summary Report ESA-AO1-7850/14-GARCA-ESR. GNSS-R Assessment of Requirements and Consolidation of Retrieval Algorithms GARCA

Executive Summary Report ESA-AO1-7850/14-GARCA-ESR. GNSS-R Assessment of Requirements and Consolidation of Retrieval Algorithms GARCA Page 1 / 28 ESA-AO1-7850/14-GARCA-ESR GNSS-R Assessment of Requirements and Consolidation of Retrieval Algorithms GARCA Report date: November 4 2016 Contributors: L. Bertino (LB, NERSC), E. Cardellach

More information

Airborne demonstrators: a small step from space?

Airborne demonstrators: a small step from space? Airborne demonstrators: a small step from space? Mick Johnson Director of CEOI With inputs from: Ray Dunster, Tony Sephton, Martin Cohen (Astrium) Brian Moyna (STFC/RAL) Paul Davey (QinetiQ) Objective

More information

Master Thesis: Water surface monitoring using GNSS-R Opportunity Signals European Master of Research on Information and Communication Technologies

Master Thesis: Water surface monitoring using GNSS-R Opportunity Signals European Master of Research on Information and Communication Technologies Master Thesis: Water surface monitoring using GNSS-R Opportunity Signals European Master of Research on Information and Communication Technologies Title: MERIT master Author: Alberto Alonso Arroyo Advisors:

More information

Overview Research and Projects

Overview Research and Projects Overview Research and Projects Alberto Moreira Microwaves and Radar Institute (HR) Microwaves and Radar Institute Research Profile: passive and active microwave systems Sensor concept, design and simulation

More information

MONITORING SEA LEVEL USING GPS

MONITORING SEA LEVEL USING GPS 38 MONITORING SEA LEVEL USING GPS Hasanuddin Z. Abidin* Abstract GPS (Global Positioning System) is a passive, all-weather satellite-based navigation and positioning system, which is designed to provide

More information

ACTIVE SENSORS RADAR

ACTIVE SENSORS RADAR ACTIVE SENSORS RADAR RADAR LiDAR: Light Detection And Ranging RADAR: RAdio Detection And Ranging SONAR: SOund Navigation And Ranging Used to image the ocean floor (produce bathymetic maps) and detect objects

More information

Non-PNT Applications from GNSS. Dr. Yang Dongkai School of Electronics and Information BeiHang University

Non-PNT Applications from GNSS. Dr. Yang Dongkai School of Electronics and Information BeiHang University Non-PNT Applications from GNSS Dr. Yang Dongkai edkyang@buaa.edu.cn School of Electronics and Information BeiHang University Outline 1 2 3 Introduction Typical Non-PNT Applications Potential Cooperation

More information

Remote Sensing. Ch. 3 Microwaves (Part 1 of 2)

Remote Sensing. Ch. 3 Microwaves (Part 1 of 2) Remote Sensing Ch. 3 Microwaves (Part 1 of 2) 3.1 Introduction 3.2 Radar Basics 3.3 Viewing Geometry and Spatial Resolution 3.4 Radar Image Distortions 3.1 Introduction Microwave (1cm to 1m in wavelength)

More information

Worst-Case GPS Constellation for Testing Navigation at Geosynchronous Orbit for GOES-R

Worst-Case GPS Constellation for Testing Navigation at Geosynchronous Orbit for GOES-R Worst-Case GPS Constellation for Testing Navigation at Geosynchronous Orbit for GOES-R Kristin Larson, Dave Gaylor, and Stephen Winkler Emergent Space Technologies and Lockheed Martin Space Systems 36

More information

The Sentinel-1 Constellation

The Sentinel-1 Constellation The Sentinel-1 Constellation Evert Attema, Sentinel-1 Mission & System Manager AGRISAR and EAGLE Campaigns Final Workshop 15-16 October 2007 ESA/ESTECNoordwijk, The Netherlands Sentinel-1 Programme Sentinel-1

More information

A LOW-COST GNSS-R SYSTEM BASED ON SOFTWARE-DEFINED-RADIO

A LOW-COST GNSS-R SYSTEM BASED ON SOFTWARE-DEFINED-RADIO A LOW-COST GNSS-R SYSTEM BASED ON SOFTWARE-DEFINED-RADIO Thomas Hobiger, Jun Amagai, Masanori Aida, Hideki Narita, and Tadahiro Gotoh (National Institute of Information and Communications Technology, Koganei,

More information

EE 529 Remote Sensing Techniques. Introduction

EE 529 Remote Sensing Techniques. Introduction EE 529 Remote Sensing Techniques Introduction Course Contents Radar Imaging Sensors Imaging Sensors Imaging Algorithms Imaging Algorithms Course Contents (Cont( Cont d) Simulated Raw Data y r Processing

More information

New concepts for space-borne Tsunami early warning using microwave sensors

New concepts for space-borne Tsunami early warning using microwave sensors GITEWS New concepts for space-borne Tsunami early warning using microwave sensors Dr. Thomas Börner Microwaves and Radar Institute (IHR) German Aerospace Center (DLR) Overview Conceiving and designing

More information

Pulse-Pair (Doppler) Processing of Envisat Individual Echoes

Pulse-Pair (Doppler) Processing of Envisat Individual Echoes Pulse-Pair (Doppler) Processing of Envisat Individual Echoes R. Abileah 1, S. Vignudelli 2 1 jomegak, San Carlos CA, USA 2 CNR Istituto di Biofisica, Pisa, Italy Outline Envisat individual echoes (IE)

More information

Altimeter Range Corrections

Altimeter Range Corrections Altimeter Range Corrections Schematic Summary Corrections Altimeters Range Corrections Altimeter range corrections can be grouped as follows: Atmospheric Refraction Corrections Sea-State Bias Corrections

More information

Cross-talk Statistics and Impact in Interferometric GNSS-R

Cross-talk Statistics and Impact in Interferometric GNSS-R c 27 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing IEEE JOURNAL OF SELECTED

More information

Waveform Processing of Nadir-Looking Altimetry Data

Waveform Processing of Nadir-Looking Altimetry Data Waveform Processing of Nadir-Looking Altimetry Data Mònica Roca and Richard Francis ESA/ESTEC Noordwijk The Netherlands Contents 1. the concept 2. introduction 3. the on-board waveform [how the return

More information

Copernicus Introduction Lisbon, Portugal 13 th & 14 th February 2014

Copernicus Introduction Lisbon, Portugal 13 th & 14 th February 2014 Copernicus Introduction Lisbon, Portugal 13 th & 14 th February 2014 Contents Introduction GMES Copernicus Six thematic areas Infrastructure Space data An introduction to Remote Sensing In-situ data Applications

More information

GORS - A GNSS Occultation, Reflectometry and Scatterometry Space Receiver

GORS - A GNSS Occultation, Reflectometry and Scatterometry Space Receiver GORS - A GNSS Occultation, Reflectometry and Scatterometry Space Receiver A. Helm, O. Montenbruck, J. Ashjaee, S. Yudanov, G. Beyerle, R. Stosius, and M. Rothacher GeoForschungsZentrum Potsdam (GFZ), Germany

More information

Tropospheric GRAS Data

Tropospheric GRAS Data Tropospheric GRAS Data C. Marquardt, A. von Engeln, Y. Andres, Y. Yoon, L. Butenko, A. Foresi, J.-M. Martinez Slide: 2 Outline Data gaps Deep occultations Eumetsat processing Upcoming Summary SLTA [km]

More information

Microwave Remote Sensing (1)

Microwave Remote Sensing (1) Microwave Remote Sensing (1) Microwave sensing encompasses both active and passive forms of remote sensing. The microwave portion of the spectrum covers the range from approximately 1cm to 1m in wavelength.

More information

SATELLITE OCEANOGRAPHY

SATELLITE OCEANOGRAPHY SATELLITE OCEANOGRAPHY An Introduction for Oceanographers and Remote-sensing Scientists I. S. Robinson Lecturer in Physical Oceanography Department of Oceanography University of Southampton JOHN WILEY

More information

Bistatic remote sensing of the atmosphere and surface using GNSS occultations signals

Bistatic remote sensing of the atmosphere and surface using GNSS occultations signals Bistatic remote sensing of the atmosphere and surface using GNSS occultations signals Alexander Pavelyev 1, Kefei Zhang 2, Stanislav Matyugov 1, Yuei-An Liou 4, Oleg Yakovlev 1, Igor Kucherjavenkov 1,

More information

Outline. GPS RO Overview. COSMIC Overview. COSMIC-2 Overview. Summary 9/29/16

Outline. GPS RO Overview. COSMIC Overview. COSMIC-2 Overview. Summary 9/29/16 Bill Schreiner and UCAR/COSMIC Team UCAR COSMIC Program Observation and Analysis Opportunities Collaborating with the ICON and GOLD Missions Sept 27, 216 GPS RO Overview Outline COSMIC Overview COSMIC-2

More information

STM Product Evolution for Processing Baseline 2.24

STM Product Evolution for Processing Baseline 2.24 PREPARATION AND OPERATIONS OF THE MISSION PERFORMANCE CENTRE (MPC) FOR THE COPERNICUS SENTINEL-3 MISSION Contract: 4000111836/14/I-LG Customer: ESA Document Contract No.: 4000111836/14/I-LG Project: PREPARATION

More information

Tsunami Simulation and Detection Using Global Navigation Satellite System Reflectometry

Tsunami Simulation and Detection Using Global Navigation Satellite System Reflectometry Tsunami Simulation and Detection Using Global Navigation Satellite System Reflectometry by c Qingyun Yan, B.Eng. A thesis submitted to the School of Graduate Studies in partial fulfilment of the requirements

More information