ELECTRONIC DEVICES. Assist. prof. Laura-Nicoleta IVANCIU, Ph.D. C8 Summing and differential amplifiers with OpAmp

Size: px
Start display at page:

Download "ELECTRONIC DEVICES. Assist. prof. Laura-Nicoleta IVANCIU, Ph.D. C8 Summing and differential amplifiers with OpAmp"

Transcription

1 ELECTNIC DEVICES Assist. prof. Laura-Nicoleta IVANCIU, Ph.D. C8 Summing and differential amplifiers with pamp

2 C8 Summing and differential amplifs w/ pamp Contents Summing amplifiers with pamp Inerting summing amplifier Non-inerting summing amplifier Differential amplifiers with pamp ecap circuits with pamp Laura-Nicoleta IVANCIU, Electronic deices

3 C8 Summing and differential amplifs w/ pamp Types of amplifiers with pamp NI NI II Amplifier I ground non-inerting ground I inerting I I differential I, I ground summing, non-inerting ground I, I summing, inerting C7 C7 C8 Laura-Nicoleta IVANCIU, Electronic deices

4 C8 Summing and differential amplifs w/ pamp Summing amplifiers Inerting summing amplifier How can we compute? I + I elationship between resistors to obtain the aerage of input oltages: Laura-Nicoleta IVANCIU, Electronic deices

5 C8 Summing and differential amplifs w/ pamp Summing amplifiers Inerting summing amplifier Example +V PS -V PS a) ( i, i ) assuming op amp in the actie region. What is the application of the circuit? b) Considering i V, plot the VTC ( i ) for i [-5 V; 5 V]. What is the i range, so that the amplifier works in its actie region? c) Plot I (t), I (t) and (t) for I (t) sinωt [V], I (t) 0.5sinωt [V]. d) esize,,, so that -( i + i ). e) Modify the circuit, in order to obtain a non-inerting summing circuit, with i + i. Laura-Nicoleta IVANCIU, Electronic deices 5

6 C8 Summing and differential amplifs w/ pamp Summing amplifiers Non-inerting summing amplifier Laura-Nicoleta IVANCIU, Electronic deices + I + I elationship between resistors to hae? and Usually I I 6

7 7 Laura-Nicoleta IVANCIU, Electronic deices Differential amplifiers Differential amplifier C8 Summing and differential amplifs w/ pamp How can we compute? I I + +

8 8 Laura-Nicoleta IVANCIU, Electronic deices Differential amplifiers Differential amplifier C8 Summing and differential amplifs w/ pamp I + + I I I Superposition method

9 9 Laura-Nicoleta IVANCIU, Electronic deices Differential amplifiers Differential amplifier C8 Summing and differential amplifs w/ pamp I I + + If the goal is to amplify ( I - I ): + + ( ) I I The circuit amplifies the difference between the input oltages and rejects common mode signals. In practical situations: and For I I, 0. I noise + noise I + ) ( ) ( A A noise noise +

10 C8 Summing and differential amplifs w/ pamp Differential amplifiers Differential amplifier Superposition method Input resistance, seen by I I + Input resistance, seen by I I Laura-Nicoleta IVANCIU, Electronic deices 0

11 C8 Summing and differential amplifs w/ pamp Differential amplifiers Differential amplifier Example A sensor proides a ariable signal, i, with a dc component, V I. It is necessary to amplify the ariable signal, that carries information, 0 times. Design a differential amplifier for this requirement. Laura-Nicoleta IVANCIU, Electronic deices

12 C8 Summing and differential amplifs w/ pamp Differential amplifiers Differential amplifier Example ( t) I ( t) + + ( t) + + V EF ( VI + i ( t) ) VI Laura-Nicoleta IVANCIU, Electronic deices,5kω 5kΩ ( t) 0 ( t) o i

13 C8 Summing and differential amplifs w/ pamp Differential amplifiers Differential amplifier Standard instrumentation amplifier high i ery good common mode rejection ratio A and A: - high input resistance - set the gain A: - gain - conersion from two oltages ( and ) to a single oltage ( ) - additional rejection of the common mode Laura-Nicoleta IVANCIU, Electronic deices

14 Laura-Nicoleta IVANCIU, Electronic deices Differential amplifiers Differential amplifier C8 Summing and differential amplifs w/ pamp Standard instrumentation amplifier I I + I I + ( ) ( ) I I +

15 C8 Summing and differential amplifs w/ pamp Differential amplifiers Differential amplifier Integrated precision differential amplifiers AD8 Analog Deices Precision Instrumentation Amplifier A + (9. kω/ G ) MAX9, MAX95, MAX96, MAX97 Micropower, Single-Supply, ail-to-ail, Precision Instrumentation Amplifiers Maxim Integrated LT67 Linear Technology Common uses of instrumentation amplifiers: sensor readings for medical and industrial applications. Examples? Laura-Nicoleta IVANCIU, Electronic deices 5

16 C8 Summing and differential amplifs w/ pamp ecap circuits with pamp ecap circuits with pamp Gien a circuit with pamp, how can we tell whether the circuit is: inerting or non-inerting? a simple comparator, a hysteresis comparator, or an amplifier? What parameters do we compute, for each of the aboe? What can we tell about the output oltage? Laura-Nicoleta IVANCIU, Electronic deices 6

17 C8 Summing and differential amplifs w/ pamp ecap circuits with pamp ecap circuits with pamp Type of feedback No feedback Positie feedback Negatie feedback I goes to NI II NI II NI II Application We compute Simple comparator, non-inerting Simple comparator, V Th {V L ; V H } inerting Hysteresis comparator, non-inerting Hysteresis comparator, inerting Amplifier, non-inerting Amplifier, inerting V ThL V ThH {V L ; V H } A (V L ; V H ) Laura-Nicoleta IVANCIU, Electronic deices 7

18 C8 Summing and differential amplifs w/ pamp Summary Today s menu consisted of a fine selection of pamp circuits, such as: Summing amplifiers with pamp Inerting summing amplifier Non-inerting summing amplifier Differential amplifiers with pamp ecap circuits with pamp Next week: Applications with pamp - To do: Homework 7 Laura-Nicoleta IVANCIU, Electronic deices 8

ELECTRONIC DEVICES. Assist. prof. Laura-Nicoleta IVANCIU, Ph.D. C9 Applications with OpAmp - 1

ELECTRONIC DEVICES. Assist. prof. Laura-Nicoleta IVANCIU, Ph.D. C9 Applications with OpAmp - 1 ELECTONIC DEVICES Assist. prof. Laura-Nicoleta IVANCIU, Ph.D. C9 Applications with OpAmp - C9 Applications with OpAmp - Contents Voltage domain conersion circuits Capacitiely coupled amplifiers Op-amp

More information

ELECTRONIC DEVICES. Assist. prof. Laura-Nicoleta IVANCIU, Ph.D. C10 Applications with OpAmp - 2

ELECTRONIC DEVICES. Assist. prof. Laura-Nicoleta IVANCIU, Ph.D. C10 Applications with OpAmp - 2 ELECNC DEVCE Assist. prof. Laura-Nicoleta VANCU, Ph.D. C10 Applications with pamp - 2 Contents Half-wae and full-wae precision rectifiers Precision peak detectors Current sources Logarithmic and exponential

More information

ELECTRONIC DEVICES. Assist. prof. Laura-Nicoleta IVANCIU, Ph.D. C6 Hysteresis comparators with OpAmp.

ELECTRONIC DEVICES. Assist. prof. Laura-Nicoleta IVANCIU, Ph.D. C6 Hysteresis comparators with OpAmp. ELECTONIC DEICES Assist. prof. Laura-Nicoleta IANCIU, Ph.D. C6 Hysteresis comparators with OpAmp. Contents Hysteresis (PF) comparators with OpAmp Motiation Difference between simple and hysteresis comparators

More information

Chapter 6: Operational Amplifier (Op Amp)

Chapter 6: Operational Amplifier (Op Amp) Chapter 6: Operational Amplifier (Op Amp) 6.1 What is an Op Amp? 6.2 Ideal Op Amp 6.3 Nodal Analysis of Circuits with Op Amps 6.4 Configurations of Op Amp 6.5 Cascaded Op Amp 6.6 Op Amp Circuits & Linear

More information

Chapter Goal. Zulfiqar Ali

Chapter Goal. Zulfiqar Ali Chapter Goal Understand behaior and characteristics of ideal differential and op amps. Demonstrate circuit analysis techniques for ideal op amps. Characterize inerting, non-inerting, summing and instrumentation

More information

VOLTAGE COMPARATORS WITH OPERATIONAL AMPLIFIERS - HYSTERESIS COMPARATORS

VOLTAGE COMPARATORS WITH OPERATIONAL AMPLIFIERS - HYSTERESIS COMPARATORS OLTAGE COMPAATOS WTH OPEATONAL AMPLFES - HYSTEESS COMPAATOS. OBJECTES a) Determining the oltage transfer characteristics (TC) for hysteresis comparators. b) Determining the output oltage in accordance

More information

Circuit produces an amplified negative version of v IN = R R R

Circuit produces an amplified negative version of v IN = R R R Inerting Amplifier Circuit produces an amplified negatie ersion of i = i, = 2 0 = 2 OUT OUT = 2 Example: Calculate OUT / and I for = 0.5V Solution: A V OUT 2 = = = 0 kω = 0 kω i 05. V = = = kω 05. ma

More information

Chapter 11 Operational Amplifiers and Applications

Chapter 11 Operational Amplifiers and Applications Chapter Operational Amplifiers and Applications Chapter Goals Understand the magic of negatie feedback and the characteristics of ideal op amps. Understand the conditions for non-ideal op amp behaior so

More information

EIT/FE Exam EE Review 2 nd Session Prof. Richard Spencer. Transformer

EIT/FE Exam EE Review 2 nd Session Prof. Richard Spencer. Transformer EIT/FE Exam EE eiew 2 nd ession Prof. ichard pencer Transformer Assume two coils are wound on the same core and that it has low reluctance (high permeability) If a current flows in one of the windings,

More information

ELECTRONIC DEVICES. Assist. prof. Laura-Nicoleta IVANCIU, Ph.D. C3 DR switching circuits

ELECTRONIC DEVICES. Assist. prof. Laura-Nicoleta IVANCIU, Ph.D. C3 DR switching circuits ELECTRONIC DEVICES Assist. prof. Laura-Nicoleta IVANCIU, Ph.D. C3 DR switching circuits Previously on ED (C2): Constant voltage drop model v D < 0.7 V v D > 0.7 V D (off) D (on) Exponential model i I D

More information

Electronic Instrumentation Experiment 6 -- Digital Switching

Electronic Instrumentation Experiment 6 -- Digital Switching 1 Electronic Instrumentation Experiment 6 -- Digital Switching Part A: Transistor Switches Part B: Comparators and Schmitt Triggers Part C: Digital Switching Part D: Switching a elay Part A: Transistors

More information

CHAPTER SIX SOLUTIONS

CHAPTER SIX SOLUTIONS CHAPTE SIX SOLUTIONS. The first step is to perform a simple source transformation, so that a 0.5-V source in series with a 50-Ω resistor is connected to the inerting pin of the ideal op amp. 00 50 Then,

More information

Course Outline. 4. Chapter 5: MOS Field Effect Transistors (MOSFET) 5. Chapter 6: Bipolar Junction Transistors (BJT)

Course Outline. 4. Chapter 5: MOS Field Effect Transistors (MOSFET) 5. Chapter 6: Bipolar Junction Transistors (BJT) Course Outline 1. Chapter 1: Signals and Amplifiers 1 2. Chapter 3: Semiconductors 3. Chapter 4: Diodes 4. Chapter 5: MOS Field Effect Transistors (MOSFET) 5. Chapter 6: Bipolar Junction Transistors (BJT)

More information

Prof. Paolo Colantonio a.a

Prof. Paolo Colantonio a.a Pro. Paolo Colantonio a.a. 03 4 Operational ampliiers (op amps) are among the most widely used building blocks in electronics they are integrated circuits (ICs) oten DIL (or DIP) or SMT (or SMD) DIL (or

More information

Elektronika (TKE 4012)

Elektronika (TKE 4012) Operational Amplifier & aplikasinya Elektronika (TKE 40) Eka Maulana maulana.lecture.ub.ac.id Op Amp Op Amp is short for operational amplifier Amplifiers proide gains in oltage or current Op amps can conert

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:04 Electronic Circuits Lecture -5 eiew of Op-Amps Sections of Chapters 9 & 4 A. Kruger Op-Amp eiew- eal-world Op-Amp In earlier courses, op-amp were often considered ideal Infinite input resistance

More information

Electromechanical Systems and Mechatronics Signal Conditioning: Lecture 3

Electromechanical Systems and Mechatronics Signal Conditioning: Lecture 3 Electromechanical ystems and Mechatronics ignal Conditioning: Lecture 3 ignal Conditioning Processes The Operational Amplifier Filtering Digital ignals Multiplexers Data Acquisition Digital ignal Processing

More information

EEEE 381 Electronics I

EEEE 381 Electronics I EEEE 381 Electronics I Lab #5: Two-Stage CMOS Op-Amp Oeriew In this lab we will expand on the work done in Lab #4, which introduced the actiely-loaded differential pair. A second stage that is comprised

More information

Week 7: Common-Collector Amplifier, MOS Field Effect Transistor

Week 7: Common-Collector Amplifier, MOS Field Effect Transistor EE 2110A Electronic Circuits Week 7: Common-Collector Amplifier, MOS Field Effect Transistor ecture 07-1 Topics to coer Common-Collector Amplifier MOS Field Effect Transistor Physical Operation and I-V

More information

Lecture 17. Differential Amplifiers II Current Mirror Load and Single-Ended Output

Lecture 17. Differential Amplifiers II Current Mirror Load and Single-Ended Output Lecture 17 Differential mplifiers II Current Mirror Load and Single-Ended Output In this lecture you will learn: Differential mplifiers Use of Current Mirrors in Differential mplifiers Small Signal and

More information

Indigenous Design of Electronic Circuit for Electrocardiograph

Indigenous Design of Electronic Circuit for Electrocardiograph Indigenous Design of Electronic Circuit for Electrocardiograph Raman Gupta 1, Sandeep Singh 2, Kashish Garg 3, Shruti Jain 4 U.G student, Department of Electronics and Communication Engineering,Jaypee

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:041 Electronic Circuits Reiew of Op-Amps Sections of Chapters 9 & 14 A. Kruger Op-Amp Reiew-1 Real-World Op-Amp In earlier courses, op-amp were often considered ideal Infinite input resistance Infinite

More information

Differential Amplifier : input. resistance. Differential amplifiers are widely used in engineering instrumentation

Differential Amplifier : input. resistance. Differential amplifiers are widely used in engineering instrumentation Differential Amplifier : input resistance Differential amplifiers are widely used in engineering instrumentation Differential Amplifier : input resistance v 2 v 1 ir 1 ir 1 2iR 1 R in v 2 i v 1 2R 1 Differential

More information

Linear Voltage Regulators

Linear Voltage Regulators 8/6/ inearoltageegulators(oeriew).doc / 8/6/ inearoltageegulators(oeriew).doc / inear oltage egulators The schematic below shows a pretty darn good design for a linear regulator. t has good regulation,

More information

CHAPTER 2 OPERATIONAL AMPLIFIERS

CHAPTER 2 OPERATIONAL AMPLIFIERS CHPTE PETNL MPLFES Chapter utline. The deal p mp. The nerting Configuration. The Noninerting Configuration. Difference mplifiers.5 ntegrators and Differentiators.6 DC mperfections.7 Effect of Finite pen

More information

ECE:3410 Electronic Circuits

ECE:3410 Electronic Circuits ECE:3410 Electronic Circuits Reiew of Op-Amps Sections of Chapters 9 & 14 A. Kruger Op-Amp Reiew-1 Real-World Op-Amp In earlier courses, op-amp were often considered ideal Infinite input resistance Infinite

More information

Department of Electrical and Computer Engineering, Cornell University. ECE 3150: Microelectronics. Spring 2018

Department of Electrical and Computer Engineering, Cornell University. ECE 3150: Microelectronics. Spring 2018 Department of Electrical and Computer Engineering, Cornell Uniersity ECE 3150: Microelectronics Spring 2018 Lab 1 Due one week after your lab day in the course Lab Dropbox Lab Goals 1) Get familiar with

More information

17µA Max, Dual/Quad, Single-Supply, Precision Op Amps

17µA Max, Dual/Quad, Single-Supply, Precision Op Amps 19-127; Rev. 1; 11/98 General Description The MAX478 and MAX479 are dual and quad micropower, precision op amps available in 8-pin and 14-pin DIP and small-outline packages, respectively. Both devices

More information

Operational Amplifiers

Operational Amplifiers Fundamentals of op-amp Operation modes Golden rules of op-amp Op-amp circuits Inverting & non-inverting amplifier Unity follower, integrator & differentiator Introduction An operational amplifier, or op-amp,

More information

11/17/2009 Reading Chapter 11 of Hambley Chapter 14.8 of Hambley

11/17/2009 Reading Chapter 11 of Hambley Chapter 14.8 of Hambley EE40 Lec 21 Amplifiers Prof. Nathan Cheung 11/17/2009 eading Chapter 11 of Hambley Chapter 14.8 of Hambley Slide 1 OUTLINE Amplifier Models with dependent sources Efficiency Input and Output Impedance

More information

CENG4480 Embedded System Development and Applications The Chinese University of Hong Kong Laboratory 1: Op Amp (I)

CENG4480 Embedded System Development and Applications The Chinese University of Hong Kong Laboratory 1: Op Amp (I) CENG4480 Embedded System Development and Applications The Chinese University of Hong Kong Laboratory 1: Op Amp (I) Student ID: 2018 Fall 1 Introduction This lab session introduces some very basic concepts

More information

Amplifiers with Negative Feedback

Amplifiers with Negative Feedback 13 Amplifiers with Negatie Feedback 335 Amplifiers with Negatie Feedback 13.1 Feedback 13.2 Principles of Negatie Voltage Feedback In Amplifiers 13.3 Gain of Negatie Voltage Feedback Amplifier 13.4 Adantages

More information

Lecture 1. EE 215 Electronic Devices & Circuits. Semiconductor Devices: Diodes. The Ideal Diode

Lecture 1. EE 215 Electronic Devices & Circuits. Semiconductor Devices: Diodes. The Ideal Diode Lecture 1 EE 215 Electronic Deices & Circuits Asst Prof Muhammad Anis Chaudhary EE 215 Electronic Deices & Circuits Credit Hours: 3 1 Course Book: Adel S. Sedra and Kenneth C. Smith, Microelectronic Circuits,

More information

Chapter 9: Operational Amplifiers

Chapter 9: Operational Amplifiers Chapter 9: Operational Amplifiers The Operational Amplifier (or op-amp) is the ideal, simple amplifier. It is an integrated circuit (IC). An IC contains many discrete components (resistors, capacitors,

More information

An electronic unit that behaves like a voltagecontrolled

An electronic unit that behaves like a voltagecontrolled 1 An electronic unit that behaves like a voltagecontrolled voltage source. An active circuit element that amplifies, sums, subtracts, multiply, divide, differentiate or integrates a signal 2 A typical

More information

Introduction to Analog Interfacing. ECE/CS 5780/6780: Embedded System Design. Various Op Amps. Ideal Op Amps

Introduction to Analog Interfacing. ECE/CS 5780/6780: Embedded System Design. Various Op Amps. Ideal Op Amps Introduction to Analog Interfacing ECE/CS 5780/6780: Embedded System Design Scott R. Little Lecture 19: Operational Amplifiers Most embedded systems include components that measure and/or control real-world

More information

Chapter 3: Operational Amplifiers

Chapter 3: Operational Amplifiers Chapter 3: Operational Amplifiers 1 OPERATIONAL AMPLIFIERS Having learned the basic laws and theorems for circuit analysis, we are now ready to study an active circuit element of paramount importance:

More information

Analog front-end electronics

Analog front-end electronics FYS3240 PC-based instrumentation and microcontrollers Analog front-end electronics Spring 2017 Lecture #6 Bekkeng, 30.1.2017 Considerations for analog signals Signal source - grounded or floating Source

More information

High-Precision, Low-Voltage, Micropower Op Amp MAX480. General Description. Features. Ordering Information. Applications.

High-Precision, Low-Voltage, Micropower Op Amp MAX480. General Description. Features. Ordering Information. Applications. 9-77; Rev a; /98 High-Precision, Low-oltage, General Description The is a precision micropower operational amplifier with flexible power-supply capability. Its guaranteed µ maximum offset voltage (5µ typ)

More information

Crossover Distortion FETS Spec sheets Configurations Applications

Crossover Distortion FETS Spec sheets Configurations Applications Crossoer Distortion FETS Spec sheets Configurations Applications Acknowledgements: Neamen, Donald: Microelectronics Circuit Analysis and Design, 3 rd Edition 6.101 Spring 2017 Lecture 6 1 Three Stage Amplifer

More information

Operational Amplifiers. Boylestad Chapter 10

Operational Amplifiers. Boylestad Chapter 10 Operational Amplifiers Boylestad Chapter 10 DC-Offset Parameters Even when the input voltage is zero, an op-amp can have an output offset. The following can cause this offset: Input offset voltage Input

More information

ELG 2135 ELECTRONICS I FOURTH CHAPTER : BIPOLAR JUNCTION TRANSISTORS

ELG 2135 ELECTRONICS I FOURTH CHAPTER : BIPOLAR JUNCTION TRANSISTORS ELG 2135 ELECTRONICS I FOURTH CHAPTER : BIPOLAR JUNCTION TRANSISTORS Session WINTER 2003 Dr M. YAGOUB Fourth Chapter: Bipolar Junction Transistors IV - 2 _ Haing studied the junction diode, which is the

More information

EE 551 Linear Integrated Circuits

EE 551 Linear Integrated Circuits EE 551 Linear Integrated Circuits Daid W. Graham West Virginia Uniersity Lane Department of Computer Science and Electrical Engineering Daid W. Graham, 2009-2013 1 What You Are Expected To Know Basic circuit

More information

VCC_BAR. Grounds. Power, either postive or negative REVIEW OF SYMBOLS

VCC_BAR. Grounds. Power, either postive or negative REVIEW OF SYMBOLS LECTUE 4. OPEATIONAL AMPLIFIES EIEW OF SYMBOLS CC_BA Power, either postive or negative Grounds. Operational amplifiers (op-amps) are active devices. This means you must connect them to a power supply in

More information

Chapter 6: Converter circuits

Chapter 6: Converter circuits hapter 6. onerter ircuits 6.. ircuit manipulations 6.. A short list of conerters 6.3. Transformer isolation 6.4. onerter ealuation and design 6.5. Summary of key points Where do the boost, buck-boost,

More information

EET 438a Automatic Control Systems Technology Laboratory 1 Analog Sensor Signal Conditioning

EET 438a Automatic Control Systems Technology Laboratory 1 Analog Sensor Signal Conditioning EET 438a Automatic Control Systems Technology Laboratory 1 Analog Sensor Signal Conditioning Objectives: Use analog OP AMP circuits to scale the output of a sensor to signal levels commonly found in practical

More information

Advanced Test Equipment Rentals ATEC (2832)

Advanced Test Equipment Rentals ATEC (2832) Established 1981 Adanced Test Equipment Rentals www.atecorp.com 800-404-ATEC (2832) UNIVERSITY OF UTAH ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT ANALOG INTEGRATED CIRCUITS LAB LAB 5 Two-Stage CMOS

More information

Instrumentation amplifier

Instrumentation amplifier Instrumentationamplifieris a closed-loop gainblock that has a differential input and an output that is single-ended with respect to a reference terminal. Application: are intended to be used whenever acquisition

More information

sketch a simplified small-signal equivalent circuit of a differential amplifier

sketch a simplified small-signal equivalent circuit of a differential amplifier INTODUCTION Te large-signal analysis of te differential amplifr sowed tat, altoug te amplifr is essentially non-linear, it can be regarded as linear oer a limited operating range, tat is, for small signals.

More information

Chapter 3, Sections Electrical Filters

Chapter 3, Sections Electrical Filters Chapter 3, Sections 3.2.4-3.2.5 Electrical Filters Signals DC and AC Components - Many signals can be constructed as sums of AC and DC components: 2.5 2 1.5 2 1.5 1.5 1 2 3 4 1.5 -.5-1 1 2 3 4 = + 2.5

More information

QUAD OPERATIONAL AMPLIFIERS FEATURES. SCHEMATIC DIAGRAM (One Section Only)

QUAD OPERATIONAL AMPLIFIERS FEATURES. SCHEMATIC DIAGRAM (One Section Only) S The LM248/LM348 is a true quad LM741. It consists of four independent, high-gain, internally compensated, low-power operational amplifiers which have been designed to provide functional characteristics

More information

CHAPTER 3 DESIGN OF A PV-UPQC SYSTEM FOR VOLTAGE SAG AND SWELL COMPENSATION

CHAPTER 3 DESIGN OF A PV-UPQC SYSTEM FOR VOLTAGE SAG AND SWELL COMPENSATION 21 CHAPTER 3 DESIGN OF A PV-UPQC SYSTEM FOR VOLTAGE SAG AND SWELL COMPENSATION INTRODUCTION The recent increase in the use of non-linear loads creates many power quality problems such as oltage sag, swell

More information

Chapter 10 Differential Amplifiers

Chapter 10 Differential Amplifiers Chapter 10 Differential Amplifiers 10.1 General Considerations 10.2 Bipolar Differential Pair 10.3 MOS Differential Pair 10.4 Cascode Differential Amplifiers 10.5 Common-Mode Rejection 10.6 Differential

More information

ECEN474: (Analog) VLSI Circuit Design Fall 2011

ECEN474: (Analog) VLSI Circuit Design Fall 2011 ECEN474: (Analog) LSI Circuit Design Fall 011 Lecture 1: Noise Sebastian Hoyos Analog & Mixed-Signal Center Texas A&M Uniersity Announcements Reading Razais CMOS Book Chapter 7 Agenda Noise Types Noise

More information

Signal Conditioning Devices

Signal Conditioning Devices Lecture 4. Signal Conditioning Devices Signal Conditioning Operations In previous lectures we have studied various sensors and transducers used in a mechatronics system. Transducers sense physical phenomenon

More information

Not Recommended for New Designs

Not Recommended for New Designs Not Recommended for New Designs This product was manufactured for Maxim by an outside wafer foundry using a process that is no longer available. It is not recommended for new designs. The data sheet remains

More information

1) Consider the circuit shown in figure below. Compute the output waveform for an input of 5kHz

1) Consider the circuit shown in figure below. Compute the output waveform for an input of 5kHz ) Consider the circuit shown in figure below. Compute the output waveform for an input of 5kHz Solution: a) Input is of constant amplitude of 2 V from 0 to 0. ms and 2 V from 0. ms to 0.2 ms. The output

More information

Chapter 2. Operational Amplifiers

Chapter 2. Operational Amplifiers Chapter 2. Operational Amplifiers Tong In Oh 1 Objective Terminal characteristics of the ideal op amp How to analyze op amp circuits How to use op amps to design amplifiers How to design more sophisticated

More information

Lesson number one. Operational Amplifier Basics

Lesson number one. Operational Amplifier Basics What About Lesson number one Operational Amplifier Basics As well as resistors and capacitors, Operational Amplifiers, or Op-amps as they are more commonly called, are one of the basic building blocks

More information

Operational Amplifiers (Op Amps)

Operational Amplifiers (Op Amps) Operational Amplifiers (Op Amps) Introduction * An operational amplifier is modeled as a voltage controlled voltage source. * An operational amplifier has a very high input impedance and a very high gain.

More information

AC Voltage Standards With Quantum Traceability

AC Voltage Standards With Quantum Traceability NPL Electromagnetics day 29/11/2007 AC Voltage Standards With Quantum Traceability Kein Marshall, Dale Henderson, Prain Patel and Jonathan Williams. Background To Quantum Voltage Metrology Existing DC

More information

Study Guide for the First Exam

Study Guide for the First Exam Study Guide or the First Exam Chemistry 838 Fall 005 T V Atkinson Department o Chemistry Michigan State Uniersity East Lansing, MI 4884 The leel o knowledge and detail expected or the exam is that o the

More information

Simulation and Performance Investigation of Unified Power Quality Conditioner Using Hysteresis Current Control Method

Simulation and Performance Investigation of Unified Power Quality Conditioner Using Hysteresis Current Control Method International Journal of Scientific & Engineering Research, Volume 3, Issue 8, August-2012 1 Simulation and Performance Inestigation of Unified Power Quality Conditioner Using Hysteresis Current Control

More information

Introduction to Op Amps

Introduction to Op Amps Introduction to Op Amps ENGI 242 ELEC 222 Basic Op-Amp The op-amp is a differential amplifier with a very high open loop gain 25k AVOL 500k (much higher for FET inputs) high input impedance 500kΩ ZIN 10MΩ

More information

BANGLADESH UNIVERSITY OF ENGINEERING & TECHNOLOGY

BANGLADESH UNIVERSITY OF ENGINEERING & TECHNOLOGY BANGLADESH UNIVERSITY OF ENGINEERING & TECHNOLOGY Electronics Circuits II Laboratory (EEE 208) Simulation Experiment No. 02 Study of the Characteristics and Application of Operational Amplifier (Part B)

More information

Chapter 2. Operational Amplifiers

Chapter 2. Operational Amplifiers Chapter 2. Operational Amplifiers Tong In Oh 1 2.3 The Noninverting Configuration v I is applied directly to the positive input terminal of the op amp One terminal of is connected to ground Closed-loop

More information

C H A P T E R 02. Operational Amplifiers

C H A P T E R 02. Operational Amplifiers C H A P T E R 02 Operational Amplifiers The Op-amp Figure 2.1 Circuit symbol for the op amp. Figure 2.2 The op amp shown connected to dc power supplies. The Ideal Op-amp 1. Infinite input impedance 2.

More information

Experiments #7. Operational Amplifier part 1

Experiments #7. Operational Amplifier part 1 Experiments #7 Operational Amplifier part 1 1) Objectives: The objective of this lab is to study operational amplifier (op amp) and its applications. We will be simulating and building some basic op-amp

More information

PHYSICS 330 LAB Operational Amplifier Frequency Response

PHYSICS 330 LAB Operational Amplifier Frequency Response PHYSICS 330 LAB Operational Amplifier Frequency Response Objectives: To measure and plot the frequency response of an operational amplifier circuit. History: Operational amplifiers are among the most widely

More information

Amplification. Objective. Equipment List. Introduction. The objective of this lab is to demonstrate the basic characteristics an Op amplifier.

Amplification. Objective. Equipment List. Introduction. The objective of this lab is to demonstrate the basic characteristics an Op amplifier. Amplification Objective The objective of this lab is to demonstrate the basic characteristics an Op amplifier. Equipment List Introduction Computer running Windows (NI ELVIS installed) National Instruments

More information

Study Guide for the First Exam

Study Guide for the First Exam Study Guide or the First Exam Chemistry 838 Fall 27 T V Atkinson Department o Chemistry Michigan State Uniersity East Lansing, MI 48824 Table o Contents Table o Contents...1 Table o Tables...1 Table o

More information

Assignment 11. 1) Using the LM741 op-amp IC a circuit is designed as shown, then find the output waveform for an input of 5kHz

Assignment 11. 1) Using the LM741 op-amp IC a circuit is designed as shown, then find the output waveform for an input of 5kHz Assignment 11 1) Using the LM741 op-amp IC a circuit is designed as shown, then find the output waveform for an input of 5kHz Vo = 1 x R1Cf 0 Vin t dt, voltage output for the op amp integrator 0.1 m 1

More information

SIMPLIS Nonlinear Block (NLB)

SIMPLIS Nonlinear Block (NLB) SIMPLIS Nonlinear Block (NLB) The SIMPLIS Nonlinear Block (NLB) components are originally deeloped as primitie components in SIMPLIS to support the modeling of PFC controllers. When the schematic is set

More information

CHAPTER-6. OP-AMP A. 2 B. 3 C. 4 D. 1

CHAPTER-6. OP-AMP A. 2 B. 3 C. 4 D. 1 CHAPTER-6. OP-AMP [1]. A non inverting closed loop op amp circuit generally has a gain factor A. Less than one B. Greater than one C. Of zero D. Equal to one HINT: - For non inverting amplifier the gain

More information

using dc inputs. You will verify circuit operation with a multimeter.

using dc inputs. You will verify circuit operation with a multimeter. Op Amp Fundamentals using dc inputs. You will verify circuit operation with a multimeter. FACET by Lab-Volt 77 Op Amp Fundamentals O circuit common. a. inverts the input voltage polarity. b. does not invert

More information

ECE Lab #4 OpAmp Circuits with Negative Feedback and Positive Feedback

ECE Lab #4 OpAmp Circuits with Negative Feedback and Positive Feedback ECE 214 Lab #4 OpAmp Circuits with Negative Feedback and Positive Feedback 20 February 2018 Introduction: The TL082 Operational Amplifier (OpAmp) and the Texas Instruments Analog System Lab Kit Pro evaluation

More information

Analog Circuits. Operational Amplifiers (Opamps) DC Power Supplies Oscillators

Analog Circuits. Operational Amplifiers (Opamps) DC Power Supplies Oscillators Analog Circuits Operational Amplifiers (Opamps) DC Power Supplies Oscillators Operational Amplifiers Highgain differential amplifier, using voltage feedback, providing stabilized voltage gain Symbol of

More information

EECE251 Circuit Analysis I Set 5: Operational Amplifiers

EECE251 Circuit Analysis I Set 5: Operational Amplifiers EECE251 Circuit Analysis I Set 5: Operational Amplifiers Shahriar Mirabbasi Department of Electrical and Computer Engineering University of British Columbia shahriar@ece.ubc.ca 1 Amplifiers There are various

More information

Operational Amplifiers

Operational Amplifiers Operational Amplifiers Spring 2008 Sean Lynch Lambros Samouris Tom Groshans History of Op Amps Non Named for their originally intended functions: performing mathematical operations and amplification Addition

More information

Homework Assignment 03

Homework Assignment 03 Homework Assignment 03 Question 1 (Short Takes), 2 points each unless otherwise noted. 1. Two 0.68 μf capacitors are connected in series across a 10 khz sine wave signal source. The total capacitive reactance

More information

MOSFET Amplifier Configuration. MOSFET Amplifier Configuration

MOSFET Amplifier Configuration. MOSFET Amplifier Configuration MOSFET Amplifier Configuration Single stage The signal is fed to the amplifier represented as sig with an internal resistance sig. MOSFET is represented by its small signal model. Generally interested

More information

Infrared Communications Lab

Infrared Communications Lab Infrared Communications Lab This lab assignment assumes that the student knows about: Ohm s Law oltage, Current and Resistance Operational Amplifiers (See Appendix I) The first part of the lab is to develop

More information

RH1078M Micropower, Dual, Single Supply Precision Op Amp ABSOLUTE MAXIMUM RATINGS DESCRIPTION PACKAGE/ORDER INFORMATION

RH1078M Micropower, Dual, Single Supply Precision Op Amp ABSOLUTE MAXIMUM RATINGS DESCRIPTION PACKAGE/ORDER INFORMATION RH7M Micropower, Dual, Single Supply Precision Op Amp DESCRIPTION The RH7M is a micropower dual op amp in the standard -pin configuration. This device is optimized for single supply operation at 5. Specifications

More information

Common Reference Example

Common Reference Example Operational Amplifiers Overview Common reference circuit diagrams Real models of operational amplifiers Ideal models operational amplifiers Inverting amplifiers Noninverting amplifiers Summing amplifiers

More information

L02 Operational Amplifiers Applications 1

L02 Operational Amplifiers Applications 1 L02 Operational Amplifiers Applications 1 Chapter 9 Ideal Operational Amplifiers and Op-Amp Circuits Donald A. Neamen (2009). Microelectronics: Circuit Analysis and Design, 4th Edition, Mc-Graw-Hill Prepared

More information

ECET DAQ & Control Systems

ECET DAQ & Control Systems 1 Electrical Engineering Technology ECET 17700 DAQ & Control Systems Lecture # 11 Inverting Amplifier & Summer Professors Robert Herrick & J. Michael Jacob Purdue University ECET 17700 DAQ & Systems Control

More information

Lecture 22. OUTLINE Differential Amplifiers. Reading: Chapter General considerations BJT differential pair

Lecture 22. OUTLINE Differential Amplifiers. Reading: Chapter General considerations BJT differential pair Lecture 22 OUTLNE Differential Amplifiers General considerations BJT differential pair Qualitatie analysis Large signal analysis Small signal analysis Frequency response Reading: Chapter 10.1 10.2 EE105

More information

Operational Amplifiers

Operational Amplifiers Operational Amplifiers for Basic Electronics http://cktse.eie.polyu.edu.hk/eie209 by Prof. Michael Tse January 2005 Where do we begin? We begin with assuming that the op-amp is an ideal element satisfying

More information

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab Objecties Boise State Uniersity Department of Electrical and Computer Engineering ECE 22L Circuit Analysis and Design Lab Experiment #2: Sinusoidal Steady State and Resonant Circuits The objecties of this

More information

Lecture #4 Basic Op-Amp Circuits

Lecture #4 Basic Op-Amp Circuits Summer 2015 Ahmad El-Banna Faculty of Engineering Department of Electronics and Communications GEE336 Electronic Circuits II Lecture #4 Basic Op-Amp Circuits Instructor: Dr. Ahmad El-Banna Agenda Some

More information

Chapter 10: Operational Amplifiers

Chapter 10: Operational Amplifiers Chapter 10: Operational Amplifiers Differential Amplifier Differential amplifier has two identical transistors with two inputs and two outputs. 2 Differential Amplifier Differential amplifier has two identical

More information

DATA CONVERSION AND LAB (17.368) Fall Class # 07. October 16, 2008

DATA CONVERSION AND LAB (17.368) Fall Class # 07. October 16, 2008 DATA CONVERSION AND LAB (17.368) Fall 2008 Class # 07 October 16, 2008 Dohn Bowden 1 Today s Lecture Outline Course Admin Lab #3 next week Exam in two weeks 10/30/08 Detailed Technical Discussions Digital

More information

ENE/EIE 211 : Electronic Devices and Circuit Design II Lecture 1: Introduction

ENE/EIE 211 : Electronic Devices and Circuit Design II Lecture 1: Introduction ENE/EIE 211 : Electronic Devices and Circuit Design II Lecture 1: Introduction 1/14/2018 1 Course Name: ENE/EIE 211 Electronic Devices and Circuit Design II Credits: 3 Prerequisite: ENE/EIE 210 Electronic

More information

Operational Amplifier (Op-Amp)

Operational Amplifier (Op-Amp) Operational Amplifier (Op-Amp) 1 Contents Op-Amp Characteristics Op-Amp Circuits - Noninverting Amplifier - Inverting Amplifier - Comparator - Differential - Summing - Integrator - Differentiator 2 Introduction

More information

Transistors as Amplifiers

Transistors as Amplifiers Transistors as Amplifiers The transistor works in the active region (a F ) around the quiescent point QP dc supply (dc voltage sources, dc current sources) asic amplifier with one transistor: S and amplifiers

More information

Operational Amplifiers

Operational Amplifiers CHAPTER 5 Operational Amplifiers Operational amplifiers (or Op Amp) is an active circuit element that can perform mathematical operations between signals (e.g., amplify, sum, subtract, multiply, divide,

More information

ELC224 Final Review (12/10/2009) Name:

ELC224 Final Review (12/10/2009) Name: ELC224 Final Review (12/10/2009) Name: Select the correct answer to the problems 1 through 20. 1. A common-emitter amplifier that uses direct coupling is an example of a dc amplifier. 2. The frequency

More information

Lecture 12. Single Stage FET Amplifiers: Common Gate Amplifier Common Drain Amplifier. The Building Blocks of Analog Circuits - II

Lecture 12. Single Stage FET Amplifiers: Common Gate Amplifier Common Drain Amplifier. The Building Blocks of Analog Circuits - II Lecture 12 Single Stage FET Amplifiers: Common Amplifier Common Amplifier The Building Blocks of Analog Circuits II In this lecture you will learn: Common (CG) and Common (CD) Amplifiers Small signal models

More information

Microprocessor based process control

Microprocessor based process control Microprocessor based process control Presented by Dr. Walid Ghoneim Lecture on: Op Amps and Their Applications in Signal Conditioning References: Op Amps for Everyone, MANCINI, R. (2002). The Forrest Mims

More information

Università degli Studi di Roma Tor Vergata Dipartimento di Ingegneria Elettronica. Analogue Electronics. Paolo Colantonio A.A.

Università degli Studi di Roma Tor Vergata Dipartimento di Ingegneria Elettronica. Analogue Electronics. Paolo Colantonio A.A. Università degli Studi di Roma Tor Vergata Dipartimento di Ingegneria Elettronica Analogue Electronics Paolo Colantonio A.A. 2056 Operational amplifiers (op amps) Operational amplifiers (op amps) are among

More information