ECET DAQ & Control Systems

Size: px
Start display at page:

Download "ECET DAQ & Control Systems"

Transcription

1 1 Electrical Engineering Technology ECET DAQ & Control Systems Lecture # 11 Inverting Amplifier & Summer Professors Robert Herrick & J. Michael Jacob Purdue University ECET DAQ & Systems Control

2 2 Electrical Engineering Technology ECET DAQ & Control Systems Lecture # 11 Inverting Amplifier and Summer Professors Robert Herrick & J. Michael Jacob Module 1 Non-Inverting Amplifier Review

3 ECET Data Acquisition and Systems Control Lecture # 11 NI Amp Review and Inverting Amplifiers Professors Robert Herrick & J. Michael Jacob 3 1. Non-inverting Amplifer Review 2. Inverting Amplifer 3. Inverting Summer Amplifier 4. Superposition of Signals - Mixing 5. Zero and Span Purdue University ECET DAQ & Systems Control

4 Resistor Color Code 4 Nominal resistance 1. Red 2. Red 3. Red 4. Gold Purdue University ECET DAQ & Systems Control

5 ECET Data Acquisition and Systems Control Lecture # 11 NI Amp Review and Inverting Amplifiers Professors Robert Herrick & J. Michael Jacob 5 Lab 6: Voltage Follower (Buffer Amplifier) Lab Vin Vout a AC signal Cable GND Bus Top Rail GND Bus Top Rail

6 First Review Noninverting, Negative Feedback Amplifier Teams of 3 Find the NEXT value 30 seconds each 6 Complete Circuit Analysis V a = 2V 0V = 2V 2 V 2 V 0 A 0 V 0 A Thing 6k Purdue University - 6V+ 9mA 1mA 8 V 8mA 1k V Ri = 2V 0V = 2V I Ri = 2V/2kΩ = 1mA I Rf = I 1k Ri = 1mA V Rf = 1mA 6kΩ = 6V V out = 2V +6 V = 8V I load = 8V /1kΩ = 8mΑ 2k 1mA I op amp out = 1mA +8mA = 9 ma ECET DAQ & Systems Control

7 Noninverting, Negative Feedback Amplifier Given Output is 8V Find Input Voltage 7 Reverse Solution 2 V 0 A 0 V 8 V Apply VDR to 0 A 2kΩ 2 V 6k Purdue University 1k & 6kΩ 2k ECET DAQ & Systems Control

8 Inverting, Negative Feedback Amplifier 8 Find A V Voltage Gain First Then Find V IN 2 V 8 V Output across 8kΩ Input across 2kΩ 6k Purdue University 1k AA V = 2kkΩ+6kkΩ 2kkΩ = 4 2k VV iiii = 8 V 4 = 2V ECET DAQ & Systems Control

9 9 MultiSim Simulation Not Inverted 1 V 4 V Output 1 V Input Purdue University - 3 V+ ECET Input & Output In Phase DAQ & Systems Control

10 ECET Data Acquisition and Systems Control Lecture # 11 NI Amp Review and Inverting Amplifiers Professors Robert Herrick & J. Michael Jacob Non-inverting Amplifer Review 2. Inverting Amplifer 3. Inverting Summer Amplifier 4. Superposition of Signals - Mixing 5. Zero and Span Purdue University ECET DAQ & Systems Control

11 11 Electrical Engineering Technology ECET DAQ & Control Systems Lecture # 11 Inverting Amplifier and Summer Professors Robert Herrick & J. Michael Jacob Module 2 Inverting Amplifier

12 ECET Data Acquisition and Systems Control Lecture # 11 NI Amp Review and Inverting Amplifiers Professors Robert Herrick & J. Michael Jacob Non-inverting Amplifer Review 2. Inverting Amplifer 3. Inverting Summer Amplifier 4. Superposition of Signals - Mixing 5. Zero and Span Purdue University ECET DAQ & Systems Control

13 13 Inverting, Negative Feedback Amplifier Non-inverting Inverting Move input signal as shown 5 6k +15V LM V LM R f -15 V R f -15 V R i 2k 6k R i 2k 6k Purdue University ECET DAQ & Systems Control

14 14 Inverting, Negative Feedback Amplifier Same circuits! 5 +15V 6k V LM324 7 R i 2k 6 R f 6k LM V 7 R i R f -15 V 2k 6k Purdue University ECET DAQ & Systems Control

15 15 Inverting, Negative Feedback Amplifier As before, first find the voltage on the non-inverting terminal which is now 0V! 0V 0V 0V R in = R i = 2 kω Virtual Common Purdue University ECET DAQ & Systems Control

16 16 Inverting, Negative Feedback Amplifier 1 V 0V 0V +1V- 6k +3V- v out Where do we start? -3V NI pin at 0V Next? V Ri? V Rf? 1 V rms V out? Purdue University ECET DAQ & Systems Control

17 17 Inverting, Negative Feedback Amplifier 0V 0V +1V- 6k +3V- -3V RMS always + thus 3V rms Inverted 1 V 1 V rms Purdue University ECET DAQ & Systems Control

18 Inverting, Negative Feedback Amplifier A V Voltage Gain Approach 18-3V AA V = 3 V 1 V = -3 1V 6k 0V 2k AA V = RR ff RR ii AA V = 6 kkω 2 kkω = 3 1 V rms V out = A V V in = -3 1 V = -3 V Purdue University ECET DAQ & Systems Control

19 MultiSim phase inverted 19-3 V 3 V RMS inverted Values check 1 V 0 V Output 3 V RMS, 180 phase shift Out of Phase Purdue University ECET DAQ & Systems Control

20 ECET Data Acquisition and Systems Control Lecture # 11 NI Amp Review and Inverting Amplifiers Professors Robert Herrick & J. Michael Jacob Non-inverting Amplifer Review 2. Inverting Amplifer 3. Inverting Summer Amplifier 4. Superposition of Signals - Mixing 5. Zero and Span Purdue University ECET DAQ & Systems Control

21 21 Electrical Engineering Technology ECET DAQ & Control Systems Lecture # 11 Inverting Amplifier and Summer Professors Robert Herrick & J. Michael Jacob Module 3 Inverting Summer Amplifier

22 ECET Data Acquisition and Systems Control Lecture # 11 NI Amp Review and Inverting Amplifiers Professors Robert Herrick & J. Michael Jacob Non-inverting Amplifer Review 2. Inverting Amplifer 3. Inverting Summer Amplifier 4. Superposition of Signals - Mixing 5. Zero and Span Purdue University ECET DAQ & Systems Control

23 Inverting Summer 23 Do this twice: DC & AC 0V 5 +15V LM324-3V rms -4V dc 7 0V 6 V out 1 = R R f i-1 e in1 6k AC 1V e in 1 1V rms R i-1 2k R f 6k -15 V A V = -3 V OUT 2 = R R f i-2 E in 2 DC 2V E in 2 2V dc R i-2 3 k A V = -2 Purdue University ECET DAQ & Systems Control

24 MultiSim inverting summer 24 VV oooooo aaaa rrrrrr = VV rrrrrr iiiiiiiiiiiiiiii 1111 = 33VV VV oooooo pp = = VV PP Purdue University ECET VV oooooo dddd = DAQ & Systems Control = 44VV dddd

25 25 Inverter Summer Output SSSSSSSS WWWWWWWW VV p +10V v(t) 0.2VV mmmmmm 44VV dddd 44VV dddd 0V t (ms) -10V -8.2VV mmmmmm Purdue University ECET DAQ & Systems Control

26 ECET Data Acquisition and Systems Control Lecture # 11 NI Amp Review and Inverting Amplifiers Professors Robert Herrick & J. Michael Jacob Non-inverting Amplifer Review 2. Inverting Amplifer 3. Inverting Summer Amplifier 4. Superposition of Signals - Mixing 5. Zero and Span Purdue University ECET DAQ & Systems Control

27 27 Electrical Engineering Technology ECET DAQ & Control Systems Lecture # 11 Inverting Amplifier and Summer Professors Robert Herrick & J. Michael Jacob Module 4 Superposition of Signals

28 ECET Data Acquisition and Systems Control Lecture # 11 NI Amp Review and Inverting Amplifiers Professors Robert Herrick & J. Michael Jacob Non-inverting Amplifer Review 2. Inverting Amplifer 3. Inverting Summer Amplifier 4. Superposition of Signals - Mixing 5. Zero and Span Purdue University ECET DAQ & Systems Control

29 Musical Scale 29 Synergetic Audio Concepts p 9 ABCDEFG ABCDEFG Middle E Scale Note E 4 4 th Octave 330 Hz Purdue University ECET DAQ & Systems Control

30 30 Superposition Middle E musical note TWO questions you must answer about the op amp circuit first 1. Negative feedback yes Amplifier 2. Input signal to op amp input Inverting Amplifier Purdue University ECET DAQ & Systems Control

31 31 Superposition Summer Circuit Amp + 1 V 2 V 3 V AA VV = 1111 kkωω 1111 kkωω = 1 Purdue University ECET DAQ & Systems Control

32 32 Superposition Voltage across R f Middle E note 330 Hz V Rf (V) 1 V p 2 V p 3 V p V Rf total (V) 6 Separate Input Signals V out would be inverted 6 R f Superimposed Composite Signal Purdue University ECET DAQ & Systems Control

33 Musical Scale 3 notes 33 Synergetic Audio Concepts p 9 C E G chord Purdue University ECET DAQ & Systems Control

34 34 Superposition Middle C, E, G musical notes Mixing 3 different freqencies Purdue University ECET DAQ & Systems Control

35 Superposition Mixed f Middle C, E, G V Rf (V) 35 Scale Notes C 262 Hz E 330 Hz G 392 Hz V Rf (V) All 3 signals mixed together! V out would be inverted Purdue University ECET DAQ & Systems Control

36 36 Electrical Engineering Technology ECET DAQ & Control Systems Lecture # 11 Inverting Amplifier and Summer Professors Robert Herrick & J. Michael Jacob Module 5 Zero and Span

37 ECET Data Acquisition and Systems Control Lecture # 11 NI Amp Review and Inverting Amplifiers Professors Robert Herrick & J. Michael Jacob Non-inverting Amplifer Review 2. Inverting Amplifer 3. Inverting Summer Amplifier 4. Superposition of Signals - Mixing 5. Zero and Span Purdue University ECET DAQ & Systems Control

38 Zero and Span Amplifier V +15 V A=10 5 A= mv reference f 1 15 V 15 V V 1_out 1.8 k 1 k 10 k 10 k V out I I 1_f I 1_out I ref 2_f I in A V = 1kΩ / 1.8kΩ = 5/9 f 2 T C 10mV/ C T F 10mV/ F +15V T LM 34 10mV/ F V in 1.8 k This circuit converts o F to o C. T C =5/9 (T F 32 ) Span Zero Purdue University ECET DAQ & Systems Control

39 Zero and Span Amplifier 39 0 A +15 V 0 A +15 V 0 A + 0 V A= A + 0 V A= mv reference 320 mv + 15 V 1.8 k 0 V 1 k 1 V 10 k 0 V 10 k V out µa 1 ma + 1 V 1 ma 15 V 100 µa 1 V + 1 V µa 100 C 1.00 V T C T F +15V T LM ma 1.8 k 2.12 V + Convert sensor reading of 212 F to C 10mV/ C 10mV/ F 10mV/ F V in 212 F 2.12 V T C =5/9 (212 F 32 F) = 100 C Purdue University ECET DAQ & Systems Control

40 ECET Data Acquisition and Systems Control Lecture # 11 NI Amp Review and Inverting Amplifiers Professors Robert Herrick & J. Michael Jacob Non-inverting Amplifer Review 2. Inverting Amplifer 3. Inverting Summer Amplifier 4. Superposition of Signals - Mixing 5. Zero and Span Purdue University ECET DAQ & Systems Control

Special-Purpose Operational Amplifier Circuits

Special-Purpose Operational Amplifier Circuits Special-Purpose Operational Amplifier Circuits Instrumentation Amplifier An instrumentation amplifier (IA) is a differential voltagegain device that amplifies the difference between the voltages existing

More information

Diode Circuits Recent GATE Problems

Diode Circuits Recent GATE Problems Diode Circuits Recent GATE Problems 1. The diodes and capacitors in the circuit shown are ideal. The voltage v(t) across the diode DD 1 is CC 1 DD 2 cos(ωωωω) AC DD 1 CC 1 (a) cos(ωωωω) 1 (b) sin(ωωωω)

More information

or Op Amps for short

or Op Amps for short or Op Amps for short Objective of Lecture Describe how an ideal operational amplifier (op amp) behaves. Chapter 14.1 Electrical Engineering: Principles and Applications Chapter 5.1-5.3 Fundamentals of

More information

Lesson number one. Operational Amplifier Basics

Lesson number one. Operational Amplifier Basics What About Lesson number one Operational Amplifier Basics As well as resistors and capacitors, Operational Amplifiers, or Op-amps as they are more commonly called, are one of the basic building blocks

More information

Sensor Interfacing and Operational Amplifiers Lab 3

Sensor Interfacing and Operational Amplifiers Lab 3 Name Lab Day Lab Time Sensor Interfacing and Operational Amplifiers Lab 3 Introduction: In this lab you will design and build a circuit that will convert the temperature indicated by a thermistor s resistance

More information

Introduction to Operational Amplifiers

Introduction to Operational Amplifiers P. R. Nelson ECE 322 Fall 2012 p. 1/50 Introduction to Operational Amplifiers Phyllis R. Nelson prnelson@csupomona.edu Professor, Department of Electrical and Computer Engineering California State Polytechnic

More information

Homework Assignment 13

Homework Assignment 13 Question 1 Short Takes 2 points each. Homework Assignment 13 1. Classify the type of feedback uses in the circuit below (i.e., shunt-shunt, series-shunt, ) 2. True or false: an engineer uses series-shunt

More information

Module 9C: The Voltage Comparator (Application: PWM Control via a Reference Voltage)

Module 9C: The Voltage Comparator (Application: PWM Control via a Reference Voltage) Explore More! Points awarded: Module 9C: The Voltage Comparator (Application: PWM Control via a Reference Voltage) Name: Net ID: Laboratory Outline A voltage comparator considers two voltage waveforms,

More information

EE 210: CIRCUITS AND DEVICES

EE 210: CIRCUITS AND DEVICES EE 210: CIRCUITS AND DEVICES OPERATIONAL AMPLIFIERS PART II This is the second of two laboratory sessions that provide an introduction to the op amp. In this session you will study three amplifiers designs:

More information

Introduction to Analog Interfacing. ECE/CS 5780/6780: Embedded System Design. Various Op Amps. Ideal Op Amps

Introduction to Analog Interfacing. ECE/CS 5780/6780: Embedded System Design. Various Op Amps. Ideal Op Amps Introduction to Analog Interfacing ECE/CS 5780/6780: Embedded System Design Scott R. Little Lecture 19: Operational Amplifiers Most embedded systems include components that measure and/or control real-world

More information

To configure op-amp in inverting and non-inverting amplifier mode and measure their gain.

To configure op-amp in inverting and non-inverting amplifier mode and measure their gain. AIM: SUBJECT: ANALOG ELECTRONICS (2392) EXPERIMENT NO. 5 DATE : TITLE: TO CONFIGURE OP-AMP IN INVERTING AND NON- INVERTING AMPLIFIER MODE AND MEASURE THEIR GAIN. DOC. CODE : DIET/EE/3 rd SEM REV. NO. :./JUNE-25

More information

MOSFET Amplifier Design Project Electrical Engineering 310 Section 002 Shawn Moser

MOSFET Amplifier Design Project Electrical Engineering 310 Section 002 Shawn Moser MOSFET Amplifier Design Project Electrical Engineering 0 Section 00 Shawn Moser Introduction: In this lab, my partner and I were tasked with the construction of a linear electronic circuit that functions

More information

Lecture 11. Operational Amplifier (opamp)

Lecture 11. Operational Amplifier (opamp) Lecture 11 Operational Amplifier (opamp) Peter Cheung Department of Electrical & Electronic Engineering Imperial College London URL: www.ee.ic.ac.uk/pcheung/teaching/de1_ee/ E-mail: p.cheung@imperial.ac.uk

More information

Ideal Op Amps. The Two Golden Rules for circuits with ideal op-amps*

Ideal Op Amps. The Two Golden Rules for circuits with ideal op-amps* Ideal Op Amps The Two Golden Rules for circuits with ideal op-amps* No voltage difference between op-amp input terminals No current into op-amp inputs * when used in negative feedback amplifiers 1 Approach

More information

Analog Electronics. Lecture Pearson Education. Upper Saddle River, NJ, All rights reserved.

Analog Electronics. Lecture Pearson Education. Upper Saddle River, NJ, All rights reserved. Analog Electronics V Lecture 5 V Operational Amplifers Op-amp is an electronic device that amplify the difference of voltage at its two inputs. V V 8 1 DIP 8 1 DIP 20 SMT 1 8 1 SMT Operational Amplifers

More information

Analog Circuits Part 3 Operational Amplifiers

Analog Circuits Part 3 Operational Amplifiers Introductory Medical Device Prototyping Analog Circuits Part 3 Operational Amplifiers, http://saliterman.umn.edu/ Department of Biomedical Engineering, University of Minnesota Concepts to be Reviewed Operational

More information

EET 438a Automatic Control Systems Technology Laboratory 1 Analog Sensor Signal Conditioning

EET 438a Automatic Control Systems Technology Laboratory 1 Analog Sensor Signal Conditioning EET 438a Automatic Control Systems Technology Laboratory 1 Analog Sensor Signal Conditioning Objectives: Use analog OP AMP circuits to scale the output of a sensor to signal levels commonly found in practical

More information

California University of Pennsylvania. Department of Applied Engineering & Technology. Electrical / Computer Engineering Technology

California University of Pennsylvania. Department of Applied Engineering & Technology. Electrical / Computer Engineering Technology California University of Pennsylvania Department of Applied Engineering & Technology Electrical / Computer Engineering Technology EET 215: Introduction to Instrumentations Lab No.5b Operational Amplifier

More information

Chapter 3: Operational Amplifiers

Chapter 3: Operational Amplifiers Chapter 3: Operational Amplifiers 1 OPERATIONAL AMPLIFIERS Having learned the basic laws and theorems for circuit analysis, we are now ready to study an active circuit element of paramount importance:

More information

APPLICATION BULLETIN

APPLICATION BULLETIN APPLICATION BULLETIN Mailing Address: PO Box 11400 Tucson, AZ 85734 Street Address: 6730 S. Tucson Blvd. Tucson, AZ 85706 Tel: (602 746-1111 Twx: 910-952-111 Telex: 066-6491 FAX (602 889-1510 Immediate

More information

EE 3111 Lab 7.1. BJT Amplifiers

EE 3111 Lab 7.1. BJT Amplifiers EE 3111 Lab 7.1 BJT Amplifiers BJT Amplifier Device/circuit that alters the amplitude of a signal, while keeping input waveform shape BJT amplifiers run the BJT in active mode. Forward current gain is

More information

CENG4480 Embedded System Development and Applications The Chinese University of Hong Kong Laboratory 1: Op Amp (I)

CENG4480 Embedded System Development and Applications The Chinese University of Hong Kong Laboratory 1: Op Amp (I) CENG4480 Embedded System Development and Applications The Chinese University of Hong Kong Laboratory 1: Op Amp (I) Student ID: 2018 Fall 1 Introduction This lab session introduces some very basic concepts

More information

ECEN Network Analysis Section 3. Laboratory Manual

ECEN Network Analysis Section 3. Laboratory Manual ECEN 3714----Network Analysis Section 3 Laboratory Manual LAB 07: Active Low Pass Filter Oklahoma State University School of Electrical and Computer Engineering. Section 3 Laboratory manual - 1 - Spring

More information

EE 3305 Lab I Revised July 18, 2003

EE 3305 Lab I Revised July 18, 2003 Operational Amplifiers Operational amplifiers are high-gain amplifiers with a similar general description typified by the most famous example, the LM741. The LM741 is used for many amplifier varieties

More information

Amplifier Basics A small signal is amplified to a large signal Gain is determined by the function of Vout/Vin or Iout/Iin or Pout/Pin Most amplifiers

Amplifier Basics A small signal is amplified to a large signal Gain is determined by the function of Vout/Vin or Iout/Iin or Pout/Pin Most amplifiers Op Amps Amplifier Basics A small signal is amplified to a large signal Gain is determined by the function of Vout/Vin or Iout/Iin or Pout/Pin Most amplifiers are frequency specific i.e. they only operate

More information

Assist Lecturer: Marwa Maki. Active Filters

Assist Lecturer: Marwa Maki. Active Filters Active Filters In past lecture we noticed that the main disadvantage of Passive Filters is that the amplitude of the output signals is less than that of the input signals, i.e., the gain is never greater

More information

Chapter 9: Operational Amplifiers

Chapter 9: Operational Amplifiers Chapter 9: Operational Amplifiers The Operational Amplifier (or op-amp) is the ideal, simple amplifier. It is an integrated circuit (IC). An IC contains many discrete components (resistors, capacitors,

More information

BME/ISE 3512 Bioelectronics. Laboratory Five - Operational Amplifiers

BME/ISE 3512 Bioelectronics. Laboratory Five - Operational Amplifiers BME/ISE 3512 Bioelectronics Laboratory Five - Operational Amplifiers Learning Objectives: Be familiar with the operation of a basic op-amp circuit. Be familiar with the characteristics of both ideal and

More information

Section3 Chapter 2: Operational Amplifiers

Section3 Chapter 2: Operational Amplifiers 2012 Section3 Chapter 2: Operational Amplifiers Reference : Microelectronic circuits Sedra six edition 1/10/2012 Contents: 1- THE Ideal operational amplifier 2- Inverting configuration a. Closed loop gain

More information

using dc inputs. You will verify circuit operation with a multimeter.

using dc inputs. You will verify circuit operation with a multimeter. Op Amp Fundamentals using dc inputs. You will verify circuit operation with a multimeter. FACET by Lab-Volt 77 Op Amp Fundamentals O circuit common. a. inverts the input voltage polarity. b. does not invert

More information

INTRODUCTION. Figure 1 Three-terminal op amp symbol.

INTRODUCTION. Figure 1 Three-terminal op amp symbol. Page 1/6 Revision 0 16-Jun-10 OBJECTIVES To reinforce the concepts behind operational amplifier analysis. Verification of operational amplifier theory and analysis. To successfully interpret and implement

More information

E40M. Instrumentation Amps and Noise. M. Horowitz, J. Plummer, R. Howe 1

E40M. Instrumentation Amps and Noise. M. Horowitz, J. Plummer, R. Howe 1 E40M Instrumentation Amps and Noise M. Horowitz, J. Plummer, R. Howe 1 ECG Lab - Electrical Picture Signal amplitude 1 mv Noise level will be significant will need to amplify and filter We ll use filtering

More information

Michael Tang TA: Ketobi 7/18/13

Michael Tang TA: Ketobi 7/18/13 Michael Tang TA: Ketobi 7/18/13 Lab Station #5 Section 1 Partners: Matt, Ryan Task 1: Basic Inverting Amplifier For this task, a basic inverting amplifier was needed to be designed to amplify the output

More information

Dimensions in inches (mm) .268 (6.81).255 (6.48) .390 (9.91).379 (9.63) .045 (1.14).030 (.76) 4 Typ. Figure 1. Typical application circuit.

Dimensions in inches (mm) .268 (6.81).255 (6.48) .390 (9.91).379 (9.63) .045 (1.14).030 (.76) 4 Typ. Figure 1. Typical application circuit. LINEAR OPTOCOUPLER FEATURES Couples AC and DC signals.% Servo Linearity Wide Bandwidth, > KHz High Gain Stability, ±.%/C Low Input-Output Capacitance Low Power Consumption, < mw Isolation Test Voltage,

More information

Laboratory 4 Operational Amplifier Department of Mechanical and Aerospace Engineering University of California, San Diego MAE170

Laboratory 4 Operational Amplifier Department of Mechanical and Aerospace Engineering University of California, San Diego MAE170 Laboratory 4 Operational Amplifier Department of Mechanical and Aerospace Engineering University of California, San Diego MAE170 Megan Ong Diana Wu Wong B01 Tuesday 11am April 28 st, 2015 Abstract: The

More information

USER MANUAL FOR THE LM2901 QUAD VOLTAGE COMPARATOR FUNCTIONAL MODULE

USER MANUAL FOR THE LM2901 QUAD VOLTAGE COMPARATOR FUNCTIONAL MODULE USER MANUAL FOR THE LM2901 QUAD VOLTAGE COMPARATOR FUNCTIONAL MODULE LM2901 Quad Voltage Comparator 1 5/18/04 TABLE OF CONTENTS 1. Index of Figures....3 2. Index of Tables. 3 3. Introduction.. 4-5 4. Theory

More information

Homework Assignment Consider the circuit shown. Assume ideal op-amp behavior. Which statement below is true?

Homework Assignment Consider the circuit shown. Assume ideal op-amp behavior. Which statement below is true? Question 1 (2 points each unless noted otherwise) Homework Assignment 03 1. Consider the circuit shown. Assume ideal op-amp behavior. Which statement below is true? (a) V = VV + = 5 V (op-amp operation)

More information

Practical 2P12 Semiconductor Devices

Practical 2P12 Semiconductor Devices Practical 2P12 Semiconductor Devices What you should learn from this practical Science This practical illustrates some points from the lecture courses on Semiconductor Materials and Semiconductor Devices

More information

Chapter 2. Operational Amplifiers

Chapter 2. Operational Amplifiers Chapter 2. Operational Amplifiers Tong In Oh 1 2.3 The Noninverting Configuration v I is applied directly to the positive input terminal of the op amp One terminal of is connected to ground Closed-loop

More information

Example #6 1. An amplifier with a nominal gain

Example #6 1. An amplifier with a nominal gain 1. An amplifier with a nominal gain A=1000 V/V exhibits a gain change of 10% as the operating temperature changes from 25 o C to 75 o C. If it is required to constrain the change to 0.1% by applying negative

More information

ECE3204 D2015 Lab 1. See suggested breadboard configuration on following page!

ECE3204 D2015 Lab 1. See suggested breadboard configuration on following page! ECE3204 D2015 Lab 1 The Operational Amplifier: Inverting and Non-inverting Gain Configurations Gain-Bandwidth Product Relationship Frequency Response Limitation Transfer Function Measurement DC Errors

More information

OCR Electronics for A2 MOSFETs Variable resistors

OCR Electronics for A2 MOSFETs Variable resistors Resistance characteristic You are going to find out how the drain-source resistance R d of a MOSFET depends on its gate-source voltage V gs when the drain-source voltage V ds is very small. 1 Assemble

More information

Lab 9: Operational amplifiers II (version 1.5)

Lab 9: Operational amplifiers II (version 1.5) Lab 9: Operational amplifiers II (version 1.5) WARNING: Use electrical test equipment with care! Always double-check connections before applying power. Look for short circuits, which can quickly destroy

More information

v 0 = A (v + - v - ) (1)

v 0 = A (v + - v - ) (1) UNIVERSITI TEKNOLOGI MALAYSIA KURSUS KEJURUTERAAN ELEKTRIK ELECTRONIC ENGINEERING LABORATORY 2 EXPERIMENT 2 : OPERATIONAL AMPLIFIER PRELIMINARY REPORT Name : Section : Group : Lecturer : Marks : 20 Attach

More information

Zero Drift, Unidirectional Current Shunt Monitor AD8219

Zero Drift, Unidirectional Current Shunt Monitor AD8219 Zero Drift, Unidirectional Current Shunt Monitor FEATURES High common-mode voltage range 4 V to 8 V operating.3 V to +85 V survival Buffered output voltage Gain = 6 V/V Wide operating temperature range:

More information

High Resolution, Zero-Drift Current Shunt Monitor AD8217

High Resolution, Zero-Drift Current Shunt Monitor AD8217 High Resolution, Zero-Drift Current Shunt Monitor AD8217 FEATURES High common-mode voltage range 4.5 V to 8 V operating V to 85 V survival Buffered output voltage Wide operating temperature range: 4 C

More information

Data Conversion and Lab Lab 1 Fall Operational Amplifiers

Data Conversion and Lab Lab 1 Fall Operational Amplifiers Operational Amplifiers Lab Report Objectives Materials See separate report form located on the course webpage. This form should be completed during the performance of this lab. 1) To construct and operate

More information

University of Portland EE 271 Electrical Circuits Laboratory. Experiment: Op Amps

University of Portland EE 271 Electrical Circuits Laboratory. Experiment: Op Amps University of Portland EE 271 Electrical Circuits Laboratory Experiment: Op Amps I. Objective The objective of this experiment is to learn how to use an op amp circuit to prevent loading and to amplify

More information

Analog front-end electronics

Analog front-end electronics FYS3240 PC-based instrumentation and microcontrollers Analog front-end electronics Spring 2017 Lecture #6 Bekkeng, 30.1.2017 Considerations for analog signals Signal source - grounded or floating Source

More information

Chapter 9: Operational Amplifiers

Chapter 9: Operational Amplifiers Chapter 9: Operational Amplifiers The Operational Amplifier (or op-amp) is the ideal, simple amplifier. It is an integrated circuit (IC). An IC contains many discrete components (resistors, capacitors,

More information

Lab 10: Single Supply Amplifier

Lab 10: Single Supply Amplifier Overview This lab assignment implements an inverting voltage amplifier circuit with a single power supply. The amplifier output contains a bias point which is removed by AC coupling the output signal.

More information

Operational Amplifiers

Operational Amplifiers Operational Amplifiers From: http://ume.gatech.edu/mechatroni cs_course/opamp_f11.ppt What is an Op-Amp? The Surface An Operational Amplifier (Op-Amp) is an integrated circuit that uses external voltage

More information

Laboratory 8 Operational Amplifiers and Analog Computers

Laboratory 8 Operational Amplifiers and Analog Computers Laboratory 8 Operational Amplifiers and Analog Computers Introduction Laboratory 8 page 1 of 6 Parts List LM324 dual op amp Various resistors and caps Pushbutton switch (SPST, NO) In this lab, you will

More information

Lab 2 Operational Amplifier

Lab 2 Operational Amplifier Lab 2 Operational Amplifier Last Name: First Name: Student Number: Lab Section: Monday Tuesday Wednesday Thursday Friday TA Signature: Note: The Pre-Lab section must be completed prior to the lab session.

More information

Electronics - PHYS 2371/2 TODAY

Electronics - PHYS 2371/2 TODAY TODAY 4-terminal linear amplifier Op-Amp Basics, Ch-28, 31 Op-Amp Golden Rules for operation Op-amp gain, impedance, frequency response Videos Lab-6 Overview 1 Review Semiconductors Semiconductors Resistivity

More information

Input Offset Voltage (V OS ) & Input Bias Current (I B )

Input Offset Voltage (V OS ) & Input Bias Current (I B ) Input Offset Voltage (V OS ) & Input Bias Current (I B ) TIPL 1100 TI Precision Labs Op Amps Presented by Ian Williams Prepared by Art Kay and Ian Williams Hello, and welcome to the TI Precision Lab discussing

More information

Microprocessor based process control

Microprocessor based process control Microprocessor based process control Presented by Dr. Walid Ghoneim Lecture on: Op Amps and Their Applications in Signal Conditioning References: Op Amps for Everyone, MANCINI, R. (2002). The Forrest Mims

More information

MAX44265 Evaluation Kit Evaluates: MAX44265

MAX44265 Evaluation Kit Evaluates: MAX44265 19-5782; Rev 0; 3/11 MAX44265 Evaluation Kit General Description The MAX44265 evaluation kit (EV kit) provides a proven design to evaluate the MAX44265 low-power, MOS-input operational amplifier (op amp)

More information

Intruder Alarm Name Mohamed Alsubaie MMU ID Supervisor Pr. Nicholas Bowring Subject Electronic Engineering Unit code 64ET3516

Intruder Alarm Name Mohamed Alsubaie MMU ID Supervisor Pr. Nicholas Bowring Subject Electronic Engineering Unit code 64ET3516 Intruder Alarm Name MMU ID Supervisor Subject Unit code Course Mohamed Alsubaie 09562211 Pr. Nicholas Bowring Electronic Engineering 64ET3516 BEng (Hons) Computer and Communication Engineering 1. Introduction

More information

AD8218 REVISION HISTORY

AD8218 REVISION HISTORY Zero Drift, Bidirectional Current Shunt Monitor FEATURES High common-mode voltage range 4 V to 8 V operating.3 V to 85 V survival Buffered output voltage Gain = 2 V/V Wide operating temperature range:

More information

Homework Assignment 03

Homework Assignment 03 Homework Assignment 03 Question 1 (Short Takes), 2 points each unless otherwise noted. 1. Two 0.68 μf capacitors are connected in series across a 10 khz sine wave signal source. The total capacitive reactance

More information

EKT 314 ELECTRONIC INSTRUMENTATION

EKT 314 ELECTRONIC INSTRUMENTATION EKT 314 ELECTRONIC INSTRUMENTATION Elektronik Instrumentasi Semester 2 2012/2013 Chapter 3 Analog Signal Conditioning Session 2 Mr. Fazrul Faiz Zakaria school of computer and communication engineering.

More information

Designing Information Devices and Systems I Discussion 10A

Designing Information Devices and Systems I Discussion 10A Last Updated: 2019-04-09 07:42 1 EECS 16A Spring 2019 Designing Information Devices and Systems I Discussion 10A For Reference: Circuits Cookbook, Abridged Voltage Divider Voltage Summer Unity Gain Buffer

More information

Operational Amplifiers

Operational Amplifiers Operational Amplifiers November 23, 2017 1 Pre-lab Calculations 1) Calculate the gain for all four circuits in Fig. 3. 2 Introduction Operational Amplifiers? They should call them fun amplifiers. Because,

More information

Assignment 11. 1) Using the LM741 op-amp IC a circuit is designed as shown, then find the output waveform for an input of 5kHz

Assignment 11. 1) Using the LM741 op-amp IC a circuit is designed as shown, then find the output waveform for an input of 5kHz Assignment 11 1) Using the LM741 op-amp IC a circuit is designed as shown, then find the output waveform for an input of 5kHz Vo = 1 x R1Cf 0 Vin t dt, voltage output for the op amp integrator 0.1 m 1

More information

Lecture 14 Interface Electronics (Part 2) ECE 5900/6900 Fundamentals of Sensor Design

Lecture 14 Interface Electronics (Part 2) ECE 5900/6900 Fundamentals of Sensor Design EE 4900: Fundamentals of Sensor Design 1 Lecture 14 Interface Electronics (Part 2) Interface Electronics (Part 2) 2 Linearizing Bridge Circuits (Sensor Tech Hand book) Precision Op amps, Auto Zero Op amps,

More information

2. The. op-amp in and 10K. (a) 0 Ω. (c) 0.2% (d) (a) 0.02K. (b) 4. The. 5 V, then. 0V (virtual. (a) (c) Fall V. (d) V.

2. The. op-amp in and 10K. (a) 0 Ω. (c) 0.2% (d) (a) 0.02K. (b) 4. The. 5 V, then. 0V (virtual. (a) (c) Fall V. (d) V. Homework Assignment 04 Question 1 (2 points each unless noted otherwise) 1. A 9-V dc power supply generates 10 W in a resistor. What peak-to-peak amplitude should an ac source have to generate the same

More information

What is an Op-Amp? The Surface

What is an Op-Amp? The Surface What is an Op-Amp? The Surface An Operational Amplifier (Op-Amp) is an integrated circuit that uses external voltage to amplify the input through a very high gain. We recognize an Op-Amp as a massproduced

More information

CENG4480 Lecture 02: Operational Amplifier 1

CENG4480 Lecture 02: Operational Amplifier 1 CENG4480 Lecture 02: Operational Amplifier 1 Bei Yu 2016 Fall byu@cse.cuhk.edu.hk 1 / 33 Overview Introduction Op-Amp Preliminaries Op-Amp List 2 / 33 Overview Introduction Op-Amp Preliminaries Op-Amp

More information

An electronic unit that behaves like a voltagecontrolled

An electronic unit that behaves like a voltagecontrolled 1 An electronic unit that behaves like a voltagecontrolled voltage source. An active circuit element that amplifies, sums, subtracts, multiply, divide, differentiate or integrates a signal 2 A typical

More information

VOUT = 5V VIN = 8V COUT CIN SENSE RPG EN/ UVLO OFF GND VOUT = 5V VIN = 8V CIN ADJ RPG EN/ UVLO OFF GND

VOUT = 5V VIN = 8V COUT CIN SENSE RPG EN/ UVLO OFF GND VOUT = 5V VIN = 8V CIN ADJ RPG EN/ UVLO OFF GND 956-2 956-1 VIN = 8V OFF ON CIN 1µF R1 1kΩ R2 1kΩ + VIN EN/ UVLO GND VOUT SENSE PG + COUT 1µF VOUT = 5V RPG 1kΩ PG VIN = 8V OFF ON CIN 1µF R3 1kΩ R4 1kΩ + VIN EN/ UVLO GND VOUT ADJ PG R1 4.2kΩ R2 13kΩ

More information

Homework Assignment 13

Homework Assignment 13 Question 1 Short Takes 2 points each. Homework Assignment 13 1. Classify the type of feedback uses in the circuit below (i.e., shunt-shunt, series-shunt, ) Answer: Series-shunt. 2. True or false: an engineer

More information

Homework Assignment 01

Homework Assignment 01 Homework Assignment 01 In this homework set students review some basic circuit analysis techniques, as well as review how to analyze ideal op-amp circuits. Numerical answers must be supplied using engineering

More information

L02 Operational Amplifiers Applications 1

L02 Operational Amplifiers Applications 1 L02 Operational Amplifiers Applications 1 Chapter 9 Ideal Operational Amplifiers and Op-Amp Circuits Donald A. Neamen (2009). Microelectronics: Circuit Analysis and Design, 4th Edition, Mc-Graw-Hill Prepared

More information

Experiments #7. Operational Amplifier part 1

Experiments #7. Operational Amplifier part 1 Experiments #7 Operational Amplifier part 1 1) Objectives: The objective of this lab is to study operational amplifier (op amp) and its applications. We will be simulating and building some basic op-amp

More information

BME 3512 Bioelectronics Laboratory Five - Operational Amplifiers

BME 3512 Bioelectronics Laboratory Five - Operational Amplifiers BME 351 Bioelectronics Laboratory Five - Operational Amplifiers Learning Objectives: Be familiar with the operation of a basic op-amp circuit. Be familiar with the characteristics of both ideal and real

More information

Amplification. Objective. Equipment List. Introduction. The objective of this lab is to demonstrate the basic characteristics an Op amplifier.

Amplification. Objective. Equipment List. Introduction. The objective of this lab is to demonstrate the basic characteristics an Op amplifier. Amplification Objective The objective of this lab is to demonstrate the basic characteristics an Op amplifier. Equipment List Introduction Computer running Windows (NI ELVIS installed) National Instruments

More information

C H A P T E R 02. Operational Amplifiers

C H A P T E R 02. Operational Amplifiers C H A P T E R 02 Operational Amplifiers The Op-amp Figure 2.1 Circuit symbol for the op amp. Figure 2.2 The op amp shown connected to dc power supplies. The Ideal Op-amp 1. Infinite input impedance 2.

More information

University of Pittsburgh

University of Pittsburgh University of Pittsburgh Experiment #1 Lab Report Frequency Response of Operational Amplifiers Submission Date: 05/29/2018 Instructors: Dr. Ahmed Dallal Shangqian Gao Submitted By: Nick Haver & Alex Williams

More information

Operational Amplifiers

Operational Amplifiers Fundamentals of op-amp Operation modes Golden rules of op-amp Op-amp circuits Inverting & non-inverting amplifier Unity follower, integrator & differentiator Introduction An operational amplifier, or op-amp,

More information

UNIT I. Operational Amplifiers

UNIT I. Operational Amplifiers UNIT I Operational Amplifiers Operational Amplifier: The operational amplifier is a direct-coupled high gain amplifier. It is a versatile multi-terminal device that can be used to amplify dc as well as

More information

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820 a FEATURES True Single Supply Operation Output Swings Rail-to-Rail Input Voltage Range Extends Below Ground Single Supply Capability from + V to + V Dual Supply Capability from. V to 8 V Excellent Load

More information

1) Consider the circuit shown in figure below. Compute the output waveform for an input of 5kHz

1) Consider the circuit shown in figure below. Compute the output waveform for an input of 5kHz ) Consider the circuit shown in figure below. Compute the output waveform for an input of 5kHz Solution: a) Input is of constant amplitude of 2 V from 0 to 0. ms and 2 V from 0. ms to 0.2 ms. The output

More information

EET 150 Introduction to EET Lab Activity 12 Temperature Sensor Amplifier Project

EET 150 Introduction to EET Lab Activity 12 Temperature Sensor Amplifier Project Required Parts, Software and Equipment Parts EET 150 Introduction to EET Lab Activity 12 Temperature Sensor Amplifier Project Figure 1 Flasher Circuit Component /alue Quantity LM741 OP AMP Integrated Circuit

More information

UNIT - 1 OPERATIONAL AMPLIFIER FUNDAMENTALS

UNIT - 1 OPERATIONAL AMPLIFIER FUNDAMENTALS UNIT - 1 OPERATIONAL AMPLIFIER FUNDAMENTALS 1.1 Basic operational amplifier circuit- hte basic circuit of an operational amplifier is as shown in above fig. has a differential amplifier input stage and

More information

Basic Operational Amplifier Circuits

Basic Operational Amplifier Circuits Basic Operational Amplifier Circuits Comparators A comparator is a specialized nonlinear op-amp circuit that compares two input voltages and produces an output state that indicates which one is greater.

More information

High Precision 10 V IC Reference AD581

High Precision 10 V IC Reference AD581 High Precision 0 V IC Reference FEATURES Laser trimmed to high accuracy 0.000 V ±5 mv (L and U models) Trimmed temperature coefficient 5 ppm/ C maximum, 0 C to 70 C (L model) 0 ppm/ C maximum, 55 C to

More information

Unit WorkBook 4 Level 4 ENG U19 Electrical and Electronic Principles LO4 Digital & Analogue Electronics 2018 Unicourse Ltd. All Rights Reserved.

Unit WorkBook 4 Level 4 ENG U19 Electrical and Electronic Principles LO4 Digital & Analogue Electronics 2018 Unicourse Ltd. All Rights Reserved. Pearson BTEC Levels 4 Higher Nationals in Engineering (RQF) Unit 19: Electrical and Electronic Principles Unit Workbook 4 in a series of 4 for this unit Learning Outcome 4 Digital & Analogue Electronics

More information

UNIVERSITI MALAYSIA PERLIS

UNIVERSITI MALAYSIA PERLIS UNIVERSITI MALAYSIA PERLIS ANALOG ELECTRONICS CIRCUIT II EKT 214 Semester II (2012/2013) EXPERIMENT # 3 OP-AMP (DIFFERENTIATOR & INTEGRATOR) Analog Electronics II (EKT214) 2012/2013 EXPERIMENT 3 Op-Amp

More information

ES250: Electrical Science. HW6: The Operational Amplifier

ES250: Electrical Science. HW6: The Operational Amplifier ES250: Electrical Science HW6: The Operational Amplifier Introduction This chapter introduces the operational amplifier or op amp We will learn how to analyze and design circuits that contain op amps,

More information

Unit WorkBook 1 Level 4 ENG U22 Electronic Circuits and Devices 2018 UniCourse Ltd. All Rights Reserved. Sample

Unit WorkBook 1 Level 4 ENG U22 Electronic Circuits and Devices 2018 UniCourse Ltd. All Rights Reserved. Sample Pearson BTEC Level 4 Higher Nationals in Engineering (RQF) Unit 22: Electronic Circuits and Devices Unit Workbook 1 in a series of 4 for this unit Learning Outcome 1 Operational Amplifiers Page 1 of 23

More information

ECE Lab #4 OpAmp Circuits with Negative Feedback and Positive Feedback

ECE Lab #4 OpAmp Circuits with Negative Feedback and Positive Feedback ECE 214 Lab #4 OpAmp Circuits with Negative Feedback and Positive Feedback 20 February 2018 Introduction: The TL082 Operational Amplifier (OpAmp) and the Texas Instruments Analog System Lab Kit Pro evaluation

More information

MEMS Signal Conditioning Circuits Dr. Lynn Fuller Electrical and Microelectronic Engineering

MEMS Signal Conditioning Circuits Dr. Lynn Fuller Electrical and Microelectronic Engineering ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING MEMS Signal Conditioning Circuits Dr. Lynn Fuller Electrical and 82 Lomb Memorial Drive Rochester, NY 146235604 Email: Lynn.Fuller@rit.edu

More information

CHARACTERIZATION OF OP-AMP

CHARACTERIZATION OF OP-AMP EXPERIMENT 4 CHARACTERIZATION OF OP-AMP OBJECTIVES 1. To sketch and briefly explain an operational amplifier circuit symbol and identify all terminals. 2. To list the amplifier stages in a typical op-amp

More information

Introduction to Op Amps

Introduction to Op Amps Introduction to Op Amps ENGI 242 ELEC 222 Basic Op-Amp The op-amp is a differential amplifier with a very high open loop gain 25k AVOL 500k (much higher for FET inputs) high input impedance 500kΩ ZIN 10MΩ

More information

EE 210 Lab Exercise #5: OP-AMPS I

EE 210 Lab Exercise #5: OP-AMPS I EE 210 Lab Exercise #5: OP-AMPS I ITEMS REQUIRED EE210 crate, DMM, EE210 parts kit, T-connector, 50Ω terminator, Breadboard Lab report due at the ASSIGNMENT beginning of the next lab period Data and results

More information

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820 a FEATURES True Single Supply Operation Output Swings Rail-to-Rail Input Voltage Range Extends Below Ground Single Supply Capability from V to V Dual Supply Capability from. V to 8 V Excellent Load Drive

More information

ME 3200 Mechatronics I Laboratory Lab 8: Angular Position and Velocity Sensors

ME 3200 Mechatronics I Laboratory Lab 8: Angular Position and Velocity Sensors ME 3200 Mechatronics I Laboratory Lab 8: Angular Position and Velocity Sensors In this exercise you will explore the use of the potentiometer and the tachometer as angular position and velocity sensors.

More information

CHAPTER ELEVEN - Interfacing With the Analog World

CHAPTER ELEVEN - Interfacing With the Analog World CHAPTER ELEVEN - Interfacing With the Analog World 11.1 (a) Analog output = (K) x (digital input) (b) Smallest change that can occur in the analog output as a result of a change in the digital input. (c)

More information

Single Supply Op Amp Circuits Dr. Lynn Fuller Webpage:

Single Supply Op Amp Circuits Dr. Lynn Fuller Webpage: ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Single Supply Op Amp Circuits Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 146235604 Tel (585)

More information