High Average-Efficiency Power Amplifier Techniques Jason Stauth, U.C. Berkeley Power Electronics Group

Size: px
Start display at page:

Download "High Average-Efficiency Power Amplifier Techniques Jason Stauth, U.C. Berkeley Power Electronics Group"

Transcription

1 High Average-Efficiency Power Amplifier Techniques Jason Stauth, U.C. Berkeley Power Electronics Group 2 2 I Q

2 Overview Application Space: Efficient RF Power Amplifiers PA Fundamentals, Polar/ET Architectures Challenges with Polar/ET Research Directions Direct Digital Modulation Pulse-Density Modulation

3 Power Amplifier Fundamentals Q I Edge Constellation: 3pi/8, rotated 8-PSK VDD Vs Source Rs Bias Input Network Output Network Vout RL

4 Linear Power Amplifier (PA) Active transconductance device Input matched to previous stage Output (antenna) impedance transformed to increase power gain Small-signal model close to common source amplifier

5 Nonlinear PA Active device operates as a switch Approx LTV System Voltage waveform constrained (also consider current waveform) Drain Voltage constrained unconstrained constrained Gate Voltage Class-F Frequency Domain Impedance Design -Class E/F ZVS Amplifiers, Kee et al., MTT 3 Class-E Time domain Impulse Response design

6 The Point Nonlinear PAs can t do amplitude modulation 5% Linear PAs can do amplitude modulation, but are inefficient 1% 4% 8% Probability 3% 2% 6% 4% Efficiency 1% 2% % db(pmax) - db(pout) % PDF Class A Class B Nonlinear* A 1 2 V V 2 a 2 dd B V 4 V a dd S V V a dd

7 Average Efficiency Probability 5% 4% 3% 2% 1% % db(pmax) - db(pout) 1% 8% 6% 4% 2% % PDF Class A Class B Nonlinear* Efficiency avg E E load supply g( P ) P dp L L g( P ) P g( P ) PdP L L supply PL g( PL ) dpl ( P ) L L L L L ( P ) dp L PA Class: Class A Class B Nonlinear PA *constant bias current Average Efficiency:.78%* / 9.2%** 14.46% 18.21% **variable bias current

8 Polar and Envelope Tracking Transmitters Supply regulation synchronous with RF Envelope Voltage Regulator Probability 4% 9%.9 Ideal Class-B 8%.8 3%.7 PA Efficiency 7% Realistic Dynamic Supply Ideal Dynamic 6%.6 PA Efficiency.5 Supply PA 5% 2% 4%.4 1% 3%.3 2%.2 1%.1 % % db(pmax) - db(pout) Efficiency -Raab et al. High efficiency L-band Kahntechnique transmitter," MTT-S, Hanington, et al. "High-Efficiency Power Amplifier Using Dynamic Power-Supply Voltage for CDMA Applications," MTT, Aug avg 62.5%

9 Polar Architecture Q I Amplitude Signal time Env. Det. A(t) Regulator I V V F(, ) e j( wt ) Polar Modulator Q RFLO F( I, Q) I cos( wt) Q sin( wt) Limiter Phase Signal Φ(t) Many (most?) implementations don t use an efficient supply modulator efficiency gains from using nonlinear PA time PA

10 Envelope Tracking Linear (class-ab) PA Efficient supply modulator (linear reg doesn t make sense) Envelope Feedback Envelope Mapping Operate at max PAE point Baseband Generation V(t) RF LO RF Linear PA

11 Challenges Bandwidth Peak-average power ratio Time alignment Distortion (AM-AM, AM-PM) PSRR dbm(fs(wlana[1],-2m,2m,,,"kais dbm(fs(cdma2k[1],-2m,2m,,,"kaiser")) freq, MHz freq, MHz mag(wlana[1]) mag(cdma2k[1]) System Bandwidth (MHz) Peak-Average Power Ratio (db) Power Control Range (db) GSM.2 3 EDGE WCDMA cdma a/g time, usec time, usec histogram(mag(wlana[1]),25,,.8 histogram(mag(cdma2k[1]),25,,.5) indep(histogram(mag(wlana[1]),25,,.8)) indep(histogram(mag(cdma2k[1]),25,,.5))

12 Project Directions Wideband Switching Regulators Hybrid Linear- Switching Regulators Envelope Feedback Feedback Envelope Mapping Baseband Generation V(t) IF RF LO RF Linear PA - + Vref Linear Regulator I Lr I Sr I Load Load C L VDD Control/ PWM Switching Regulator - + RF Pulse Train Pulse-density modulation process Mixer PA Filter Direct Nonlinear Modulation Transmitters

13 Wideband Switching Regulators Envelope Tracking Architecture Wideband: 2MHz Envelope bandwidth High switching frequency High PSRR PA Probability 4% 3% 2% 1% Probability density function with dynamic supply PA Efficiency w/o dynamic supply 6% 5% 4% 3% 2% 1% Efficiency AND/ OR Baseband- Envelope Map Envelope Reference Control & PWM Filter Switching Regulator upconversion Vdd Envelope Detect % % db(pmax) - db(pout) Baseband IF LO RF PA RF-Out.

14 Challenge: Power Supply Rejection Supply noise can mix into the RF spectrum, degrading SNR, violating spectral masks (ACPR) New Concept: design for high PSRR P(dB) P(dB) P(dB) -Stauth, Sanders, "Power supply rejection for RF amplifiers," (RFIC) Symposium, June 26

15 Results: MTT Oct 7 A Supply-Signal mixing term: 1 11 ( jw a, jw b ) y S gmo 11 K 1 2y 2 K 2 2gm K 2 K 3 2gmb 2 K 4 2A1 ( jw ) PSRR db A11( jw, jw S ) PSRR db gmo 11 K 1 gm1 2y K 2gm K 2gmb K PSRR=sideband in dbc for 1V (dbv) supply noise tone gmo11 gmo11+go2 gmo11+go2+c2 gmo11* PSRR (dbv) go2* C2* 1 Total PSRR value 1.E+6 4.E+6 1.E+7 5.E+7 2.E+8 7.E+8 3.E+9 1.E+1 Frequency (Hz)

16 Hybrid Linear-Switching Regulators

17 Hybrid Regulator Paradigm Series Hybrid Parallel (shunt) Hybrid VDD Vref + - C L Control/ PWM Ref Linear Regulator Load Switching Regulator Decouple bandwidth-efficiency (audio, AVS digital, PA supply) Fast linear block: (supply dynamic output voltage, attenuate switching regulator harmonics) Slow switching block: (efficient, low cost) Series hybrid drawbacks: low Vdd efficiency, headroom issues

18 Parallel Hybrid Operation Linear Stage: Voltage Follower (Class AB LDO) Switching Stage: Current source Traditional: isr i LOAD Previous work: Optimize in the frequency domain Switching Reg. BW Switching Frequency Linear Reg. BW Dynamic Supply BW -Yousefzadeh, et al. ISCAS 5, PESC 6. -F. Wang et al, MTT-S, June 24. -P. Midya et al. PESC,.

19 This Work: Optimize in the Time Domain Fundamental: many signals may share same power spectrum Phase of signals not represented can be critical for max efficiency in the time domain Consider strong nonlinearities in conversion from Cartesian to polar representation Signal A (V) Signal B (V) PAPR=1.1 db PAPR=5.2 db time (s) Power Spectrum (db/hz) frequency (Hz)

20 Interesting Conclusions Sin-AM, 2-Tone: IS-95 CDMA: Efficiency Sin-AM isr=isr* Sin-AM isr=idc 2-tone isr=isr* 2-tone isr=idc Modulation Amplitude, Normalized (V) Efficiency isr = idc isr = isr* Average Output Power (dbm) Traditional method with isr i LOAD is suboptimal Optimum isr is a function of Vdd, and dynamics of the modulation signal Power savings potentially very large for high PAPR signals, high Vdd

21 Future Work Adaptive optimization Performance tuning

22 Digital Pulse-Density Modulation

23 This work: 1-Bit Linear Transmitter RF Pulse Train Mixer PA Filter Pulse-density modulation process PA at max power or off Inherent linearity Improved efficiency in power backoff

24 Pulse Density Modulation Process AM process Extra harmonics Tradeoff between oversampling ratio & Q Out of band spectrum Efficiency Noise shaping: digital Conclusions No major efficiency advantage with Q<~5-1 Linearity may be the compelling factor (almost) pure digital implementation! Need to run PDM process *as fast as possible* Power spectrum Filter profile Carrier with DSB harmonics

25 PDM Process Sigma-delta Error feedback Spectrum: bandpass in nature Amplitude modulation Noise Shaping

26 PDM Process 1 Time-Domain Waveforms 15 Power Spectral Density Power/frequency (db/hz) Frequency (Hz) Modulate at fraction of carrier frequency out of band harmonics

27 PDM Process 1 Time-Domain Waveforms 15 Power Spectral Density Power/frequency (db/hz) Frequency (Hz) Modulate at fraction of carrier frequency out of band harmonics

28 PDM Process 1 Time-Domain Waveforms 15 Power Spectral Density Power/frequency (db/hz) Frequency (Hz) Modulate at fraction of carrier frequency out of band harmonics

29 Class-D PA 8 Impedance vs Frequency mag(impedance) (ohms) (db) Conventional timing, control Series-Resonant Filter block out of band harmonics High impedance out of band reduce power drawn from supply for wasted energy

30 Architecture This work Upconversion Pulse- Density modulator PA Baseband I Q RFclk o RFclk 9 o 5Ω Pulse- Density modulator PA Q Cartesian Representation Upconversion Noise-Shaped PDM amplitude modulation Independent I-Q processing/upconversion Class-D PA Series resonant bandpass filter/transformer I

31 Behavioral Verification timing, drivers Ideal Components, PDM process Passive network Q~3 Vdd=1.V (assume 9nm CMOS)

32 Ideal no losses in switches, passives

33 Carrier Fundamental Linearity Simulation, expt show good linearity vs pulse density IM3 comparable to good linear PA (range of -2dBc to - 4dBc) Predistortion likely to improve linearity further Output Voltage Amplitude vs Code 3. y = 7.27E-4x E-2x E-1x

34 ClassD PA, 9nm CMOS, Spectre Sim, Q~15 in passives

35 2-tone test

36 Conclusions Efficiency stays high in power backoff Future analysis: comparison of series resonant to parallel resonant output filters for class-d PAs High linearity, compelling argument for this architecture

37 Implementation wo chips: odulator lass D PA timing, drivers 9nm CMOS, voltage (1.V), bond chip-ond

38 Architecture Register Register Multiple stages: RF PDM and Baseband sigmadelta Tradeoff oversampling for power consumption Still have 1-1x oversampling for most standards (edge, Bluetooth, WCDMA, 82.11x)

39 PDM Process 1 Pole-Zero Map.5 Imaginary Axis -.5 ( z) 1 2.5z 1 2.5z 2 z Real Axis -2 POWER (dbm) FREQUENCY (MHz) FREQUENCY (GHz)

40 PA Blocks Level Shift Deadtime Control VHV=2. V PA Drivers Output Stage Delay, 6ps f Vhalf=1. V Vhalf Delay, 6ps Use 2.V to drive for higher output power Maximum Voxide=1.V No resonant switching: need accurate control of gate voltage Recycle current used by high-side switches (excess goes to digital processing block)

41 Results Program I/Q waveforms into FPGA Downconvert/process signals with NI PXI box running labview AM Demodulated Signal m 5.m 25.m. -25.m Plot Results show linear downconverted I/Q waveforms -5.m -75.m u 5.u 75.u 1.u 125.u 15.u 175.u 2.u 225.u Time (sec) 25.u

42 Two-tone spectrum mv tones with 2MHz acing at 1.95GHz rrier MHz of noise aping is functional, oise peaks 5MHz om carrier at fs/2 O leakage tuned with gnal offset Power (dbm) Frequency (GHz)

43 2.11a, 64QAM OFDM Waveform mv tones with 2MHz acing at 1.95GHz rrier MHz of noise aping is functional, oise peaks 5MHz om carrier at fs/2 O leakage tuned with gnal offset Power (dbm) WCDMA Spectrum Frequency (GHz)

44 References [1] A. Jerng and C. G. Sodini, "A Wideband Delta-Sigma Digital-RF Modulator for High Data Rate Transmitters," IEEE Journal of Solid State Circuits, vol. 42, pp , Aug. 27. [2] A. Kavousian, D. K. Su, and B. A. Wooley, "A Digitally Modulated Polar CMOS PA with 2MHz Signal BW," IEEE International Solid State Circuits Conference (ISSCC) Dig. Tech. Papers, pp , 27. [3] S. M. Taleie, T. Copani, B. Bakkaloglu, and S. Kiaei, "A bandpass Delta-Sigma RF-DAC with embedded FIR reconstruction filter," IEEE International Solid State Circuits Conference (ISSCC) Dig. Tech. Papers, pp , 26. [4] R. B. Staszewski, J. Wallberg, S. Rezeq, C.-M. Hung, O. Eliezer, S. Vemulapalli, C. Fernando, K. Maggio, R. Staszewski, N. Barton, M.-C. Lee, P. Cruise, M. Entezari, K. Muhammad, and D. Leipold, "All-digital PLL and GSM/EDGE transmitter in 9nm CMOS," IEEE International Solid State Circuits Conference, vol. 1, pp , Feb. 25. [5] J. Lindeberg, J. Vanakka, J. Sommarek, and K. Halonen, "A 1.5-V direct digital synthesizer with tunable delta-sigma modulator in.12um CMOS," IEEE Journal of Solid State Circuits, vol. 4, pp , Sept. 25. [6] F. Wang, D. Kimball, D. Y. Lie, P. Asbeck, and L. E. Larson, "A Monolithic High-Efficiency 2.4GHz 2dBm SiGe BiCMOS Envelope- Tracking OFDM Power Amplifier," IEEE Journal of Solid State Circuits, vol. 42, pp , June 27.

A SWITCHED-CAPACITOR POWER AMPLIFIER FOR EER/POLAR TRANSMITTERS

A SWITCHED-CAPACITOR POWER AMPLIFIER FOR EER/POLAR TRANSMITTERS A SWITCHED-CAPACITOR POWER AMPLIFIER FOR EER/POLAR TRANSMITTERS Sang-Min Yoo, Jeffrey Walling, Eum Chan Woo, David Allstot University of Washington, Seattle, WA Submission Highlight A fully-integrated

More information

Optimum Bias Calculation for Parallel Hybrid Switching- Linear Regulators

Optimum Bias Calculation for Parallel Hybrid Switching- Linear Regulators Optimum Bias Calculation for Parallel Hybrid Switching- Linear Regulators Jason T. Stauth and Seth R. Sanders University of California, Berkeley Berkeley, CA 94720 USA Abstract- This paper presents an

More information

RF POWER AMPLIFIERS. Alireza Shirvani SCV SSCS RFIC Course

RF POWER AMPLIFIERS. Alireza Shirvani SCV SSCS RFIC Course RF POWER AMPLIFIERS Alireza Shirvani SCV SSCS RFIC Course Mobile and Base Stations in a Wireless System RF Power Amplifiers Function: Delivering RF Power to the Antenna Performance Metrics Output Power

More information

Introduction to Envelope Tracking. G J Wimpenny Snr Director Technology, Qualcomm UK Ltd

Introduction to Envelope Tracking. G J Wimpenny Snr Director Technology, Qualcomm UK Ltd Introduction to Envelope Tracking G J Wimpenny Snr Director Technology, Qualcomm UK Ltd Envelope Tracking Historical Context EER first proposed by Leonard Kahn in 1952 to improve efficiency of SSB transmitters

More information

A CMOS Sigma-Delta Digital Intermediate Frequency. to Radio Frequency Transmitter. Yongping Han

A CMOS Sigma-Delta Digital Intermediate Frequency. to Radio Frequency Transmitter. Yongping Han A CMOS Sigma-Delta Digital Intermediate Frequency to Radio Frequency Transmitter by Yongping Han A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy

More information

A High Dynamic Range Digitally- Controlled Oscillator (DCO) for All-DPLL systems is. Samira Jafarzade 1, Abumoslem Jannesari 2

A High Dynamic Range Digitally- Controlled Oscillator (DCO) for All-DPLL systems is. Samira Jafarzade 1, Abumoslem Jannesari 2 A High Dynamic Range Digitally- Controlled Oscillator (DCO) for All-Digital PLL Systems Samira Jafarzade 1, Abumoslem Jannesari 2 Received: 2014/7/5 Accepted: 2015/3/1 Abstract In this paper, a new high

More information

A 2.5-GHz asymmetric multilevel outphasing power amplifier in 65-nm CMOS

A 2.5-GHz asymmetric multilevel outphasing power amplifier in 65-nm CMOS A.5-GHz asymmetric multilevel outphasing power amplifier in 65-nm CMOS The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Godoy,

More information

TSEK38 Radio Frequency Transceiver Design: Project work B

TSEK38 Radio Frequency Transceiver Design: Project work B TSEK38 Project Work: Task specification A 1(15) TSEK38 Radio Frequency Transceiver Design: Project work B Course home page: Course responsible: http://www.isy.liu.se/en/edu/kurs/tsek38/ Ted Johansson (ted.johansson@liu.se)

More information

RF transmitter with Cartesian feedback

RF transmitter with Cartesian feedback UNIVERSITY OF MICHIGAN EECS 522 FINAL PROJECT: RF TRANSMITTER WITH CARTESIAN FEEDBACK 1 RF transmitter with Cartesian feedback Alexandra Holbel, Fu-Pang Hsu, and Chunyang Zhai, University of Michigan Abstract

More information

RF/IF Terminology and Specs

RF/IF Terminology and Specs RF/IF Terminology and Specs Contributors: Brad Brannon John Greichen Leo McHugh Eamon Nash Eberhard Brunner 1 Terminology LNA - Low-Noise Amplifier. A specialized amplifier to boost the very small received

More information

DESIGN of low-cost, power-efficient, watt-level, fully-integrated

DESIGN of low-cost, power-efficient, watt-level, fully-integrated 3376 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 44, NO. 12, DECEMBER 2009 An Octave-Range, Watt-Level, Fully-Integrated CMOS Switching Power Mixer Array for Linearization and Back-Off-Efficiency Improvement

More information

A 1.7-to-2.2GHz Full-Duplex Transceiver System with >50dB Self-Interference Cancellation over 42MHz Bandwidth

A 1.7-to-2.2GHz Full-Duplex Transceiver System with >50dB Self-Interference Cancellation over 42MHz Bandwidth A 1.7-to-2.2GHz Full-Duplex Transceiver System with >50dB Self-Interference Cancellation Tong Zhang, Ali Najafi, Chenxin Su, Jacques C. Rudell University of Washington, Seattle Feb. 8, 2017 International

More information

Receiver Architecture

Receiver Architecture Receiver Architecture Receiver basics Channel selection why not at RF? BPF first or LNA first? Direct digitization of RF signal Receiver architectures Sub-sampling receiver noise problem Heterodyne receiver

More information

A Product Development Flow for 5G/LTE Envelope Tracking Power Amplifiers, Part 2

A Product Development Flow for 5G/LTE Envelope Tracking Power Amplifiers, Part 2 Test & Measurement A Product Development Flow for 5G/LTE Envelope Tracking Power Amplifiers, Part 2 ET and DPD Enhance Efficiency and Linearity Figure 12: Simulated AM-AM and AM-PM response plots for a

More information

ET Envelope Path from digits to PA

ET Envelope Path from digits to PA pushing the envelope of PA efficiency ET Envelope Path from digits to PA Gerard Wimpenny Nujira Ltd ARMMS Conference 19 th /2 th November 212 Agenda Envelope Processing ET PA Characterisation Isogain shaping

More information

Lecture 15: Introduction to Mixers

Lecture 15: Introduction to Mixers EECS 142 Lecture 15: Introduction to Mixers Prof. Ali M. Niknejad University of California, Berkeley Copyright c 2005 by Ali M. Niknejad A. M. Niknejad University of California, Berkeley EECS 142 Lecture

More information

Prepared for the Engineers of Samsung Electronics RF transmitter & power amplifier

Prepared for the Engineers of Samsung Electronics RF transmitter & power amplifier Prepared for the Engineers of Samsung Electronics RF transmitter & power amplifier Changsik Yoo Dept. Electrical and Computer Engineering Hanyang University, Seoul, Korea 1 Wireless system market trends

More information

Class E and Class D -1 GaN HEMT Switched-Mode Power Amplifiers

Class E and Class D -1 GaN HEMT Switched-Mode Power Amplifiers Class E and Class D -1 GaN HEMT Switched-Mode Power Amplifiers J. A. GARCÍA *, R. MERLÍN *, M. FERNÁNDEZ *, B. BEDIA *, L. CABRIA *, R. MARANTE *, T. M. MARTÍN-GUERRERO ** *Departamento Ingeniería de Comunicaciones

More information

Power Reduction in RF

Power Reduction in RF Power Reduction in RF SoC Architecture using MEMS Eric Mercier 1 RF domain overview Technologies Piezoelectric materials Acoustic systems Ferroelectric materials Meta materials Magnetic materials RF MEMS

More information

Efficiency Enhancement of CDMA Power Amplifiers in Mobile Handsets Using Dynamic Supplies. Georgia Tech Analog Consortium Presentation

Efficiency Enhancement of CDMA Power Amplifiers in Mobile Handsets Using Dynamic Supplies. Georgia Tech Analog Consortium Presentation Efficiency Enhancement of CDMA Power Amplifiers in Mobile Handsets Using Dynamic Supplies Biranchinath Sahu Advisor: Prof. Gabriel A. Rincón-Mora Analog Integrated Circuits Laboratory School of Electrical

More information

Evaluating and Optimizing Tradeoffs in CMOS RFIC Upconversion Mixer Design. by Dr. Stephen Long University of California, Santa Barbara

Evaluating and Optimizing Tradeoffs in CMOS RFIC Upconversion Mixer Design. by Dr. Stephen Long University of California, Santa Barbara Evaluating and Optimizing Tradeoffs in CMOS RFIC Upconversion Mixer Design by Dr. Stephen Long University of California, Santa Barbara It is not easy to design an RFIC mixer. Different, sometimes conflicting,

More information

ISSCC 2006 / SESSION 11 / RF BUILDING BLOCKS AND PLLS / 11.9

ISSCC 2006 / SESSION 11 / RF BUILDING BLOCKS AND PLLS / 11.9 ISSCC 2006 / SESSION 11 / RF BUILDING BLOCKS AND PLLS / 11.9 11.9 A Single-Chip Linear CMOS Power Amplifier for 2.4 GHz WLAN Jongchan Kang 1, Ali Hajimiri 2, Bumman Kim 1 1 Pohang University of Science

More information

Analysis and Design of 180 nm CMOS Transmitter for a New SBCD Transponder SoC

Analysis and Design of 180 nm CMOS Transmitter for a New SBCD Transponder SoC WCAS2016 Analysis and Design of 180 nm CMOS Transmitter for a New SBCD Transponder SoC Andrade, N.; Toledo, P.; Cordova, D.; Negreiros, M.; Dornelas, H.; Timbó, R.; Schmidt, A.; Klimach, H.; Frabris, E.

More information

NOWADAYS, most wireless applications require extensive

NOWADAYS, most wireless applications require extensive IEEE RANSACIONS ON CIRCUIS AND SYSEMS II: EXPRESS BRIEFS, VOL. 57, NO. 7, JULY 2010 517 A ime-domain Resolution Improvement of an RF-DAC Min Park, Member, IEEE, Michael H. Perrott, Member, IEEE, and Robert

More information

A 1.55 GHz to 2.45 GHz Center Frequency Continuous-Time Bandpass Delta-Sigma Modulator for Frequency Agile Transmitters

A 1.55 GHz to 2.45 GHz Center Frequency Continuous-Time Bandpass Delta-Sigma Modulator for Frequency Agile Transmitters RMO2C A 1.55 GHz to 2.45 GHz Center Frequency Continuous-Time Bandpass Delta-Sigma Modulator for Frequency Agile Transmitters RFIC 2009 Martin Schmidt, Markus Grözing, Stefan Heck, Ingo Dettmann, Manfred

More information

General configuration

General configuration Transmitter General configuration In some cases the modulator operates directly at the transmission frequency (no up conversion required) In digital transmitters, the information is represented by the

More information

PTX-0350 RF UPCONVERTER, MHz

PTX-0350 RF UPCONVERTER, MHz PTX-0350 RF UPCONVERTER, 300 5000 MHz OPERATING MODES I/Q upconverter RF = LO + IF upconverter RF = LO - IF upconverter Synthesizer 10 MHz REFERENCE INPUT/OUTPUT EXTERNAL LOCAL OSCILLATOR INPUT I/Q BASEBAND

More information

System Considerations for Efficient and Linear Supply Modulated RF Transmitters

System Considerations for Efficient and Linear Supply Modulated RF Transmitters System Considerations for Efficient and Linear Supply Modulated RF Transmitters John Hoversten Department of Electrical and Computer Engineering University of Colorado at Boulder Boulder, Colorado 839

More information

Research and Development Activities in RF and Analog IC Design. RFIC Building Blocks. Single-Chip Transceiver Systems (I) Howard Luong

Research and Development Activities in RF and Analog IC Design. RFIC Building Blocks. Single-Chip Transceiver Systems (I) Howard Luong Research and Development Activities in RF and Analog IC Design Howard Luong Analog Research Laboratory Department of Electrical and Electronic Engineering Hong Kong University of Science and Technology

More information

CMOS Switched-Capacitor Circuits: Recent Advances in Bio-Medical and RF Applications

CMOS Switched-Capacitor Circuits: Recent Advances in Bio-Medical and RF Applications CMOS Switched-Capacitor Circuits: Recent Advances in Bio-Medical and RF Applications David J. Allstot Univ. of Washington Dept. of Electrical Engineering Seattle, WA 98195-2500 PA Motivation 2010: 4.6

More information

Advances in RF and Microwave Measurement Technology

Advances in RF and Microwave Measurement Technology 1 Advances in RF and Microwave Measurement Technology Rejwan Ali Marketing Engineer NI Africa and Oceania New Demands in Modern RF and Microwave Test In semiconductor and wireless, technologies such as

More information

Direct-Conversion I-Q Modulator Simulation by Andy Howard, Applications Engineer Agilent EEsof EDA

Direct-Conversion I-Q Modulator Simulation by Andy Howard, Applications Engineer Agilent EEsof EDA Direct-Conversion I-Q Modulator Simulation by Andy Howard, Applications Engineer Agilent EEsof EDA Introduction This article covers an Agilent EEsof ADS example that shows the simulation of a directconversion,

More information

Advances in RF and Microwave Measurement Technology

Advances in RF and Microwave Measurement Technology 1 Advances in RF and Microwave Measurement Technology Chi Xu Certified LabVIEW Architect Certified TestStand Architect New Demands in Modern RF and Microwave Test In semiconductor and wireless, technologies

More information

Nonlinearities in Power Amplifier and its Remedies

Nonlinearities in Power Amplifier and its Remedies International Journal of Electronics Engineering Research. ISSN 0975-6450 Volume 9, Number 6 (2017) pp. 883-887 Research India Publications http://www.ripublication.com Nonlinearities in Power Amplifier

More information

Understanding Low Phase Noise Signals. Presented by: Riadh Said Agilent Technologies, Inc.

Understanding Low Phase Noise Signals. Presented by: Riadh Said Agilent Technologies, Inc. Understanding Low Phase Noise Signals Presented by: Riadh Said Agilent Technologies, Inc. Introduction Instabilities in the frequency or phase of a signal are caused by a number of different effects. Each

More information

RF 파워앰프테스트를위한 Envelope Tracking 및 DPD 기술

RF 파워앰프테스트를위한 Envelope Tracking 및 DPD 기술 RF 파워앰프테스트를위한 Envelope Tracking 및 DPD 기술 한국내쇼날인스트루먼트 RF 테스트담당한정규 jungkyu.han@ni.com Welcome to the World of RFICs Low Noise Amplifiers Power Amplifiers RF Switches Duplexer and Filters 2 Transmitter Power

More information

SC5407A/SC5408A 100 khz to 6 GHz RF Upconverter. Datasheet. Rev SignalCore, Inc.

SC5407A/SC5408A 100 khz to 6 GHz RF Upconverter. Datasheet. Rev SignalCore, Inc. SC5407A/SC5408A 100 khz to 6 GHz RF Upconverter Datasheet Rev 1.2 2017 SignalCore, Inc. support@signalcore.com P R O D U C T S P E C I F I C A T I O N S Definition of Terms The following terms are used

More information

Introduction to Receivers

Introduction to Receivers Introduction to Receivers Purpose: translate RF signals to baseband Shift frequency Amplify Filter Demodulate Why is this a challenge? Interference Large dynamic range required Many receivers must be capable

More information

A RF Transmitter Linearized Using Cartesian Feedback in CMOS 65nm for UMTS Standard

A RF Transmitter Linearized Using Cartesian Feedback in CMOS 65nm for UMTS Standard A RF Transmitter Linearized Using Cartesian Feedback in CMOS 65nm for UMTS Standard Nicolas Delaunay, Nathalie Deltimple, Eric Kerherve, Didier Belot To cite this version: Nicolas Delaunay, Nathalie Deltimple,

More information

Pulse-Width Modulated CMOS Power Amplifiers

Pulse-Width Modulated CMOS Power Amplifiers ED R E S U ATU C FO E FE SU S I CREATAS Pulse-Width Modulated CMOS Power Amplifiers Jeffrey S. Walling and David J. Allstot M odern wireless communications systems are now being almost fully integrated

More information

Chapter 2 Analysis of Quantization Noise Reduction Techniques for Fractional-N PLL

Chapter 2 Analysis of Quantization Noise Reduction Techniques for Fractional-N PLL Chapter 2 Analysis of Quantization Noise Reduction Techniques for Fractional-N PLL 2.1 Background High performance phase locked-loops (PLL) are widely used in wireless communication systems to provide

More information

SYNERGISTIC DESIGN OF DSP AND POWER AMPLIFIERS FOR WIRELESS COMMUNICATIONS

SYNERGISTIC DESIGN OF DSP AND POWER AMPLIFIERS FOR WIRELESS COMMUNICATIONS SYNERGISTIC DESIGN OF DSP AND POWER AMPLIFIERS FOR WIRELESS COMMUNICATIONS P.M.ASBECK AND L.E.LARSON Electrical and Computer Engineering Department University of California, San Diego La Jolla, CA, USA

More information

Chapter 6. Case Study: 2.4-GHz Direct Conversion Receiver. 6.1 Receiver Front-End Design

Chapter 6. Case Study: 2.4-GHz Direct Conversion Receiver. 6.1 Receiver Front-End Design Chapter 6 Case Study: 2.4-GHz Direct Conversion Receiver The chapter presents a 0.25-µm CMOS receiver front-end designed for 2.4-GHz direct conversion RF transceiver and demonstrates the necessity and

More information

BER, MER Analysis of High Power Amplifier designed with LDMOS

BER, MER Analysis of High Power Amplifier designed with LDMOS International Journal of Advances in Electrical and Electronics Engineering 284 Available online at www.ijaeee.com & www.sestindia.org/volume-ijaeee/ ISSN: 2319-1112 BER, MER Analysis of High Power Amplifier

More information

Challenges in Designing CMOS Wireless System-on-a-chip

Challenges in Designing CMOS Wireless System-on-a-chip Challenges in Designing CMOS Wireless System-on-a-chip David Su Atheros Communications Santa Clara, California IEEE Fort Collins, March 2008 Introduction Outline Analog/RF: CMOS Transceiver Building Blocks

More information

The best radio for worst events. Over HF links. Hana Rafi - CEO Eder Yehuda - VP R&D

The best radio for worst events. Over HF links. Hana Rafi - CEO Eder Yehuda - VP R&D MOBAT MICOM The best radio for worst events Increasing Data Throughput Over HF links Hana Rafi - CEO Eder Yehuda - VP R&D 1 Traditional HF Radio -Analog voice & 50,75 bps New Trends on HF - Digital voice,

More information

Effects of Envelope Tracking Technique on an L-band Power Amplifier

Effects of Envelope Tracking Technique on an L-band Power Amplifier Effects of Envelope Tracking Technique on an L-band Power Amplifier Elisa Cipriani, Paolo Colantonio, Franco Giannini, Rocco Giofrè, Luca Piazzon Electronic Engineering Department, University of Roma Tor

More information

Design of mm-wave Injection Locking Power Amplifier. Student: Jiafu Lin Supervisor: Asst. Prof. Boon Chirn Chye

Design of mm-wave Injection Locking Power Amplifier. Student: Jiafu Lin Supervisor: Asst. Prof. Boon Chirn Chye Design of mm-wave Injection Locking Power Amplifier Student: Jiafu Lin Supervisor: Asst. Prof. Boon Chirn Chye 1 Design Review Ref. Process Topology VDD (V) RFIC 2008[1] JSSC 2007[2] JSSC 2009[3] JSSC

More information

ELT Receiver Architectures and Signal Processing Exam Requirements and Model Questions 2018

ELT Receiver Architectures and Signal Processing Exam Requirements and Model Questions 2018 TUT/ICE 1 ELT-44006 Receiver Architectures and Signal Processing Exam Requirements and Model Questions 2018 General idea of these Model Questions is to highlight the central knowledge expected to be known

More information

Session 3. CMOS RF IC Design Principles

Session 3. CMOS RF IC Design Principles Session 3 CMOS RF IC Design Principles Session Delivered by: D. Varun 1 Session Topics Standards RF wireless communications Multi standard RF transceivers RF front end architectures Frequency down conversion

More information

Evaluation of High Efficiency PAs for use in

Evaluation of High Efficiency PAs for use in CENTRE Evaluation of High Efficiency PAs for use in Supply- and Load-Modulation Transmitters Christian Fager, Hossein Mashad Nemati, Ulf Gustavsson,,* Rik Jos, and Herbert Zirath GigaHertz centre Chalmers

More information

Bluetooth Receiver. Ryan Rogel, Kevin Owen I. INTRODUCTION

Bluetooth Receiver. Ryan Rogel, Kevin Owen I. INTRODUCTION 1 Bluetooth Receiver Ryan Rogel, Kevin Owen Abstract A Bluetooth radio front end is developed and each block is characterized. Bits are generated in MATLAB, GFSK endcoded, and used as the input to this

More information

Digital predistortion with bandwidth limitations for a 28 nm WLAN ac transmitter

Digital predistortion with bandwidth limitations for a 28 nm WLAN ac transmitter Digital predistortion with bandwidth limitations for a 28 nm WLAN 802.11ac transmitter Ted Johansson, Oscar Morales Chacón Linköping University, Linköping, Sweden Tomas Flink Catena Wireless Electronics

More information

SC5307A/SC5308A 100 khz to 6 GHz RF Downconverter. Datasheet SignalCore, Inc.

SC5307A/SC5308A 100 khz to 6 GHz RF Downconverter. Datasheet SignalCore, Inc. SC5307A/SC5308A 100 khz to 6 GHz RF Downconverter Datasheet 2017 SignalCore, Inc. support@signalcore.com P RODUCT S PECIFICATIONS Definition of Terms The following terms are used throughout this datasheet

More information

Truly Aliasing-Free Digital RF-PWM Power Coding Scheme for Switched-Mode Power Amplifiers

Truly Aliasing-Free Digital RF-PWM Power Coding Scheme for Switched-Mode Power Amplifiers MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Truly Aliasing-Free Digital RF-PWM Power Coding Scheme for Switched-Mode Power Amplifiers Tanovic, O.; Ma, R. TR2018-021 March 2018 Abstract

More information

Efficiently simulating a direct-conversion I-Q modulator

Efficiently simulating a direct-conversion I-Q modulator Efficiently simulating a direct-conversion I-Q modulator Andy Howard Applications Engineer Agilent Eesof EDA Overview An I-Q or vector modulator is a commonly used integrated circuit in communication systems.

More information

GaN Power Amplifiers for Next- Generation Wireless Communications

GaN Power Amplifiers for Next- Generation Wireless Communications GaN Power Amplifiers for Next- Generation Wireless Communications Jennifer Kitchen Arizona State University Students: Ruhul Hasin, Mahdi Javid, Soroush Moallemi, Shishir Shukla, Rick Welker Wireless Communications

More information

A 3 5 GHz CMOS High Linearity Ultra Wideband Low Noise Amplifier in 0.18µ CMOS

A 3 5 GHz CMOS High Linearity Ultra Wideband Low Noise Amplifier in 0.18µ CMOS Proceedings of the 5th WSEAS Int. Conf. on CIRCUITS, SYSTEMS, ELECTRONICS, CONTROL & SIGNAL PROCESSING, Dallas, USA, November -, 6 5 A 5 GHz CMOS High Linearity Ultra Wideband Low Noise Amplifier in.8µ

More information

A 1-W GaAs Class-E Power Amplifier with an FBAR Filter Embedded in the Output Network

A 1-W GaAs Class-E Power Amplifier with an FBAR Filter Embedded in the Output Network A 1-W GaAs Class-E Power Amplifier with an FBAR Filter Embedded in the Output Network Kyle Holzer and Jeffrey S. Walling University of Utah PERFIC Lab, Salt Lake City, UT 84112, USA Abstract Integration

More information

A 1.9GHz Single-Chip CMOS PHS Cellphone

A 1.9GHz Single-Chip CMOS PHS Cellphone A 1.9GHz Single-Chip CMOS PHS Cellphone IEEE JSSC, Vol. 41, No.12, December 2006 William Si, Srenik Mehta, Hirad Samavati, Manolis Terrovitis, Michael Mack, Keith Onodera, Steve Jen, Susan Luschas, Justin

More information

Reinventing the Transmit Chain for Next-Generation Multimode Wireless Devices. By: Richard Harlan, Director of Technical Marketing, ParkerVision

Reinventing the Transmit Chain for Next-Generation Multimode Wireless Devices. By: Richard Harlan, Director of Technical Marketing, ParkerVision Reinventing the Transmit Chain for Next-Generation Multimode Wireless Devices By: Richard Harlan, Director of Technical Marketing, ParkerVision Upcoming generations of radio access standards are placing

More information

Concurrent Multi-Band Envelope Tracking Power Amplifiers for Emerging Wireless Communications

Concurrent Multi-Band Envelope Tracking Power Amplifiers for Emerging Wireless Communications Concurrent Multi-Band Envelope Tracking Power Amplifiers for Emerging Wireless Communications by Hassan Sarbishaei A thesis presented to the University of Waterloo in fulfillment of the thesis requirement

More information

5.4: A 5GHz CMOS Transceiver for IEEE a Wireless LAN

5.4: A 5GHz CMOS Transceiver for IEEE a Wireless LAN 5.4: A 5GHz CMOS Transceiver for IEEE 802.11a Wireless LAN David Su, Masoud Zargari, Patrick Yue, Shahriar Rabii, David Weber, Brian Kaczynski, Srenik Mehta, Kalwant Singh, Sunetra Mendis, and Bruce Wooley

More information

A novel output transformer based highly linear RF-DAC architecture Bechthum, E.; Radulov, G.I.; Briaire, J.; Geelen, G.; van Roermund, A.H.M.

A novel output transformer based highly linear RF-DAC architecture Bechthum, E.; Radulov, G.I.; Briaire, J.; Geelen, G.; van Roermund, A.H.M. A novel output transformer based highly linear RF-DAC architecture Bechthum, E.; Radulov, G.I.; Briaire, J.; Geelen, G.; van Roermund, A.H.M. Published in: Proceedings of the 2st European Conference on

More information

Keywords: ISM, RF, transmitter, short-range, RFIC, switching power amplifier, ETSI

Keywords: ISM, RF, transmitter, short-range, RFIC, switching power amplifier, ETSI Maxim > Design Support > Technical Documents > Application Notes > Wireless and RF > APP 4929 Keywords: ISM, RF, transmitter, short-range, RFIC, switching power amplifier, ETSI APPLICATION NOTE 4929 Adapting

More information

ARFTG Workshop, Boulder, December 2014

ARFTG Workshop, Boulder, December 2014 ARFTG Workshop, Boulder, December 2014 Design and measurements of high-efficiency PAs with high PAR signals Zoya Popovic, Tibault Reveyrand, David Sardin, Mike Litchfield, Scott Schafer, Andrew Zai Department

More information

A fully synthesizable injection-locked PLL with feedback current output DAC in 28 nm FDSOI

A fully synthesizable injection-locked PLL with feedback current output DAC in 28 nm FDSOI LETTER IEICE Electronics Express, Vol.1, No.15, 1 11 A fully synthesizable injection-locked PLL with feedback current output DAC in 8 nm FDSOI Dongsheng Yang a), Wei Deng, Aravind Tharayil Narayanan, Rui

More information

Introduction to CMOS RF Integrated Circuits Design

Introduction to CMOS RF Integrated Circuits Design VII. ower Amplifiers VII-1 Outline Functionality Figures of Merit A Design Classical Design (Class A, B, C) High-Efficiency Design (Class E, F) Matching Network Linearity T/R Switches VII-2 As and TRs

More information

Architecture of Wideband High-Efficiency Envelope Tracking Power Amplifier for Base Station

Architecture of Wideband High-Efficiency Envelope Tracking Power Amplifier for Base Station THE INSTITUTE OF ELECTRONICS, IEICE Technical Report INFORMATION AND COMMUNICATION ENGINEERS Architecture of Wideband High-Efficiency Envelope Tracking Power Amplifier for Base Station Masato KANETA Akihiro

More information

Energy Efficient Transmitters for Future Wireless Applications

Energy Efficient Transmitters for Future Wireless Applications Energy Efficient Transmitters for Future Wireless Applications Christian Fager christian.fager@chalmers.se C E N T R E Microwave Electronics Laboratory Department of Microtechnology and Nanoscience Chalmers

More information

Subminiature, Low power DACs Address High Channel Density Transmitter Systems

Subminiature, Low power DACs Address High Channel Density Transmitter Systems Subminiature, Low power DACs Address High Channel Density Transmitter Systems By: Analog Devices, Inc. (ADI) Daniel E. Fague, Applications Engineering Manager, High Speed Digital to Analog Converters Group

More information

ANALYSIS OF BROADBAND GAN SWITCH MODE CLASS-E POWER AMPLIFIER

ANALYSIS OF BROADBAND GAN SWITCH MODE CLASS-E POWER AMPLIFIER Progress In Electromagnetics Research Letters, Vol. 38, 151 16, 213 ANALYSIS OF BROADBAND GAN SWITCH MODE CLASS-E POWER AMPLIFIER Ahmed Tanany, Ahmed Sayed *, and Georg Boeck Berlin Institute of Technology,

More information

An RF-input outphasing power amplifier with RF signal decomposition network

An RF-input outphasing power amplifier with RF signal decomposition network An RF-input outphasing power amplifier with RF signal decomposition network The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation

More information

An All CMOS, 2.4 GHz, Fully Adaptive, Scalable, Frequency Hopped Transceiver

An All CMOS, 2.4 GHz, Fully Adaptive, Scalable, Frequency Hopped Transceiver An All CMOS, 2.4 GHz, Fully Adaptive, Scalable, Frequency Hopped Transceiver Farbod Behbahani John Leete Alexandre Kral Shahrzad Tadjpour Karapet Khanoyan Paul J. Chang Hooman Darabi Maryam Rofougaran

More information

TSEK02: Radio Electronics Lecture 8: RX Nonlinearity Issues, Demodulation. Ted Johansson, EKS, ISY

TSEK02: Radio Electronics Lecture 8: RX Nonlinearity Issues, Demodulation. Ted Johansson, EKS, ISY TSEK02: Radio Electronics Lecture 8: RX Nonlinearity Issues, Demodulation Ted Johansson, EKS, ISY 2 RX Nonlinearity Issues, Demodulation RX nonlinearities (parts of 2.2) System Nonlinearity Sensitivity

More information

Wideband Tunable RF Filters for Channel Selection in Crowded Spectral Bands

Wideband Tunable RF Filters for Channel Selection in Crowded Spectral Bands Wideband Tunable RF Filters for Channel Selection in Crowded Spectral Bands Sanghoon Park, Ki-Jin Kim, Kwang-Ho Ahn, Hyeon-Woo Lee Abstract It is very effective way to utilize a very wide tunable filter

More information

A new generation Cartesian loop transmitter for fl exible radio solutions

A new generation Cartesian loop transmitter for fl exible radio solutions Electronics Technical A new generation Cartesian loop transmitter for fl exible radio solutions by C.N. Wilson and J.M. Gibbins, Applied Technology, UK The concept software defined radio (SDR) is much

More information

A Mirror Predistortion Linear Power Amplifier

A Mirror Predistortion Linear Power Amplifier A Mirror Predistortion Linear Power Amplifier Khaled Fayed 1, Amir Zaghloul 2, 3, Amin Ezzeddine 1, and Ho Huang 1 1. AMCOM Communications Inc., Gaithersburg, MD 2. U.S. Army Research Laboratory 3. Virginia

More information

Research and Design of Envelope Tracking Amplifier for WLAN g

Research and Design of Envelope Tracking Amplifier for WLAN g Research and Design of Envelope Tracking Amplifier for WLAN 802.11g Wei Wang a, Xiao Mo b, Xiaoyuan Bao c, Feng Hu d, Wenqi Cai e College of Electronics Engineering, Chongqing University of Posts and Telecommunications,

More information

CMOS Dual Band Receiver GSM 900-Mhz / DSS-GSM1800-GHz

CMOS Dual Band Receiver GSM 900-Mhz / DSS-GSM1800-GHz CMOS Dual Band Receiver GSM 900-Mhz / DSS-GSM1800-GHz By : Dhruvang Darji 46610334 Transistor integrated Circuit A Dual-Band Receiver implemented with a weaver architecture with two frequency stages operating

More information

Keysight Technologies

Keysight Technologies Keysight Technologies Generating Signals Basic CW signal Block diagram Applications Analog Modulation Types of analog modulation Block diagram Applications Digital Modulation Overview of IQ modulation

More information

Technology Trend of Ultra-High Data Rate Wireless CMOS Transceivers

Technology Trend of Ultra-High Data Rate Wireless CMOS Transceivers 2017.07.03 Technology Trend of Ultra-High Data Rate Wireless CMOS Transceivers Akira Matsuzawa and Kenichi Okada Tokyo Institute of Technology Contents 1 Demand for high speed data transfer Developed high

More information

ISSCC 2006 / SESSION 20 / WLAN/WPAN / 20.5

ISSCC 2006 / SESSION 20 / WLAN/WPAN / 20.5 20.5 An Ultra-Low Power 2.4GHz RF Transceiver for Wireless Sensor Networks in 0.13µm CMOS with 400mV Supply and an Integrated Passive RX Front-End Ben W. Cook, Axel D. Berny, Alyosha Molnar, Steven Lanzisera,

More information

RF Power Amplifier Design

RF Power Amplifier Design RF Power Amplifier esign Markus Mayer & Holger Arthaber epartment of Electrical Measurements and Circuit esign Vienna University of Technology June 11, 21 Contents Basic Amplifier Concepts Class A, B,

More information

LF to 4 GHz High Linearity Y-Mixer ADL5350

LF to 4 GHz High Linearity Y-Mixer ADL5350 LF to GHz High Linearity Y-Mixer ADL535 FEATURES Broadband radio frequency (RF), intermediate frequency (IF), and local oscillator (LO) ports Conversion loss:. db Noise figure:.5 db High input IP3: 25

More information

Low Distortion Mixer AD831

Low Distortion Mixer AD831 a FEATURES Doubly-Balanced Mixer Low Distortion +2 dbm Third Order Intercept (IP3) + dbm 1 db Compression Point Low LO Drive Required: dbm Bandwidth MHz RF and LO Input Bandwidths 2 MHz Differential Current

More information

CMOS Design of Wideband Inductor-Less LNA

CMOS Design of Wideband Inductor-Less LNA IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) Volume 8, Issue 3, Ver. I (May.-June. 2018), PP 25-30 e-issn: 2319 4200, p-issn No. : 2319 4197 www.iosrjournals.org CMOS Design of Wideband Inductor-Less

More information

Reconfigurable Low-Power Continuous-Time Sigma-Delta Converter for Multi- Standard Applications

Reconfigurable Low-Power Continuous-Time Sigma-Delta Converter for Multi- Standard Applications ECEN-60: Mixed-Signal Interfaces Instructor: Sebastian Hoyos ASSIGNMENT 6 Reconfigurable Low-Power Continuous-Time Sigma-Delta Converter for Multi- Standard Applications ) Please use SIMULINK to design

More information

Comparison between Quadrature- and Polar-modulation Switching-mode Transmitter with Pulse-density Modulation

Comparison between Quadrature- and Polar-modulation Switching-mode Transmitter with Pulse-density Modulation Comparison between Quadrature- and Polar-modulation Switching-mode Transmitter with Pulse-density Modulation Hironori IZUMI, Michiaki KOJIMA *, Yohtaro UMEDA, Osamu TAKYU Department of Electrical Engineering,

More information

3250 Series Spectrum Analyzer

3250 Series Spectrum Analyzer The most important thing we build is trust ADVANCED ELECTRONIC SOLUTIONS AVIATION SERVICES COMMUNICATIONS AND CONNECTIVITY MISSION SYSTEMS 3250 Series Spectrum Analyzer > Agenda Introduction

More information

Pulse-Based Ultra-Wideband Transmitters for Digital Communication

Pulse-Based Ultra-Wideband Transmitters for Digital Communication Pulse-Based Ultra-Wideband Transmitters for Digital Communication Ph.D. Thesis Defense David Wentzloff Thesis Committee: Prof. Anantha Chandrakasan (Advisor) Prof. Joel Dawson Prof. Charles Sodini Ultra-Wideband

More information

Electronic circuits II Example set of questions Łódź 2013

Electronic circuits II Example set of questions Łódź 2013 (V) (V) (V) (V) Electronic circuits II Example set of questions Łódź 213 1) Explain difference between the noise and the distortion. 2) Explain difference between the noise and the interference. 3) Explain

More information

Analog and Telecommunication Electronics

Analog and Telecommunication Electronics Politecnico di Torino Electronic Eng. Master Degree Analog and Telecommunication Electronics C5 - Synchronous demodulation» AM and FM demodulation» Coherent demodulation» Tone decoders AY 2015-16 19/03/2016-1

More information

Berkeley. Mixers: An Overview. Prof. Ali M. Niknejad. U.C. Berkeley Copyright c 2014 by Ali M. Niknejad

Berkeley. Mixers: An Overview. Prof. Ali M. Niknejad. U.C. Berkeley Copyright c 2014 by Ali M. Niknejad Berkeley Mixers: An Overview Prof. Ali M. U.C. Berkeley Copyright c 2014 by Ali M. Mixers Information PSD Mixer f c The Mixer is a critical component in communication circuits. It translates information

More information

BANDPASS delta sigma ( ) modulators are used to digitize

BANDPASS delta sigma ( ) modulators are used to digitize 680 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 52, NO. 10, OCTOBER 2005 A Time-Delay Jitter-Insensitive Continuous-Time Bandpass 16 Modulator Architecture Anurag Pulincherry, Michael

More information

ISSCC 2006 / SESSION 33 / MOBILE TV / 33.4

ISSCC 2006 / SESSION 33 / MOBILE TV / 33.4 33.4 A Dual-Channel Direct-Conversion CMOS Receiver for Mobile Multimedia Broadcasting Vincenzo Peluso, Yang Xu, Peter Gazzerro, Yiwu Tang, Li Liu, Zhenbiao Li, Wei Xiong, Charles Persico Qualcomm, San

More information

TSEK02: Radio Electronics Lecture 2: Modulation (I) Ted Johansson, EKS, ISY

TSEK02: Radio Electronics Lecture 2: Modulation (I) Ted Johansson, EKS, ISY TSEK02: Radio Electronics Lecture 2: Modulation (I) Ted Johansson, EKS, ISY 2 Basic Definitions Time and Frequency db conversion Power and dbm Filter Basics 3 Filter Filter is a component with frequency

More information

9 Hints for Making Better Measurements Using RF Signal Generators. Application Note 1390

9 Hints for Making Better Measurements Using RF Signal Generators. Application Note 1390 9 Hints for Making Better Measurements Using RF Signal Generators Application Note 1390 Signal sources provide precise, highly stable test signals for a variety of component and system test applications.

More information

Bridging the Gap between System & Circuit Designers

Bridging the Gap between System & Circuit Designers Bridging the Gap between System & Circuit Designers October 27, 2004 Presented by: Kal Kalbasi Q & A Marc Petersen Copyright 2003 Agilent Technologies, Inc. The Gap System Communication System Design System

More information

WITH THE rapid advance of CMOS technology, digital

WITH THE rapid advance of CMOS technology, digital IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 55, NO. 12, DECEMBER 2007 2845 Design of H-Bridge Class-D Power Amplifiers for Digital Pulse Modulation Transmitters Tsai-Pi Hung, Student Member,

More information