Refractive Power of a Surface. Exposure Sources. Thin Lenses. Thick Lenses. High Pressure Hg Arc Lamp Spectrum

Size: px
Start display at page:

Download "Refractive Power of a Surface. Exposure Sources. Thin Lenses. Thick Lenses. High Pressure Hg Arc Lamp Spectrum"

Transcription

1 eractive Power o a Surace The reractive power P is measured in diopters when the radius is expressed in meters. n and n are the reractive indices o the two media. EE-57: icrofabrication n n P n n Exposure and maging Thin Lenses Exposure Sources OBJECT h ocal ray d d parallel ray F e d object distance d image distance, ocal lengths e,e extraocal distances h, h object/image heights chie ray F AGE e h Photons white light Hg arc lamp iltered Hg arc lamp excimer laser x-rays rom synchrotron Electrons ocused electron beam direct write ons ocused ion beam direct write Thick Lenses High Pressure Hg Arc Lamp Spectrum OBJECT d t d AGE deep UV mid UV near UV -line H-line G-line E-line h F e N N F e h 89 wavelength, nm d object distance d image distance, ocal lengths e,e extraocal distances h, h object/image heights H H Cardinal Points o a Lens: Focal Points: F, F Nodal Points: N, N Principal Points: H, H spectral reerence; also used or sterilization The -line at 365 nm is the strongest.

2 Projection Lithography equirements b minimum eature size (spot or line) b minimum period o line-space pattern λ exposure wavelength Using b θ min, obtain that b λ/na. The depth o ocus can be shown to be d ± λ/(na) A voxel is a volume pixel. For highest resolution lithograpy, desire the tallest aspect ratio voxel. Thus, wish to maximize the ratio d /b /NA. SO: it all depends upon the NA o the lens! b Want the tallest aspect ratio o the exposed voxel. n n, then d d Lens-aker s Formula n n d d This can also be expressed as: or: n n n n ( n ) P ( d )( d ) e e ±d Sample Calculation Primary reduction camera in WTC-FL uses a projection lens with /6.8 and 9.5 in. 4.3 mm. Lens diameter is 4.3 mm/ mm.40 in. The numerical aperture is NA /* For exposure in the middle green, λ 550 nm. Thus, the minimum eature size is b 550 nm/* µm or a line, or.0 * 3.7 µm 4.56 µm or a spot. The tightest grating pitch that could be printed using this lens is thereore b 7.44 µm. Lens Apertures The -number o a lens (/#) is the ocal length divided by the diameter. t is a measure o the light gathering ability. The numerical aperture (NA) o a lens is n*sin α, where α is the hal-angle o the largest cone o light entering the lens. α α NA 4 /# NA nsinα /# Lens Aberrations Chromatic aberration ispersion: change o reractive index with wavelength onochromatic aberrations transverse ocal shit longitudinal ocal shit spherical aberration coma astigmatism ield curvature distortion esolving Power o a Lens ayleigh criterion: inimum angular ray separation to resolve two spots rom one is: sin θ min.0 λ/. Since θ min is small, θ min.0 λ/. is the diameter o a circular aperture..0 is the irst zero o the Bessel unction J m (x). An Airy unction results rom Fraunhoer diraction rom a circular aperture. Straight line pattern: inimum angular ray separation to resolve two lines rom one is: sin θ min λ/, or approximately θ min λ/.

3 Standing Waves - Standing waves are enhanced by relective waer suraces. the waer or substrate is transparent, relections rom the aligner chuck can create standing wave patterns, also. This can be eliminated by using: a lat black chuck (anodized aluminum) an optical absorber under the waer (lint ree black paper) a transparent glass chuck (used on Karl Suss JB3) Exposures can be greatly miscalculated by the presence o standing waves and relective waers or chucks. Projection Optics t is exceeding diicult to make large NA reractive optics due to aberration limits. The best lenses used in projection lithography have NA A lens with NA 0.50 is a /.00 lens: its ocal length and eective diameter are the same! The largest NA lenses ever made were a NA 0.54 and a NA 0.60 by Nikon. elective optics are better suited or large NA applications. But they are physically larger, and usually require close temperature stability to keep their proper contours and alignment. Combinations (catadioptric) systems are also used. This is very common in SW (stepper) lithography equipment. Photographic Exposure Equation Contact and Proximity Lithography esolution T SB American Standards Association (ASA) ilm speed is the dose required to produce an optical density o 0. in a ilm media. T exposure time in seconds -number o projection lens S ASA or SO ilm speed B scene brightness in candles/t German N ilm speed is: N 0 log 0 (ASA) 00 ASA N λ exposure wavelength d resist thickness b minimum pitch o line-space pattern s spacing between the mask and the resist Contact Printing: b 3 0.5λd At λ 400 nm, d µm, obtain b 0.7 µm linewidth. Proximity Printing: b 3 λ( s 0.5d) At λ 400 nm, s 0 µm, d µm, obtain b 3.0 µm linewidth. Optical Absorbance and ensity Standing Waves - optical absorber Typical optical densities: xerox transparency: O photographic emulsion plate: O -3 chrome photomask: O 5-6 T A T transmittance absorbance O log0 ( A) optical density Short exposure wavelengths can create standing waves in a layer o photoresist. egions o constructive intererence create increased exposure. These can impair the structure o the resist, but can be eliminated by: use o multiple wavelength sources postbaking Eects are most noticeable at the edge o the resist. wave pattern appears on the edge o the resist

4 Optical odulation optical intensity, W/cm optical modulation within a scene or image T modulation transer actor or an optical element imensional Latitude: (typically want less than 0.05) Line Width, L Exposure Latitude L' L δ L' negative P positive P max max min when min 0. min L LNES SPACES drawn mask eature size T out in SPACES LNES Exposure odulation Transer Function Proximity Exposure Eect - The modulation transer unction (TF) is the modulus o the Fourier transorm o the linespread unction: TF( ) πjx L( x) e dx is the spatial requency light ield 50:50 grating dark ield Optics obeys linear system theory: TF(system) TF(element ) TF(element ) TF(element 3 )... Optimum exposure depends upon the pattern!!! Adjacent clear (bright) regions add additional exposure to a given region because o overlap rom Gaussian tail o the linespread unction. odulation Transer Function in Photolithography TF(system) TF(mask) TF(optics) TF(resist) TF() photoresist Spread Functions uniorm illumination uniorm illumination mask plate mask plate overall system mask and optics Gaussian distribution ntensity L(x) ntensity J(x) 0 increase in spatial requency due to nonlinearity o resist spatial requency, x x Line Spread Function L(x) Edge Spread Function J(x) dj ( x) L( x) J ( x) dx x L( x') dx'

5 Proximity Exposure Eect - photomask Phase Shiting asks photomask chrome λ/ phase shiting layer

EE-527: MicroFabrication

EE-527: MicroFabrication EE-57: MicroFabrication Exposure and Imaging Photons white light Hg arc lamp filtered Hg arc lamp excimer laser x-rays from synchrotron Electrons Ions Exposure Sources focused electron beam direct write

More information

Lithography. 3 rd. lecture: introduction. Prof. Yosi Shacham-Diamand. Fall 2004

Lithography. 3 rd. lecture: introduction. Prof. Yosi Shacham-Diamand. Fall 2004 Lithography 3 rd lecture: introduction Prof. Yosi Shacham-Diamand Fall 2004 1 List of content Fundamental principles Characteristics parameters Exposure systems 2 Fundamental principles Aerial Image Exposure

More information

Section 2: Lithography. Jaeger Chapter 2. EE143 Ali Javey Slide 5-1

Section 2: Lithography. Jaeger Chapter 2. EE143 Ali Javey Slide 5-1 Section 2: Lithography Jaeger Chapter 2 EE143 Ali Javey Slide 5-1 The lithographic process EE143 Ali Javey Slide 5-2 Photolithographic Process (a) (b) (c) (d) (e) (f) (g) Substrate covered with silicon

More information

Section 2: Lithography. Jaeger Chapter 2 Litho Reader. EE143 Ali Javey Slide 5-1

Section 2: Lithography. Jaeger Chapter 2 Litho Reader. EE143 Ali Javey Slide 5-1 Section 2: Lithography Jaeger Chapter 2 Litho Reader EE143 Ali Javey Slide 5-1 The lithographic process EE143 Ali Javey Slide 5-2 Photolithographic Process (a) (b) (c) (d) (e) (f) (g) Substrate covered

More information

Part 5-1: Lithography

Part 5-1: Lithography Part 5-1: Lithography Yao-Joe Yang 1 Pattern Transfer (Patterning) Types of lithography systems: Optical X-ray electron beam writer (non-traditional, no masks) Two-dimensional pattern transfer: limited

More information

SIMPLE LENSES. To measure the focal lengths of several lens and lens combinations.

SIMPLE LENSES. To measure the focal lengths of several lens and lens combinations. SIMPLE LENSES PURPOSE: To measure the ocal lengths o several lens and lens combinations. EQUIPMENT: Three convex lenses, one concave lens, lamp, image screen, lens holders, meter stick. INTRODUCTION: Combinations

More information

Photolithography II ( Part 2 )

Photolithography II ( Part 2 ) 1 Photolithography II ( Part 2 ) Chapter 14 : Semiconductor Manufacturing Technology by M. Quirk & J. Serda Saroj Kumar Patra, Department of Electronics and Telecommunication, Norwegian University of Science

More information

Introduction THE OPTICAL ENGINEERING PROCESS ENGINEERING SUPPORT

Introduction THE OPTICAL ENGINEERING PROCESS ENGINEERING SUPPORT Material Properties Optical Speciications Gaussian Beam Optics Introduction Even though several thousand dierent optical components are listed in this catalog, perorming a ew simple calculations will usually

More information

Section 2: Lithography. Jaeger Chapter 2 Litho Reader. The lithographic process

Section 2: Lithography. Jaeger Chapter 2 Litho Reader. The lithographic process Section 2: Lithography Jaeger Chapter 2 Litho Reader The lithographic process Photolithographic Process (a) (b) (c) (d) (e) (f) (g) Substrate covered with silicon dioxide barrier layer Positive photoresist

More information

MICROCHIP MANUFACTURING by S. Wolf

MICROCHIP MANUFACTURING by S. Wolf MICROCHIP MANUFACTURING by S. Wolf Chapter 19 LITHOGRAPHY II: IMAGE-FORMATION and OPTICAL HARDWARE 2004 by LATTICE PRESS CHAPTER 19 - CONTENTS Preliminaries: Wave- Motion & The Behavior of Light Resolution

More information

Introduction. THE OPTICAL ENGINEERING PROCESS. Engineering Support. Fundamental Optics

Introduction.   THE OPTICAL ENGINEERING PROCESS. Engineering Support. Fundamental Optics Introduction The process o solving virtually any optical engineering problem can be broken down into two main steps. First, paraxial calculations (irst order) are made to determine critical parameters

More information

OPTICAL SYSTEMS OBJECTIVES

OPTICAL SYSTEMS OBJECTIVES 101 L7 OPTICAL SYSTEMS OBJECTIVES Aims Your aim here should be to acquire a working knowledge of the basic components of optical systems and understand their purpose, function and limitations in terms

More information

EE119 Introduction to Optical Engineering Spring 2002 Final Exam. Name:

EE119 Introduction to Optical Engineering Spring 2002 Final Exam. Name: EE119 Introduction to Optical Engineering Spring 2002 Final Exam Name: SID: CLOSED BOOK. FOUR 8 1/2 X 11 SHEETS OF NOTES, AND SCIENTIFIC POCKET CALCULATOR PERMITTED. TIME ALLOTTED: 180 MINUTES Fundamental

More information

Length-Sensing OpLevs for KAGRA

Length-Sensing OpLevs for KAGRA Length-Sensing OpLevs or KAGRA Simon Zeidler Basics Length-Sensing Optical Levers are needed in order to measure the shit o mirrors along the optical path o the incident main-laser beam with time. The

More information

Micro- and Nano-Technology... for Optics

Micro- and Nano-Technology... for Optics Micro- and Nano-Technology...... for Optics 3.2 Lithography U.D. Zeitner Fraunhofer Institut für Angewandte Optik und Feinmechanik Jena Printing on Stones Map of Munich Stone Print Contact Printing light

More information

PHY 431 Homework Set #5 Due Nov. 20 at the start of class

PHY 431 Homework Set #5 Due Nov. 20 at the start of class PHY 431 Homework Set #5 Due Nov. 0 at the start of class 1) Newton s rings (10%) The radius of curvature of the convex surface of a plano-convex lens is 30 cm. The lens is placed with its convex side down

More information

Splitting femtosecond laser pulses by using a Dammann grating

Splitting femtosecond laser pulses by using a Dammann grating Splitting emtosecond laser pulses by using a Guowei Li, Changhe Zhou, Enwen Dai Shanghai Institute o Optics and Fine Mechanics, Inormation Optics Lab, Academia Sinica, Graduate o the Chinese Academy o

More information

Elementary Optical Systems. Section 13. Magnifiers and Telescopes

Elementary Optical Systems. Section 13. Magnifiers and Telescopes 13-1 Elementary Optical Systems Section 13 Magniiers and Telescopes Elementary Optical Systems Many optical systems can be understood when treated as combinations o thin lenses. Mirror equivalents exist

More information

Exam 4. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Exam 4. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Class: Date: Exam 4 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Mirages are a result of which physical phenomena a. interference c. reflection

More information

MICRO AND NANOPROCESSING TECHNOLOGIES

MICRO AND NANOPROCESSING TECHNOLOGIES MICRO AND NANOPROCESSING TECHNOLOGIES LECTURE 4 Optical lithography Concepts and processes Lithography systems Fundamental limitations and other issues Photoresists Photolithography process Process parameter

More information

Marketed and Distributed by FaaDoOEngineers.com

Marketed and Distributed by FaaDoOEngineers.com REFRACTION OF LIGHT GUPTA CLASSES For any help contact: 995368795, 968789880 Nishant Gupta, D-, Prashant vihar, Rohini, Delhi-85 Contact: 995368795, 968789880 Reraction o light:. The ratio o the sine o

More information

Applied Optics. , Physics Department (Room #36-401) , ,

Applied Optics. , Physics Department (Room #36-401) , , Applied Optics Professor, Physics Department (Room #36-401) 2290-0923, 019-539-0923, shsong@hanyang.ac.kr Office Hours Mondays 15:00-16:30, Wednesdays 15:00-16:30 TA (Ph.D. student, Room #36-415) 2290-0921,

More information

New metallic mesh designing with high electromagnetic shielding

New metallic mesh designing with high electromagnetic shielding MATEC Web o Conerences 189, 01003 (018) MEAMT 018 https://doi.org/10.1051/mateccon/01818901003 New metallic mesh designing with high electromagnetic shielding Longjia Qiu 1,,*, Li Li 1,, Zhieng Pan 1,,

More information

Phy 212: General Physics II

Phy 212: General Physics II Phy 212: General Physics II Chapter 34: Images Lecture Notes Geometrical (Ray) Optics Geometrical Optics is an approximate treatment o light waves as straight lines (rays) or the description o image ormation

More information

Physics 142 Lenses and Mirrors Page 1. Lenses and Mirrors. Now for the sequence of events, in no particular order. Dan Rather

Physics 142 Lenses and Mirrors Page 1. Lenses and Mirrors. Now for the sequence of events, in no particular order. Dan Rather Physics 142 Lenses and Mirrors Page 1 Lenses and Mirrors Now or the sequence o events, in no particular order. Dan Rather Overview: making use o the laws o relection and reraction We will now study ormation

More information

Vision. The eye. Image formation. Eye defects & corrective lenses. Visual acuity. Colour vision. Lecture 3.5

Vision. The eye. Image formation. Eye defects & corrective lenses. Visual acuity. Colour vision. Lecture 3.5 Lecture 3.5 Vision The eye Image formation Eye defects & corrective lenses Visual acuity Colour vision Vision http://www.wired.com/wiredscience/2009/04/schizoillusion/ Perception of light--- eye-brain

More information

EP118 Optics. Content TOPIC 9 ABERRATIONS. Department of Engineering Physics University of Gaziantep. 1. Introduction. 2. Spherical Aberrations

EP118 Optics. Content TOPIC 9 ABERRATIONS. Department of Engineering Physics University of Gaziantep. 1. Introduction. 2. Spherical Aberrations EP118 Optics TOPI 9 ABERRATIONS Department o Engineering Physics Uniersity o Gaziantep July 2011 Saya 1 ontent 1. Introduction 2. Spherical Aberrations 3. hromatic Aberrations 4. Other Types o Aberrations

More information

Definition of light rays

Definition of light rays Geometrical optics In this section we study optical systems involving lenses and mirrors, developing an understanding o devices such as microscopes and telescopes, and biological systems such as the human

More information

Lecture 8. Lecture 8. r 1

Lecture 8. Lecture 8. r 1 Lecture 8 Achromat Design Design starts with desired Next choose your glass materials, i.e. Find P D P D, then get f D P D K K Choose radii (still some freedom left in choice of radii for minimization

More information

R.B.V.R.R. WOMEN S COLLEGE (AUTONOMOUS) Narayanaguda, Hyderabad.

R.B.V.R.R. WOMEN S COLLEGE (AUTONOMOUS) Narayanaguda, Hyderabad. R.B.V.R.R. WOMEN S COLLEGE (AUTONOMOUS) Narayanaguda, Hyderabad. DEPARTMENT OF PHYSICS QUESTION BANK FOR SEMESTER III PAPER III OPTICS UNIT I: 1. MATRIX METHODS IN PARAXIAL OPTICS 2. ABERATIONS UNIT II

More information

INTRODUCTION THIN LENSES. Introduction. given by the paraxial refraction equation derived last lecture: Thin lenses (19.1) = 1. Double-lens systems

INTRODUCTION THIN LENSES. Introduction. given by the paraxial refraction equation derived last lecture: Thin lenses (19.1) = 1. Double-lens systems Chapter 9 OPTICAL INSTRUMENTS Introduction Thin lenses Double-lens systems Aberrations Camera Human eye Compound microscope Summary INTRODUCTION Knowledge of geometrical optics, diffraction and interference,

More information

Major Fabrication Steps in MOS Process Flow

Major Fabrication Steps in MOS Process Flow Major Fabrication Steps in MOS Process Flow UV light Mask oxygen Silicon dioxide photoresist exposed photoresist oxide Silicon substrate Oxidation (Field oxide) Photoresist Coating Mask-Wafer Alignment

More information

Micro- and Nano-Technology... for Optics

Micro- and Nano-Technology... for Optics Micro- and Nano-Technology...... for Optics 3.2 Lithography U.D. Zeitner Fraunhofer Institut für Angewandte Optik und Feinmechanik Jena Printing on Stones Map of Munich Stone Print Shadow Printing Photomask

More information

Lecture 5. Optical Lithography

Lecture 5. Optical Lithography Lecture 5 Optical Lithography Intro For most of microfabrication purposes the process (e.g. additive, subtractive or implantation) has to be applied selectively to particular areas of the wafer: patterning

More information

Lecture 2: Geometrical Optics. Geometrical Approximation. Lenses. Mirrors. Optical Systems. Images and Pupils. Aberrations.

Lecture 2: Geometrical Optics. Geometrical Approximation. Lenses. Mirrors. Optical Systems. Images and Pupils. Aberrations. Lecture 2: Geometrical Optics Outline 1 Geometrical Approximation 2 Lenses 3 Mirrors 4 Optical Systems 5 Images and Pupils 6 Aberrations Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl

More information

Lecture 2: Geometrical Optics. Geometrical Approximation. Lenses. Mirrors. Optical Systems. Images and Pupils. Aberrations.

Lecture 2: Geometrical Optics. Geometrical Approximation. Lenses. Mirrors. Optical Systems. Images and Pupils. Aberrations. Lecture 2: Geometrical Optics Outline 1 Geometrical Approximation 2 Lenses 3 Mirrors 4 Optical Systems 5 Images and Pupils 6 Aberrations Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl

More information

The Human Visual System. Lecture 1. The Human Visual System. The Human Eye. The Human Retina. cones. rods. horizontal. bipolar. amacrine.

The Human Visual System. Lecture 1. The Human Visual System. The Human Eye. The Human Retina. cones. rods. horizontal. bipolar. amacrine. Lecture The Human Visual System The Human Visual System Retina Optic Nerve Optic Chiasm Lateral Geniculate Nucleus (LGN) Visual Cortex The Human Eye The Human Retina Lens rods cones Cornea Fovea Optic

More information

Chapters 1 & 2. Definitions and applications Conceptual basis of photogrammetric processing

Chapters 1 & 2. Definitions and applications Conceptual basis of photogrammetric processing Chapters 1 & 2 Chapter 1: Photogrammetry Definitions and applications Conceptual basis of photogrammetric processing Transition from two-dimensional imagery to three-dimensional information Automation

More information

Optical Components for Laser Applications. Günter Toesko - Laserseminar BLZ im Dezember

Optical Components for Laser Applications. Günter Toesko - Laserseminar BLZ im Dezember Günter Toesko - Laserseminar BLZ im Dezember 2009 1 Aberrations An optical aberration is a distortion in the image formed by an optical system compared to the original. It can arise for a number of reasons

More information

EE143 Fall 2016 Microfabrication Technologies. Lecture 3: Lithography Reading: Jaeger, Chap. 2

EE143 Fall 2016 Microfabrication Technologies. Lecture 3: Lithography Reading: Jaeger, Chap. 2 EE143 Fall 2016 Microfabrication Technologies Lecture 3: Lithography Reading: Jaeger, Chap. 2 Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 1-1 The lithographic process 1-2 1 Photolithographic

More information

Lens Design I. Lecture 3: Properties of optical systems II Herbert Gross. Summer term

Lens Design I. Lecture 3: Properties of optical systems II Herbert Gross. Summer term Lens Design I Lecture 3: Properties of optical systems II 207-04-20 Herbert Gross Summer term 207 www.iap.uni-jena.de 2 Preliminary Schedule - Lens Design I 207 06.04. Basics 2 3.04. Properties of optical

More information

ECEG105/ECEU646 Optics for Engineers Course Notes Part 4: Apertures, Aberrations Prof. Charles A. DiMarzio Northeastern University Fall 2008

ECEG105/ECEU646 Optics for Engineers Course Notes Part 4: Apertures, Aberrations Prof. Charles A. DiMarzio Northeastern University Fall 2008 ECEG105/ECEU646 Optics for Engineers Course Notes Part 4: Apertures, Aberrations Prof. Charles A. DiMarzio Northeastern University Fall 2008 July 2003+ Chuck DiMarzio, Northeastern University 11270-04-1

More information

Lens Design I. Lecture 3: Properties of optical systems II Herbert Gross. Summer term

Lens Design I. Lecture 3: Properties of optical systems II Herbert Gross. Summer term Lens Design I Lecture 3: Properties of optical systems II 205-04-8 Herbert Gross Summer term 206 www.iap.uni-jena.de 2 Preliminary Schedule 04.04. Basics 2.04. Properties of optical systrems I 3 8.04.

More information

Laser and LED retina hazard assessment with an eye simulator. Arie Amitzi and Menachem Margaliot Soreq NRC Yavne 81800, Israel

Laser and LED retina hazard assessment with an eye simulator. Arie Amitzi and Menachem Margaliot Soreq NRC Yavne 81800, Israel Laser and LED retina hazard assessment with an eye simulator Arie Amitzi and Menachem Margaliot Soreq NRC Yavne 81800, Israel Laser radiation hazard assessment Laser and other collimated light sources

More information

Photolithography I ( Part 1 )

Photolithography I ( Part 1 ) 1 Photolithography I ( Part 1 ) Chapter 13 : Semiconductor Manufacturing Technology by M. Quirk & J. Serda Bjørn-Ove Fimland, Department of Electronics and Telecommunication, Norwegian University of Science

More information

EE119 Introduction to Optical Engineering Fall 2009 Final Exam. Name:

EE119 Introduction to Optical Engineering Fall 2009 Final Exam. Name: EE119 Introduction to Optical Engineering Fall 2009 Final Exam Name: SID: CLOSED BOOK. THREE 8 1/2 X 11 SHEETS OF NOTES, AND SCIENTIFIC POCKET CALCULATOR PERMITTED. TIME ALLOTTED: 180 MINUTES Fundamental

More information

Cardinal Points of an Optical System--and Other Basic Facts

Cardinal Points of an Optical System--and Other Basic Facts Cardinal Points of an Optical System--and Other Basic Facts The fundamental feature of any optical system is the aperture stop. Thus, the most fundamental optical system is the pinhole camera. The image

More information

ECEN 4606, UNDERGRADUATE OPTICS LAB

ECEN 4606, UNDERGRADUATE OPTICS LAB ECEN 4606, UNDERGRADUATE OPTICS LAB Lab 2: Imaging 1 the Telescope Original Version: Prof. McLeod SUMMARY: In this lab you will become familiar with the use of one or more lenses to create images of distant

More information

CCAM Microscope Objectives

CCAM Microscope Objectives CCAM Microscope Objectives Things to consider when selecting an objective Magnification Numerical Aperture (NA) resolving power and light intensity of the objective Working Distance distance between the

More information

Copyright 2000 by the Society of Photo-Optical Instrumentation Engineers.

Copyright 2000 by the Society of Photo-Optical Instrumentation Engineers. Copyright by the Society of Photo-Optical Instrumentation Engineers. This paper was published in the proceedings of Optical Microlithography XIII, SPIE Vol. 4, pp. 658-664. It is made available as an electronic

More information

Physics 431 Final Exam Examples (3:00-5:00 pm 12/16/2009) TIME ALLOTTED: 120 MINUTES Name: Signature:

Physics 431 Final Exam Examples (3:00-5:00 pm 12/16/2009) TIME ALLOTTED: 120 MINUTES Name: Signature: Physics 431 Final Exam Examples (3:00-5:00 pm 12/16/2009) TIME ALLOTTED: 120 MINUTES Name: PID: Signature: CLOSED BOOK. TWO 8 1/2 X 11 SHEET OF NOTES (double sided is allowed), AND SCIENTIFIC POCKET CALCULATOR

More information

AST Lab exercise: aberrations

AST Lab exercise: aberrations AST2210 - Lab exercise: aberrations 1 Introduction This lab exercise will take you through the most common types of aberrations. 2 Chromatic aberration Chromatic aberration causes lens to have dierent

More information

Lecture 7. Lithography and Pattern Transfer. Reading: Chapter 7

Lecture 7. Lithography and Pattern Transfer. Reading: Chapter 7 Lecture 7 Lithography and Pattern Transfer Reading: Chapter 7 Used for Pattern transfer into oxides, metals, semiconductors. 3 types of Photoresists (PR): Lithography and Photoresists 1.) Positive: PR

More information

Katarina Logg, Kristofer Bodvard, Mikael Käll. Dept. of Applied Physics. 12 September Optical Microscopy. Supervisor s signature:...

Katarina Logg, Kristofer Bodvard, Mikael Käll. Dept. of Applied Physics. 12 September Optical Microscopy. Supervisor s signature:... Katarina Logg, Kristofer Bodvard, Mikael Käll Dept. of Applied Physics 12 September 2007 O1 Optical Microscopy Name:.. Date:... Supervisor s signature:... Introduction Over the past decades, the number

More information

Announcements. Focus! Thin Lens Models. New Topic. Intensity Image Formation. Bi-directional: two focal points! Thin Lens Model

Announcements. Focus! Thin Lens Models. New Topic. Intensity Image Formation. Bi-directional: two focal points! Thin Lens Model Focus! Models Lecture #17 Tuesda, November 1 st, 2011 Announcements Programming Assignment #3 Is due a week rom Tuesda Midterm #2: two weeks rom Tuesda GTA survers: https://www.survemonke.com/r/shpj7j3

More information

A. Focal Length. 3. Lens Maker Equation. 2. Diverging Systems. f = 2 R. A. Focal Length B. Lens Law, object & image C. Optical Instruments

A. Focal Length. 3. Lens Maker Equation. 2. Diverging Systems. f = 2 R. A. Focal Length B. Lens Law, object & image C. Optical Instruments Physics 700 Geometric Optics Geometric Optics (rough drat) A. Focal Length B. Lens Law, object & image C. Optical Instruments W. Pezzaglia Updated: 0Aug A. Focal Length 3. Converging Systems 4. Converging

More information

Applications of Optics

Applications of Optics Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 26 Applications of Optics Marilyn Akins, PhD Broome Community College Applications of Optics Many devices are based on the principles of optics

More information

Thin Lens and Image Formation

Thin Lens and Image Formation Pre-Lab Quiz / PHYS 4 Thin Lens and Image Formation Name Lab Section. What do you investigate in this lab?. The ocal length o a bi-convex thin lens is 0 cm. To a real image with magniication o, what is

More information

VISUAL PHYSICS ONLINE DEPTH STUDY: ELECTRON MICROSCOPES

VISUAL PHYSICS ONLINE DEPTH STUDY: ELECTRON MICROSCOPES VISUAL PHYSICS ONLINE DEPTH STUDY: ELECTRON MICROSCOPES Shortly after the experimental confirmation of the wave properties of the electron, it was suggested that the electron could be used to examine objects

More information

lens Figure 1. A refractory focusing arrangement. Focal point

lens Figure 1. A refractory focusing arrangement. Focal point Laboratory 2 - Introduction to Lenses & Telescopes Materials Used: A set o our lenses, an optical bench with a centimeter scale, a white screen, several lens holders, a light source (with crossed arrows),

More information

Lights. Action. Cameras. Shutter/Iris Lens With focal length f. Image Distance. Object. Distance

Lights. Action. Cameras. Shutter/Iris Lens With focal length f. Image Distance. Object. Distance Lights. Action. Phys 1020, Day 17: Cameras, Blm 15.1 Reminders: HW 8 in/hw 9 out Make up lab week straight ater Sp.B. Check scores on CU learn 1 Object Cameras Shutter/Iris Lens With ocal length Dark Box

More information

Lecture 13 Basic Photolithography

Lecture 13 Basic Photolithography Lecture 13 Basic Photolithography Chapter 12 Wolf and Tauber 1/64 Announcements Homework: Homework 3 is due today, please hand them in at the front. Will be returned one week from Thursday (16 th Nov).

More information

9. THINK A concave mirror has a positive value of focal length.

9. THINK A concave mirror has a positive value of focal length. 9. THINK A concave mirror has a positive value o ocal length. EXPRESS For spherical mirrors, the ocal length is related to the radius o curvature r by r/2. The object distance p, the image distance i,

More information

Chapter 25. Optical Instruments

Chapter 25. Optical Instruments Chapter 25 Optical Instruments Optical Instruments Analysis generally involves the laws of reflection and refraction Analysis uses the procedures of geometric optics To explain certain phenomena, the wave

More information

Section 3. Imaging With A Thin Lens

Section 3. Imaging With A Thin Lens 3-1 Section 3 Imaging With A Thin Lens Object at Infinity An object at infinity produces a set of collimated set of rays entering the optical system. Consider the rays from a finite object located on the

More information

Modulation Transfer Function

Modulation Transfer Function Modulation Transfer Function The Modulation Transfer Function (MTF) is a useful tool in system evaluation. t describes if, and how well, different spatial frequencies are transferred from object to image.

More information

Opti 415/515. Introduction to Optical Systems. Copyright 2009, William P. Kuhn

Opti 415/515. Introduction to Optical Systems. Copyright 2009, William P. Kuhn Opti 415/515 Introduction to Optical Systems 1 Optical Systems Manipulate light to form an image on a detector. Point source microscope Hubble telescope (NASA) 2 Fundamental System Requirements Application

More information

PHYSICS. Chapter 35 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT

PHYSICS. Chapter 35 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 35 Lecture RANDALL D. KNIGHT Chapter 35 Optical Instruments IN THIS CHAPTER, you will learn about some common optical instruments and

More information

Chapter 36. Image Formation

Chapter 36. Image Formation Chapter 36 Image Formation Image of Formation Images can result when light rays encounter flat or curved surfaces between two media. Images can be formed either by reflection or refraction due to these

More information

Supplementary Figure 1. GO thin film thickness characterization. The thickness of the prepared GO thin

Supplementary Figure 1. GO thin film thickness characterization. The thickness of the prepared GO thin Supplementary Figure 1. GO thin film thickness characterization. The thickness of the prepared GO thin film is characterized by using an optical profiler (Bruker ContourGT InMotion). Inset: 3D optical

More information

EE119 Introduction to Optical Engineering Spring 2003 Final Exam. Name:

EE119 Introduction to Optical Engineering Spring 2003 Final Exam. Name: EE119 Introduction to Optical Engineering Spring 2003 Final Exam Name: SID: CLOSED BOOK. THREE 8 1/2 X 11 SHEETS OF NOTES, AND SCIENTIFIC POCKET CALCULATOR PERMITTED. TIME ALLOTTED: 180 MINUTES Fundamental

More information

Chapter 36. Image Formation

Chapter 36. Image Formation Chapter 36 Image Formation Notation for Mirrors and Lenses The object distance is the distance from the object to the mirror or lens Denoted by p The image distance is the distance from the image to the

More information

Reflectors vs. Refractors

Reflectors vs. Refractors 1 Telescope Types - Telescopes collect and concentrate light (which can then be magnified, dispersed as a spectrum, etc). - In the end it is the collecting area that counts. - There are two primary telescope

More information

Refraction and Lenses

Refraction and Lenses Reraction and Lenses The most common application o reraction in science and technology is lenses. The kind o lenses we typically think o are made o glass or plastic. The basic rules o reraction still apply

More information

Optical Requirements

Optical Requirements Optical Requirements Transmission vs. Film Thickness A pellicle needs a good light transmission and long term transmission stability. Transmission depends on the film thickness, film material and any anti-reflective

More information

Exercise 8: Interference and diffraction

Exercise 8: Interference and diffraction Physics 223 Name: Exercise 8: Interference and diffraction 1. In a two-slit Young s interference experiment, the aperture (the mask with the two slits) to screen distance is 2.0 m, and a red light of wavelength

More information

The Wave Nature of Light

The Wave Nature of Light The Wave Nature of Light Physics 102 Lecture 7 4 April 2002 Pick up Grating & Foil & Pin 4 Apr 2002 Physics 102 Lecture 7 1 Light acts like a wave! Last week we saw that light travels from place to place

More information

Chapter 36: diffraction

Chapter 36: diffraction Chapter 36: diffraction Fresnel and Fraunhofer diffraction Diffraction from a single slit Intensity in the single slit pattern Multiple slits The Diffraction grating X-ray diffraction Circular apertures

More information

5. Lithography. 1. photolithography intro: overall, clean room 2. principle 3. tools 4. pattern transfer 5. resolution 6. next-gen

5. Lithography. 1. photolithography intro: overall, clean room 2. principle 3. tools 4. pattern transfer 5. resolution 6. next-gen 5. Lithography 1. photolithography intro: overall, clean room 2. principle 3. tools 4. pattern transfer 5. resolution 6. next-gen References: Semiconductor Devices: Physics and Technology. 2 nd Ed. SM

More information

PHYS 202 OUTLINE FOR PART III LIGHT & OPTICS

PHYS 202 OUTLINE FOR PART III LIGHT & OPTICS PHYS 202 OUTLINE FOR PART III LIGHT & OPTICS Electromagnetic Waves A. Electromagnetic waves S-23,24 1. speed of waves = 1/( o o ) ½ = 3 x 10 8 m/s = c 2. waves and frequency: the spectrum (a) radio red

More information

Lecture 4: Geometrical Optics 2. Optical Systems. Images and Pupils. Rays. Wavefronts. Aberrations. Outline

Lecture 4: Geometrical Optics 2. Optical Systems. Images and Pupils. Rays. Wavefronts. Aberrations. Outline Lecture 4: Geometrical Optics 2 Outline 1 Optical Systems 2 Images and Pupils 3 Rays 4 Wavefronts 5 Aberrations Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Lecture 4: Geometrical

More information

PHY385H1F Introductory Optics Term Test 2 November 6, 2012 Duration: 50 minutes. NAME: Student Number:.

PHY385H1F Introductory Optics Term Test 2 November 6, 2012 Duration: 50 minutes. NAME: Student Number:. PHY385H1F Introductory Optics Term Test 2 November 6, 2012 Duration: 50 minutes NAME: Student Number:. Aids allowed: A pocket calculator with no communication ability. One 8.5x11 aid sheet, written on

More information

Telecentric Imaging Object space telecentricity stop source: edmund optics The 5 classical Seidel Aberrations First order aberrations Spherical Aberration (~r 4 ) Origin: different focal lengths for different

More information

Optical System Design

Optical System Design Phys 531 Lecture 12 14 October 2004 Optical System Design Last time: Surveyed examples of optical systems Today, discuss system design Lens design = course of its own (not taught by me!) Try to give some

More information

Chapter 3 Op,cal Instrumenta,on

Chapter 3 Op,cal Instrumenta,on Imaging by an Op,cal System Change in curvature of wavefronts by a thin lens Chapter 3 Op,cal Instrumenta,on 3-1 Stops, Pupils, and Windows 3-4 The Camera 3-5 Simple Magnifiers and Eyepieces 1. Magnifiers

More information

Optical Projection Printing and Modeling

Optical Projection Printing and Modeling Optical Projection Printing and Modeling Overview of optical lithography, concepts, trends Basic Parameters and Effects (1-14) Resolution Depth of Focus; Proximity, MEEF, LES Image Calculation, Characterization

More information

TSBB09 Image Sensors 2018-HT2. Image Formation Part 1

TSBB09 Image Sensors 2018-HT2. Image Formation Part 1 TSBB09 Image Sensors 2018-HT2 Image Formation Part 1 Basic physics Electromagnetic radiation consists of electromagnetic waves With energy That propagate through space The waves consist of transversal

More information

Chapter 3 Op+cal Instrumenta+on

Chapter 3 Op+cal Instrumenta+on Chapter 3 Op+cal Instrumenta+on 3-1 Stops, Pupils, and Windows 3-4 The Camera 3-5 Simple Magnifiers and Eyepieces 3-6 Microscopes 3-7 Telescopes Today (2011-09-22) 1. Magnifiers 2. Camera 3. Resolution

More information

Chapter Ray and Wave Optics

Chapter Ray and Wave Optics 109 Chapter Ray and Wave Optics 1. An astronomical telescope has a large aperture to [2002] reduce spherical aberration have high resolution increase span of observation have low dispersion. 2. If two

More information

Optical Lithography. Here Is Why. Burn J. Lin SPIE PRESS. Bellingham, Washington USA

Optical Lithography. Here Is Why. Burn J. Lin SPIE PRESS. Bellingham, Washington USA Optical Lithography Here Is Why Burn J. Lin SPIE PRESS Bellingham, Washington USA Contents Preface xiii Chapter 1 Introducing Optical Lithography /1 1.1 The Role of Lithography in Integrated Circuit Fabrication

More information

Optical Characterization of Compound Refractive Lenses

Optical Characterization of Compound Refractive Lenses Optical Characterization of Compound Refractive Lenses ARNDT LAST, INSTITUTE OF MICROSTRUCTURE TECHNOLOGY (IMT) CRL Layout 1357_00_A0 KIT University of the State of Baden-Wuerttemberg and National Research

More information

Introduction. Geometrical Optics. Milton Katz State University of New York. VfeWorld Scientific New Jersey London Sine Singapore Hong Kong

Introduction. Geometrical Optics. Milton Katz State University of New York. VfeWorld Scientific New Jersey London Sine Singapore Hong Kong Introduction to Geometrical Optics Milton Katz State University of New York VfeWorld Scientific «New Jersey London Sine Singapore Hong Kong TABLE OF CONTENTS PREFACE ACKNOWLEDGMENTS xiii xiv CHAPTER 1:

More information

Properties of optical instruments. Projection optical systems

Properties of optical instruments. Projection optical systems Properties of optical instruments Projection optical systems Instruments : optical systems designed for a specific function Projection systems: : real image (object real or at infinity) Examples: videoprojector,,

More information

Performance Factors. Technical Assistance. Fundamental Optics

Performance Factors.   Technical Assistance. Fundamental Optics Performance Factors After paraxial formulas have been used to select values for component focal length(s) and diameter(s), the final step is to select actual lenses. As in any engineering problem, this

More information

Lecture 22 Optical MEMS (4)

Lecture 22 Optical MEMS (4) EEL6935 Advanced MEMS (Spring 2005) Instructor: Dr. Huikai Xie Lecture 22 Optical MEMS (4) Agenda: Refractive Optical Elements Microlenses GRIN Lenses Microprisms Reference: S. Sinzinger and J. Jahns,

More information

Lecture 15: Fraunhofer diffraction by a circular aperture

Lecture 15: Fraunhofer diffraction by a circular aperture Lecture 15: Fraunhofer diffraction by a circular aperture Lecture aims to explain: 1. Diffraction problem for a circular aperture 2. Diffraction pattern produced by a circular aperture, Airy rings 3. Importance

More information

Lecture Notes 10 Image Sensor Optics. Imaging optics. Pixel optics. Microlens

Lecture Notes 10 Image Sensor Optics. Imaging optics. Pixel optics. Microlens Lecture Notes 10 Image Sensor Optics Imaging optics Space-invariant model Space-varying model Pixel optics Transmission Vignetting Microlens EE 392B: Image Sensor Optics 10-1 Image Sensor Optics Microlens

More information

Reading: Lenses and Mirrors; Applications Key concepts: Focal points and lengths; real images; virtual images; magnification; angular magnification.

Reading: Lenses and Mirrors; Applications Key concepts: Focal points and lengths; real images; virtual images; magnification; angular magnification. Reading: Lenses and Mirrors; Applications Key concepts: Focal points and lengths; real images; virtual images; magnification; angular magnification. 1.! Questions about objects and images. Can a virtual

More information

The Formation of an Aerial Image, part 3

The Formation of an Aerial Image, part 3 T h e L i t h o g r a p h y T u t o r (July 1993) The Formation of an Aerial Image, part 3 Chris A. Mack, FINLE Technologies, Austin, Texas In the last two issues, we described how a projection system

More information

Optical Proximity Effects

Optical Proximity Effects T h e L i t h o g r a p h y E x p e r t (Spring 1996) Optical Proximity Effects Chris A. Mack, FINLE Technologies, Austin, Texas Proximity effects are the variations in the linewidth of a feature (or the

More information