SIMPLE LENSES. To measure the focal lengths of several lens and lens combinations.

Size: px
Start display at page:

Download "SIMPLE LENSES. To measure the focal lengths of several lens and lens combinations."

Transcription

1 SIMPLE LENSES PURPOSE: To measure the ocal lengths o several lens and lens combinations. EQUIPMENT: Three convex lenses, one concave lens, lamp, image screen, lens holders, meter stick. INTRODUCTION: Combinations o lenses are used extensively or many optical devices ranging rom ordinary spectacles to powerul microscopes and telescopes. In this exercise, you will study some o the undamental principles incorporated in the design o these instruments. Lenses are described by their geometric shape. Those thicker at the center than at the edges are convex. Concave lenses are thicker at the edge than at the center. Various combinations o these types are used. They include plano convex, double convex, plano concave, double concave, and meniscus. Sophisticated lenses oten consist o combinations o these orms to correct or various image deects called aberrations. Figure Most lenses are made o glass, but modern technology has made it possible to produce acceptable ones o plastic at much less cost. All lenses utilize the principle o reraction; changing the direction o light rays as they pass rom air into the lens, and again as they pass rom the lens back into air. An easy point to remember is that as rays pass through a lens they are "bent" toward the thicker part o the lens. Thus, convex lenses are reerred to as converging lenses while concave ones are reerred to as diverging lenses (opticians reer to convex lenses as positive while concave are designated as negative). The "strength" o these lenses is measured in diopters - a term whose deinition you might want to look up. Figure 2 Revised Summer 200

2 I parallel rays o light pass through a convex lens, they are reracted in such a manner that they all intersect at one point, called the principal ocus o the lens. (This statement is true only or those rays that pass through the lens along a path that is rather limited as to direction and point o entrance and exit rom the lens. It is also true only or rays o light o a single wavelength. Aberrations result rom the act that all rays o light do not meet these reuirements. You might be interested in inding out more about chromatic aberration, spherical aberration, astigmatism, and coma. The distance rom the principal ocus to the lens is an important property o the lens, its ocal length (see Fig. 2). This property is determined by the geometry (shape) o the lens and the index o reraction o the material o which is made. In the case o a concave lens, the parallel rays diverge, but i the reracted rays are projected backward, they appear to come rom a point, the virtual ocus, and the distance rom this point to the lens is the ocal length o the lens. (see Fig. 3). Using the idea o parallel rays o light implies that their source was a point at an ininite distance away, each point on the source will be transmitting light in all directions, and the eect o the lens on those that pass through it will be to orm an image o the source at a distance which is related to the distance rom the lens by the simple lens euation: p Figure 3 () where is the ocal length o the lens, p is the distance rom the lens to the source (object distance) and is the distance rom the lens to the image (image distance). Using a little algebra, Euation () becomes: Note that i p is large, 0 p the ocal length. and p p or simply = ; that is, the image distance euals (2) PROCEDURE: We shall deine your lenses as ollows: Lens A: Lens B: Lens C: Lens D: one that is double convex, at with a small diameter one that is also double convex, but thinner than A, with a small diameter double convex, almost lat, large diameter double concave, small diameter For an object, we will use the wire mesh. The image is the shadow o the wire mesh. Revised Summer 200

3 A. To ind the ocal lengths o Lens A and Lens B. Set up your simple optical bench as in Figure 4. Using lens A irst move the lens and/or screen on the meter stick until the sharpest image possible is ormed on the screen. Record the position on the Data Sheet. Repeat this procedure two more times or dierent object distances. Now insert lens B and record the positions o the lens and screen or 3 trials. Figure 4 Now calculate p,, and. Put answers on the data sheet. B. On the meter stick, place a lens and the screen, Use an object ar away, like a door, window, or music building, and adjust the screen until a sharp image is ormed. Record the distance,, between the lens and the screen. Repeat twice more. Do this part using lens A, B, and C. Since the object is so ar away rom the lens, p is very large. Thereore, /p is very small and nearly zero. So in Euation, we can ignore /p and it becomes / = /. Thereore, in Part B, you ound which is actually because the object was so ar away. This is a simple way o inding the ocal length o a lens although not a very accurate way. C. Using masking tape, asten lens A and B together so that they are in contact. The tape may cover most o the lens but try to leave the center clear. Use the arrangement o Figure 4, ind p, and the ocal length o the combination. D. Repeat part C using lens A and C. (optional) E. Put lens A and D in contact. Find the ocal length o the combination. Then calculate the ocal length o lens D using the ollowing ormula. D A AD A AD You will get a negative number. F. Repeat part E using Lens B and D. (optional) D B BD B BD Revised Summer 200

4 Part A Data Sheet Lens A: Object Lens Screen P Trial Trial 2 Trial 3 Average = Lens B: Object Lens Screen P Trial Trial 2 Trial 3 Part B o Lens A o Lens B Average = o Lens C Trial Trial 2 Trial 3 Average = Revised Summer 200

5 Data Sheet Part C From Part A New Data A = B = p = AB = = Part D From Part B New Data A = C = p = AC = = Part E From Part A New Data A = p = AD = D = = Part F From Part A New Data B = p = BD = D = = Average D = From Part E and F Revised Summer 200

6 QUESTIONS:. What is the relationship between the curvature o lens A, B, and C and their ocal lengths? (Hint: look at Fig. and draw Lenses A, B, and C. Mark the ocal length under the drawing.) 2. Describe the images you saw in part B. 3. When a simple convex lens is used as a "burning glass" by ocusing bright sunlight on dry leaves to set them aire, what is the bright spot o light called? O what is the bright spot an image? 4. In part C, how does the ocal length o the two lenses together compare with either lens alone? 5. In part D, how does the ocal length o the combination compare to the ocal length o either lens alone? 6. Why didn't you ind the ocal length o lens D in the same way as you did or A, B, and C? Revised Summer 200

Physics 142 Lenses and Mirrors Page 1. Lenses and Mirrors. Now for the sequence of events, in no particular order. Dan Rather

Physics 142 Lenses and Mirrors Page 1. Lenses and Mirrors. Now for the sequence of events, in no particular order. Dan Rather Physics 142 Lenses and Mirrors Page 1 Lenses and Mirrors Now or the sequence o events, in no particular order. Dan Rather Overview: making use o the laws o relection and reraction We will now study ormation

More information

Thin Lens and Image Formation

Thin Lens and Image Formation Pre-Lab Quiz / PHYS 4 Thin Lens and Image Formation Name Lab Section. What do you investigate in this lab?. The ocal length o a bi-convex thin lens is 0 cm. To a real image with magniication o, what is

More information

Definition of light rays

Definition of light rays Geometrical optics In this section we study optical systems involving lenses and mirrors, developing an understanding o devices such as microscopes and telescopes, and biological systems such as the human

More information

Physics 54. Lenses and Mirrors. And now for the sequence of events, in no particular order. Dan Rather

Physics 54. Lenses and Mirrors. And now for the sequence of events, in no particular order. Dan Rather Physics 54 Lenses and Mirrors And now or the seuence o events, in no articular order. Dan Rather Overview We will now study transmission o light energy in the ray aroximation, which assumes that the energy

More information

Phy 212: General Physics II

Phy 212: General Physics II Phy 212: General Physics II Chapter 34: Images Lecture Notes Geometrical (Ray) Optics Geometrical Optics is an approximate treatment o light waves as straight lines (rays) or the description o image ormation

More information

lens Figure 1. A refractory focusing arrangement. Focal point

lens Figure 1. A refractory focusing arrangement. Focal point Laboratory 2 - Introduction to Lenses & Telescopes Materials Used: A set o our lenses, an optical bench with a centimeter scale, a white screen, several lens holders, a light source (with crossed arrows),

More information

COMP 558 lecture 5 Sept. 22, 2010

COMP 558 lecture 5 Sept. 22, 2010 Up to now, we have taken the projection plane to be in ront o the center o projection. O course, the physical projection planes that are ound in cameras (and eyes) are behind the center o the projection.

More information

Marketed and Distributed by FaaDoOEngineers.com

Marketed and Distributed by FaaDoOEngineers.com REFRACTION OF LIGHT GUPTA CLASSES For any help contact: 995368795, 968789880 Nishant Gupta, D-, Prashant vihar, Rohini, Delhi-85 Contact: 995368795, 968789880 Reraction o light:. The ratio o the sine o

More information

9. THINK A concave mirror has a positive value of focal length.

9. THINK A concave mirror has a positive value of focal length. 9. THINK A concave mirror has a positive value o ocal length. EXPRESS For spherical mirrors, the ocal length is related to the radius o curvature r by r/2. The object distance p, the image distance i,

More information

Refraction and Lenses

Refraction and Lenses Reraction and Lenses The most common application o reraction in science and technology is lenses. The kind o lenses we typically think o are made o glass or plastic. The basic rules o reraction still apply

More information

3. What kind of mirror could you use to make image distance less than object distance?

3. What kind of mirror could you use to make image distance less than object distance? REFLETION REVIEW hoose one o the ollowing to answer questions 7-24. A response may be used more than once. a. plane mirror e. plane mirror or convex mirror b. concave mirror. concave mirror or convex mirror

More information

EP118 Optics. Content TOPIC 9 ABERRATIONS. Department of Engineering Physics University of Gaziantep. 1. Introduction. 2. Spherical Aberrations

EP118 Optics. Content TOPIC 9 ABERRATIONS. Department of Engineering Physics University of Gaziantep. 1. Introduction. 2. Spherical Aberrations EP118 Optics TOPI 9 ABERRATIONS Department o Engineering Physics Uniersity o Gaziantep July 2011 Saya 1 ontent 1. Introduction 2. Spherical Aberrations 3. hromatic Aberrations 4. Other Types o Aberrations

More information

How Do I Use Ray Diagrams to Predict How an Image Will Look?

How Do I Use Ray Diagrams to Predict How an Image Will Look? How Do I Use Ray Diagrams to Predict How an Image Will Look? Description: Students will create ray diagrams to predict the type o image ormed. Student Materials (per group): Ray Diagrams Worksheet Ruler

More information

Algebra Based Physics. Reflection. Slide 1 / 66 Slide 2 / 66. Slide 3 / 66. Slide 4 / 66. Slide 5 / 66. Slide 6 / 66.

Algebra Based Physics. Reflection. Slide 1 / 66 Slide 2 / 66. Slide 3 / 66. Slide 4 / 66. Slide 5 / 66. Slide 6 / 66. Slide 1 / 66 Slide 2 / 66 Algebra Based Physics Geometric Optics 2015-12-01 www.njctl.org Slide 3 / 66 Slide 4 / 66 Table of ontents lick on the topic to go to that section Reflection Refraction and Snell's

More information

Laboratory 7: Properties of Lenses and Mirrors

Laboratory 7: Properties of Lenses and Mirrors Laboratory 7: Properties of Lenses and Mirrors Converging and Diverging Lens Focal Lengths: A converging lens is thicker at the center than at the periphery and light from an object at infinity passes

More information

A. Focal Length. 3. Lens Maker Equation. 2. Diverging Systems. f = 2 R. A. Focal Length B. Lens Law, object & image C. Optical Instruments

A. Focal Length. 3. Lens Maker Equation. 2. Diverging Systems. f = 2 R. A. Focal Length B. Lens Law, object & image C. Optical Instruments Physics 700 Geometric Optics Geometric Optics (rough drat) A. Focal Length B. Lens Law, object & image C. Optical Instruments W. Pezzaglia Updated: 0Aug A. Focal Length 3. Converging Systems 4. Converging

More information

Chapter 18 Optical Elements

Chapter 18 Optical Elements Chapter 18 Optical Elements GOALS When you have mastered the content of this chapter, you will be able to achieve the following goals: Definitions Define each of the following terms and use it in an operational

More information

Focal Length of Lenses

Focal Length of Lenses Focal Length of Lenses OBJECTIVES Investigate the properties of converging and diverging lenses. Determine the focal length of converging lenses both by a real image of a distant object and by finite object

More information

NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT. Physics 211 E&M and Quantum Physics Spring Lab #8: Thin Lenses

NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT. Physics 211 E&M and Quantum Physics Spring Lab #8: Thin Lenses NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT Physics 211 E&M and Quantum Physics Spring 2018 Lab #8: Thin Lenses Lab Writeup Due: Mon/Wed/Thu/Fri, April 2/4/5/6, 2018 Background In the previous lab

More information

Lenses. A transparent object used to change the path of light Examples: Human eye Eye glasses Camera Microscope Telescope

Lenses. A transparent object used to change the path of light Examples: Human eye Eye glasses Camera Microscope Telescope SNC2D Lenses A transparent object used to change the path of light Examples: Human eye Eye glasses Camera Microscope Telescope Reading stones used by monks, nuns, and scholars ~1000 C.E. Lenses THERE ARE

More information

Unit #3 - Optics. Activity: D21 Observing Lenses (pg. 449) Lenses Lenses

Unit #3 - Optics. Activity: D21 Observing Lenses (pg. 449) Lenses Lenses ist10_ch11.qxd Unit #3 - Optics 11.3 Lenses 7/22/09 3:53 PM Page 449 Night vision goggles use lenses to ocus light onto a device called an image intensiier. Inside the intensiier, the light energy releases

More information

Lenses. Optional Reading Stargazer: the life and times of the TELESCOPE, Fred Watson (Da Capo 2004).

Lenses. Optional Reading Stargazer: the life and times of the TELESCOPE, Fred Watson (Da Capo 2004). Lenses Equipment optical bench, incandescent light source, laser, No 13 Wratten filter, 3 lens holders, cross arrow, diffuser, white screen, case of lenses etc., vernier calipers, 30 cm ruler, meter stick

More information

Physics 6C. Cameras and the Human Eye. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Physics 6C. Cameras and the Human Eye. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Physics 6C Cameras and the Human Eye CAMERAS A typical camera uses a converging lens to ocus a real (inverted) image onto photographic ilm (or in a digital camera the image is on a CCD chip). Light goes

More information

Your Comments. That test was brutal, but this is the last physics course I have to take here WOOOOOO!!!!!

Your Comments. That test was brutal, but this is the last physics course I have to take here WOOOOOO!!!!! Your Comments I'm kind o lost, this was a pretty heavy prelecture. I understand the equations and how we get them but I'm araid to say that I don't understand the concepts behind everything. Such as what

More information

Chapter 23. Mirrors and Lenses

Chapter 23. Mirrors and Lenses Chapter 23 Mirrors and Lenses Mirrors and Lenses The development of mirrors and lenses aided the progress of science. It led to the microscopes and telescopes. Allowed the study of objects from microbes

More information

24 Geometrical Optics &...

24 Geometrical Optics &... 804 CHAPTER 24 GEOMETRICAL OPTICS & OPTICAL EQUIPMEMT 24 Geometrical Optics &... Answers to Discussion Questions 24. The ocal length increases because the rays are not bent as strongly at the water-glasnterace.

More information

Algebra Based Physics. Reflection. Slide 1 / 66 Slide 2 / 66. Slide 3 / 66. Slide 4 / 66. Slide 5 / 66. Slide 6 / 66.

Algebra Based Physics. Reflection. Slide 1 / 66 Slide 2 / 66. Slide 3 / 66. Slide 4 / 66. Slide 5 / 66. Slide 6 / 66. Slide 1 / 66 Slide 2 / 66 lgebra ased Physics Geometric Optics 2015-12-01 www.njctl.org Slide 3 / 66 Slide 4 / 66 Table of ontents lick on the topic to go to that section Reflection Refraction and Snell's

More information

Thin Lenses. Consider the situation below in which you have a real object at distance p from a converging lens of focal length f.

Thin Lenses. Consider the situation below in which you have a real object at distance p from a converging lens of focal length f. Thin Lenses Consider the situation below in which you have a real object at distance rom a converging lens o ocal length. Lens Object Image I > then a real image o this object will be roduced at distance

More information

Chapter 23. Light Geometric Optics

Chapter 23. Light Geometric Optics Chapter 23. Light Geometric Optics There are 3 basic ways to gather light and focus it to make an image. Pinhole - Simple geometry Mirror - Reflection Lens - Refraction Pinhole Camera Image Formation (the

More information

Converging Lenses. Parallel rays are brought to a focus by a converging lens (one that is thicker in the center than it is at the edge).

Converging Lenses. Parallel rays are brought to a focus by a converging lens (one that is thicker in the center than it is at the edge). Chapter 30: Lenses Types of Lenses Piece of glass or transparent material that bends parallel rays of light so they cross and form an image Two types: Converging Diverging Converging Lenses Parallel rays

More information

25 cm. 60 cm. 50 cm. 40 cm.

25 cm. 60 cm. 50 cm. 40 cm. Geometrical Optics 7. The image formed by a plane mirror is: (a) Real. (b) Virtual. (c) Erect and of equal size. (d) Laterally inverted. (e) B, c, and d. (f) A, b and c. 8. A real image is that: (a) Which

More information

Astronomy 80 B: Light. Lecture 9: curved mirrors, lenses, aberrations 29 April 2003 Jerry Nelson

Astronomy 80 B: Light. Lecture 9: curved mirrors, lenses, aberrations 29 April 2003 Jerry Nelson Astronomy 80 B: Light Lecture 9: curved mirrors, lenses, aberrations 29 April 2003 Jerry Nelson Sensitive Countries LLNL field trip 2003 April 29 80B-Light 2 Topics for Today Optical illusion Reflections

More information

Applied Optics. , Physics Department (Room #36-401) , ,

Applied Optics. , Physics Department (Room #36-401) , , Applied Optics Professor, Physics Department (Room #36-401) 2290-0923, 019-539-0923, shsong@hanyang.ac.kr Office Hours Mondays 15:00-16:30, Wednesdays 15:00-16:30 TA (Ph.D. student, Room #36-415) 2290-0921,

More information

LIGHT-REFLECTION AND REFRACTION

LIGHT-REFLECTION AND REFRACTION LIGHT-REFLECTION AND REFRACTION Class: 10 (Boys) Sub: PHYSICS NOTES-Refraction Refraction: The bending of light when it goes from one medium to another obliquely is called refraction of light. Refraction

More information

30 Lenses. Lenses change the paths of light.

30 Lenses. Lenses change the paths of light. Lenses change the paths of light. A light ray bends as it enters glass and bends again as it leaves. Light passing through glass of a certain shape can form an image that appears larger, smaller, closer,

More information

Lab 11: Lenses and Ray Tracing

Lab 11: Lenses and Ray Tracing Name: Lab 11: Lenses and Ray Tracing Group Members: Date: TA s Name: Materials: Ray box, two different converging lenses, one diverging lens, screen, lighted object, three stands, meter stick, two letter

More information

Lab 2 Geometrical Optics

Lab 2 Geometrical Optics Lab 2 Geometrical Optics March 22, 202 This material will span much of 2 lab periods. Get through section 5.4 and time permitting, 5.5 in the first lab. Basic Equations Lensmaker s Equation for a thin

More information

Converging and Diverging Surfaces. Lenses. Converging Surface

Converging and Diverging Surfaces. Lenses. Converging Surface Lenses Sandy Skoglund 2 Converging and Diverging s AIR Converging If the surface is convex, it is a converging surface in the sense that the parallel rays bend toward each other after passing through the

More information

11.3. Lenses. Seeing in the Dark

11.3. Lenses. Seeing in the Dark .3 Lenses Here is a summary o what you will learn in this section: Lenses reract light in useul ways to orm s. Concave lenses, which cause light to diverge, are usen multi-lens systems to help produce

More information

PHYSICS 289 Experiment 8 Fall Geometric Optics II Thin Lenses

PHYSICS 289 Experiment 8 Fall Geometric Optics II Thin Lenses PHYSICS 289 Experiment 8 Fall 2005 Geometric Optics II Thin Lenses Please look at the chapter on lenses in your text before this lab experiment. Please submit a short lab report which includes answers

More information

Complete the diagram to show what happens to the rays. ... (1) What word can be used to describe this type of lens? ... (1)

Complete the diagram to show what happens to the rays. ... (1) What word can be used to describe this type of lens? ... (1) Q1. (a) The diagram shows two parallel rays of light, a lens and its axis. Complete the diagram to show what happens to the rays. (2) Name the point where the rays come together. (iii) What word can be

More information

LO - Lab #05 - How are images formed from light?

LO - Lab #05 - How are images formed from light? LO - Lab #05 - Helpful Definitions: The normal direction to a surface is defined as the direction that is perpendicular to a surface. For example, place this page flat on the table and then stand your

More information

Name: Lab Partner: Section:

Name: Lab Partner: Section: Chapter 10 Thin Lenses Name: Lab Partner: Section: 10.1 Purpose In this experiment, the formation of images by concave and convex lenses will be explored. The application of the thin lens equation and

More information

Introduction THE OPTICAL ENGINEERING PROCESS ENGINEERING SUPPORT

Introduction THE OPTICAL ENGINEERING PROCESS ENGINEERING SUPPORT Material Properties Optical Speciications Gaussian Beam Optics Introduction Even though several thousand dierent optical components are listed in this catalog, perorming a ew simple calculations will usually

More information

LENSES. a. To study the nature of image formed by spherical lenses. b. To study the defects of spherical lenses.

LENSES. a. To study the nature of image formed by spherical lenses. b. To study the defects of spherical lenses. Purpose Theory LENSES a. To study the nature of image formed by spherical lenses. b. To study the defects of spherical lenses. formation by thin spherical lenses s are formed by lenses because of the refraction

More information

Introduction. THE OPTICAL ENGINEERING PROCESS. Engineering Support. Fundamental Optics

Introduction.   THE OPTICAL ENGINEERING PROCESS. Engineering Support. Fundamental Optics Introduction The process o solving virtually any optical engineering problem can be broken down into two main steps. First, paraxial calculations (irst order) are made to determine critical parameters

More information

TOPICS Recap of PHYS110-1 lecture Physical Optics - 4 lectures EM spectrum and colour Light sources Interference and diffraction Polarization

TOPICS Recap of PHYS110-1 lecture Physical Optics - 4 lectures EM spectrum and colour Light sources Interference and diffraction Polarization TOPICS Recap of PHYS110-1 lecture Physical Optics - 4 lectures EM spectrum and colour Light sources Interference and diffraction Polarization Lens Aberrations - 3 lectures Spherical aberrations Coma, astigmatism,

More information

(b) By measuring the image height for various image distances (adjusted by sliding the tubes together or apart) a relationship can be determined.

(b) By measuring the image height for various image distances (adjusted by sliding the tubes together or apart) a relationship can be determined. (c) The image is smaller, upright, virtual, ann the same side o the lens. Applying Inquiry Skills 7. (a) (b) By measuring the image height or various image distances (adjusted by sliding the tubes together

More information

Notation for Mirrors and Lenses. Chapter 23. Types of Images for Mirrors and Lenses. More About Images

Notation for Mirrors and Lenses. Chapter 23. Types of Images for Mirrors and Lenses. More About Images Notation for Mirrors and Lenses Chapter 23 Mirrors and Lenses Sections: 4, 6 Problems:, 8, 2, 25, 27, 32 The object distance is the distance from the object to the mirror or lens Denoted by p The image

More information

Chapter 23. Mirrors and Lenses

Chapter 23. Mirrors and Lenses Chapter 23 Mirrors and Lenses Notation for Mirrors and Lenses The object distance is the distance from the object to the mirror or lens Denoted by p The image distance is the distance from the image to

More information

Lecture 17. Image formation Ray tracing Calculation. Lenses Convex Concave. Mirrors Convex Concave. Optical instruments

Lecture 17. Image formation Ray tracing Calculation. Lenses Convex Concave. Mirrors Convex Concave. Optical instruments Lecture 17. Image formation Ray tracing Calculation Lenses Convex Concave Mirrors Convex Concave Optical instruments Image formation Laws of refraction and reflection can be used to explain how lenses

More information

Physics 222, October 25

Physics 222, October 25 Physics 222, October 25 Key Concepts: Image formation by refraction Thin lenses The eye Optical instruments A single flat interface Images can be formed by refraction, when light traverses a boundary between

More information

PHYS 160 Astronomy. When analyzing light s behavior in a mirror or lens, it is helpful to use a technique called ray tracing.

PHYS 160 Astronomy. When analyzing light s behavior in a mirror or lens, it is helpful to use a technique called ray tracing. Optics Introduction In this lab, we will be exploring several properties of light including diffraction, reflection, geometric optics, and interference. There are two sections to this lab and they may

More information

EXPERIMENT 10 Thin Lenses

EXPERIMENT 10 Thin Lenses Objectives ) Measure the power and focal length of a converging lens. ) Measure the power and focal length of a diverging lens. EXPERIMENT 0 Thin Lenses Apparatus A two meter optical bench, a meter stick,

More information

Image Formation by Lenses

Image Formation by Lenses Image Formation by Lenses Bởi: OpenStaxCollege Lenses are found in a huge array of optical instruments, ranging from a simple magnifying glass to the eye to a camera s zoom lens. In this section, we will

More information

JPN Pahang Physics Module Form 4 Chapter 5 Light. In each of the following sentences, fill in the bracket the appropriate word or words given below.

JPN Pahang Physics Module Form 4 Chapter 5 Light. In each of the following sentences, fill in the bracket the appropriate word or words given below. JPN Pahang Physics Module orm 4 HAPTER 5: LIGHT In each of the following sentences, fill in the bracket the appropriate word or words given below. solid, liquid, gas, vacuum, electromagnetic wave, energy

More information

Chapter 23. Geometrical Optics: Mirrors and Lenses and other Instruments

Chapter 23. Geometrical Optics: Mirrors and Lenses and other Instruments Chapter 23 Geometrical Optics: Mirrors and Lenses and other Instruments HITT 1 You stand two feet away from a plane mirror. How far is it from you to your image? a. 2.0 ft b. 3.0 ft c. 4.0 ft d. 5.0 ft

More information

Lights. Action. Cameras. Shutter/Iris Lens With focal length f. Image Distance. Object. Distance

Lights. Action. Cameras. Shutter/Iris Lens With focal length f. Image Distance. Object. Distance Lights. Action. Phys 1020, Day 17: Cameras, Blm 15.1 Reminders: HW 8 in/hw 9 out Make up lab week straight ater Sp.B. Check scores on CU learn 1 Object Cameras Shutter/Iris Lens With ocal length Dark Box

More information

PRINCIPLE PROCEDURE ACTIVITY. AIM To observe diffraction of light due to a thin slit.

PRINCIPLE PROCEDURE ACTIVITY. AIM To observe diffraction of light due to a thin slit. ACTIVITY 12 AIM To observe diffraction of light due to a thin slit. APPARATUS AND MATERIAL REQUIRED Two razor blades, one adhesive tape/cello-tape, source of light (electric bulb/ laser pencil), a piece

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 27 Geometric Optics Spring 205 Semester Matthew Jones Sign Conventions > + = Convex surface: is positive for objects on the incident-light side is positive for

More information

Option G 2: Lenses. The diagram below shows the image of a square grid as produced by a lens that does not cause spherical aberration.

Option G 2: Lenses. The diagram below shows the image of a square grid as produced by a lens that does not cause spherical aberration. Name: Date: Option G 2: Lenses 1. This question is about spherical aberration. The diagram below shows the image of a square grid as produced by a lens that does not cause spherical aberration. In the

More information

Physics 141 Lecture 26

Physics 141 Lecture 26 Physics 141 Lecture 26 Today s Concept: A) Lenses Electricity & Magne/sm Lecture 26, Slide 1 Mirrors in Movies Duck Soup (1933) The Lady rom Shanghai (1947) Enter the Dragon (1973) and many more Reraction

More information

AP Physics Problems -- Waves and Light

AP Physics Problems -- Waves and Light AP Physics Problems -- Waves and Light 1. 1974-3 (Geometric Optics) An object 1.0 cm high is placed 4 cm away from a converging lens having a focal length of 3 cm. a. Sketch a principal ray diagram for

More information

10.2 Images Formed by Lenses SUMMARY. Refraction in Lenses. Section 10.1 Questions

10.2 Images Formed by Lenses SUMMARY. Refraction in Lenses. Section 10.1 Questions 10.2 SUMMARY Refraction in Lenses Converging lenses bring parallel rays together after they are refracted. Diverging lenses cause parallel rays to move apart after they are refracted. Rays are refracted

More information

2015 EdExcel A Level Physics EdExcel A Level Physics. Lenses

2015 EdExcel A Level Physics EdExcel A Level Physics. Lenses 2015 EdExcel A Level Physics 2015 EdExcel A Level Physics Topic Topic 5 5 Lenses Types of lenses Converging lens bi-convex has two convex surfaces Diverging lens bi-concave has two concave surfaces Thin

More information

Geometric Optics. Find the focal lengths of lenses and mirrors; Draw and understand ray diagrams; and Build a simple telescope

Geometric Optics. Find the focal lengths of lenses and mirrors; Draw and understand ray diagrams; and Build a simple telescope Geometric Optics I. OBJECTIVES Galileo is known for his many wondrous astronomical discoveries. Many of these discoveries shook the foundations of Astronomy and forced scientists and philosophers alike

More information

REFLECTION THROUGH LENS

REFLECTION THROUGH LENS REFLECTION THROUGH LENS A lens is a piece of transparent optical material with one or two curved surfaces to refract light rays. It may converge or diverge light rays to form an image. Lenses are mostly

More information

SNC2D PHYSICS 5/25/2013. LIGHT & GEOMETRIC OPTICS L Converging & Diverging Lenses (P ) Curved Lenses. Curved Lenses

SNC2D PHYSICS 5/25/2013. LIGHT & GEOMETRIC OPTICS L Converging & Diverging Lenses (P ) Curved Lenses. Curved Lenses SNC2D PHYSICS LIGHT & GEOMETRIC OPTICS L Converging & Diverging Lenses (P.448-450) Curved Lenses We see the world through lenses even if we do not wear glasses or contacts. We all have natural lenses in

More information

Announcements. Focus! Thin Lens Models. New Topic. Intensity Image Formation. Bi-directional: two focal points! Thin Lens Model

Announcements. Focus! Thin Lens Models. New Topic. Intensity Image Formation. Bi-directional: two focal points! Thin Lens Model Focus! Models Lecture #17 Tuesda, November 1 st, 2011 Announcements Programming Assignment #3 Is due a week rom Tuesda Midterm #2: two weeks rom Tuesda GTA survers: https://www.survemonke.com/r/shpj7j3

More information

Lenses- Worksheet. (Use a ray box to answer questions 3 to 7)

Lenses- Worksheet. (Use a ray box to answer questions 3 to 7) Lenses- Worksheet 1. Look at the lenses in front of you and try to distinguish the different types of lenses? Describe each type and record its characteristics. 2. Using the lenses in front of you, look

More information

Basic Optics System OS-8515C

Basic Optics System OS-8515C 40 50 30 60 20 70 10 80 0 90 80 10 20 70 T 30 60 40 50 50 40 60 30 70 20 80 90 90 80 BASIC OPTICS RAY TABLE 10 0 10 70 20 60 50 40 30 Instruction Manual with Experiment Guide and Teachers Notes 012-09900B

More information

Chapter 34 Geometric Optics (also known as Ray Optics) by C.-R. Hu

Chapter 34 Geometric Optics (also known as Ray Optics) by C.-R. Hu Chapter 34 Geometric Optics (also known as Ray Optics) by C.-R. Hu 1. Principles of image formation by mirrors (1a) When all length scales of objects, gaps, and holes are much larger than the wavelength

More information

Instructions. To run the slideshow:

Instructions. To run the slideshow: Instructions To run the slideshow: Click: view full screen mode, or press Ctrl +L. Left click advances one slide, right click returns to previous slide. To exit the slideshow press the Esc key. Optical

More information

EP 324 Applied Optics. Topic 3 Lenses. Department of Engineering of Physics Gaziantep University. Oct Sayfa 1

EP 324 Applied Optics. Topic 3 Lenses. Department of Engineering of Physics Gaziantep University. Oct Sayfa 1 EP 324 Applied Optics Topic 3 Lenses Department of Engineering of Physics Gaziantep University Oct 205 Sayfa PART I SPHERICAL LENSES Sayfa 2 Lens: The main instrument for image formation Sayfa 3 Lens A

More information

Unit Two: Light Energy Lesson 1: Mirrors

Unit Two: Light Energy Lesson 1: Mirrors 1. Plane mirror: Unit Two: Light Energy Lesson 1: Mirrors Light reflection: It is rebounding (bouncing) light ray in same direction when meeting reflecting surface. The incident ray: The light ray falls

More information

This experiment is under development and thus we appreciate any and all comments as we design an interesting and achievable set of goals.

This experiment is under development and thus we appreciate any and all comments as we design an interesting and achievable set of goals. Experiment 7 Geometrical Optics You will be introduced to ray optics and image formation in this experiment. We will use the optical rail, lenses, and the camera body to quantify image formation and magnification;

More information

Aberrations of a lens

Aberrations of a lens Aberrations of a lens 1. What are aberrations? A lens made of a uniform glass with spherical surfaces cannot form perfect images. Spherical aberration is a prominent image defect for a point source on

More information

Spherical Mirrors. Concave Mirror, Notation. Spherical Aberration. Image Formed by a Concave Mirror. Image Formed by a Concave Mirror 4/11/2014

Spherical Mirrors. Concave Mirror, Notation. Spherical Aberration. Image Formed by a Concave Mirror. Image Formed by a Concave Mirror 4/11/2014 Notation for Mirrors and Lenses Chapter 23 Mirrors and Lenses The object distance is the distance from the object to the mirror or lens Denoted by p The image distance is the distance from the image to

More information

Refraction is the when a ray changes mediums. Examples of mediums:

Refraction is the when a ray changes mediums. Examples of mediums: Refraction and Lenses Refraction is the when a ray changes mediums. Examples of mediums: Lenses are optical devices which take advantage of the refraction of light to 1. produces images real and 2. change

More information

Test Review # 8. Physics R: Form TR8.17A. Primary colors of light

Test Review # 8. Physics R: Form TR8.17A. Primary colors of light Physics R: Form TR8.17A TEST 8 REVIEW Name Date Period Test Review # 8 Light and Color. Color comes from light, an electromagnetic wave that travels in straight lines in all directions from a light source

More information

LAB 12 Reflection and Refraction

LAB 12 Reflection and Refraction Cabrillo College Physics 10L Name LAB 12 Reflection and Refraction Read Hewitt Chapters 28 and 29 What to learn and explore Please read this! When light rays reflect off a mirror surface or refract through

More information

Name. Light Chapter Summary Cont d. Refraction

Name. Light Chapter Summary Cont d. Refraction Page 1 of 17 Physics Week 12(Sem. 2) Name Light Chapter Summary Cont d with a smaller index of refraction to a material with a larger index of refraction, the light refracts towards the normal line. Also,

More information

CHAPTER 18 REFRACTION & LENSES

CHAPTER 18 REFRACTION & LENSES Physics Approximate Timeline Students are expected to keep up with class work when absent. CHAPTER 18 REFRACTION & LENSES Day Plans for the day Assignments for the day 1 18.1 Refraction of Light o Snell

More information

Chapter Ray and Wave Optics

Chapter Ray and Wave Optics 109 Chapter Ray and Wave Optics 1. An astronomical telescope has a large aperture to [2002] reduce spherical aberration have high resolution increase span of observation have low dispersion. 2. If two

More information

O5: Lenses and the refractor telescope

O5: Lenses and the refractor telescope O5. 1 O5: Lenses and the refractor telescope Introduction In this experiment, you will study converging lenses and the lens equation. You will make several measurements of the focal length of lenses and

More information

A new prime-focus corrector for paraboloid mirrors

A new prime-focus corrector for paraboloid mirrors 2013 THOSS Media & DOI 10.1515/aot-2012-0078 Adv. Opt. Techn. 2013; 2(1): 111 116 Research Article Andrew Rakich* and Norman J. Rumsey A new prime-focus corrector for paraboloid mirrors Abstract: A new

More information

Physics 228 Lecture 3. Today: Spherical Mirrors Lenses.

Physics 228 Lecture 3. Today: Spherical Mirrors Lenses. Physics 228 Lecture 3 Today: Spherical Mirrors Lenses www.physics.rutgers.edu/ugrad/228 a) Santa as he sees himself in a mirrored sphere. b) Santa as he sees himself in a flat mirror after too much eggnog.

More information

Physics II. Chapter 23. Spring 2018

Physics II. Chapter 23. Spring 2018 Physics II Chapter 23 Spring 2018 IMPORTANT: Except for multiple-choice questions, you will receive no credit if you show only an answer, even if the answer is correct. Always show in the space on your

More information

Converging Lens. Goal: To measure the focal length of a converging lens using various methods and to study how a converging lens forms a real image.

Converging Lens. Goal: To measure the focal length of a converging lens using various methods and to study how a converging lens forms a real image. Converging Lens Goal: To measure the focal length of a converging lens using various methods and to study how a converging lens forms a real image. Lab Preparation The picture on the screen in a movie

More information

CH. 23 Mirrors and Lenses HW# 6, 7, 9, 11, 13, 21, 25, 31, 33, 35

CH. 23 Mirrors and Lenses HW# 6, 7, 9, 11, 13, 21, 25, 31, 33, 35 CH. 23 Mirrors and Lenses HW# 6, 7, 9, 11, 13, 21, 25, 31, 33, 35 Mirrors Rays of light reflect off of mirrors, and where the reflected rays either intersect or appear to originate from, will be the location

More information

Dr. Todd Satogata (ODU/Jefferson Lab) Monday, April

Dr. Todd Satogata (ODU/Jefferson Lab)  Monday, April University Physics 227N/232N Mirrors and Lenses Homework Optics 2 due Friday AM Quiz Friday Optional review session next Monday (Apr 28) Bring Homework Notebooks to Final for Grading Dr. Todd Satogata

More information

The Indian Academy Nehrugram DEHRADUN Question Bank Subject - Physics Class - X

The Indian Academy Nehrugram DEHRADUN Question Bank Subject - Physics Class - X The Indian Academy Nehrugram DEHRADUN Question Bank - 2013-14 Subject - Physics Class - X Section A A- One mark questions:- Q1. Chair, Table are the example of which object? Q2. In which medium does the

More information

PART 3: LENS FORM AND ANALYSIS PRACTICE TEST - KEY

PART 3: LENS FORM AND ANALYSIS PRACTICE TEST - KEY PART 3: LENS FORM AND ANALYSIS PRACTICE TEST - KEY d 1. c 2. To determine the power of a thin lens in air, it is necessary to consider: a. front curve and index of refraction b. back curve and index of

More information

Final Reg Optics Review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Final Reg Optics Review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Final Reg Optics Review 1) How far are you from your image when you stand 0.75 m in front of a vertical plane mirror? 1) 2) A object is 12 cm in front of a concave mirror, and the image is 3.0 cm in front

More information

Thin Lenses * OpenStax

Thin Lenses * OpenStax OpenStax-CNX module: m58530 Thin Lenses * OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 By the end of this section, you will be able to:

More information

Light enables organisms

Light enables organisms Chapter 15. Light 1. What does light do? Sunlight causes the day. Moonlight is a reflection of Sunlight. It shines to dispel the darkness of the night. Light enables organisms to see during day and night.

More information

Light: Lenses and. Mirrors. Test Date: Name 1ÿ-ÿ. Physics. Light: Lenses and Mirrors

Light: Lenses and. Mirrors. Test Date: Name 1ÿ-ÿ. Physics. Light: Lenses and Mirrors Name 1ÿ-ÿ Physics Light: Lenses and Mirrors i Test Date: "Shadows cannot see themselves in the mirror of the sun." -Evita Peron What are lenses? Lenses are made from transparent glass or plastice and refract

More information

Chapter 36. Image Formation

Chapter 36. Image Formation Chapter 36 Image Formation Real and Virtual Images Real images can be displayed on screens Virtual Images can not be displayed onto screens. Focal Length& Radius of Curvature When the object is very far

More information

Determination of Focal Length of A Converging Lens and Mirror

Determination of Focal Length of A Converging Lens and Mirror Physics 41 Determination of Focal Length of A Converging Lens and Mirror Objective: Apply the thin-lens equation and the mirror equation to determine the focal length of a converging (biconvex) lens and

More information

COURSE NAME: PHOTOGRAPHY AND AUDIO VISUAL PRODUCTION (VOCATIONAL) FOR UNDER GRADUATE (FIRST YEAR)

COURSE NAME: PHOTOGRAPHY AND AUDIO VISUAL PRODUCTION (VOCATIONAL) FOR UNDER GRADUATE (FIRST YEAR) COURSE NAME: PHOTOGRAPHY AND AUDIO VISUAL PRODUCTION (VOCATIONAL) FOR UNDER GRADUATE (FIRST YEAR) PAPER TITLE: BASIC PHOTOGRAPHIC UNIT - 3 : SIMPLE LENS TOPIC: LENS PROPERTIES AND DEFECTS OBJECTIVES By

More information