Definition of light rays

Size: px
Start display at page:

Download "Definition of light rays"

Transcription

1 Geometrical optics In this section we study optical systems involving lenses and mirrors, developing an understanding o devices such as microscopes and telescopes, and biological systems such as the human eye. In the previous section we were studying physical optics, ocusing on the undamental description o electromagnetic waves, and on basic phenomena such as relection, reraction, and diraction. In geometrical optics, we apply the principles and equations o relection, reraction, and dispersion to understand optical systems. The irst ew slides bring orward the topics we need rom the previous section.

2 Recall Deinition o light rays The motion o a point on a wave ront may be indicated by a direction vector perpendicular to the ront. These direction vectors may in turn be connected into single lines or curves, called rays. to show the overall motion o a wave ront. Typically, a given problem will ocus on the behavior o either the wave ronts or the rays, and oten only one o the two will be shown. One can always be constructed rom the other by drawing perpendicular segments and connecting them.

3 Recall Electromagnetic waves in materials Electromagnetic waves travel more slowly in materials than they do in vacuum. For visible light, we are most interested in transparent materials such as glasses, plastics, liquids (especially water), and gases. The ratio o the speed o light in vacuum to the speed in the given material, is called the index o reraction, n: n c Material Index o Reraction Vacuum.0000 <--lowest optical density The table at right lists the index o reraction or a number o common (and uncommon) materials. You can see the trend that the index o reraction rises with density. I we want to calculate the speed o light in these materials, we solve or v above: Fundamentally: K K 0 m 0 K 0 0 c K c n c n Air.0003 Ice.3 Water.333 Ethyl Alcohol.36 Plexiglas.5 Crown Glass.52 Light Flint Glass.58 Dense Flint Glass.66 Zircon.923 Diamond 2.47 Rutile Gallium phosphide 3.50 <--highest optical density

4 Recall Laws o Relection The Laws o Relection: () The angle o incidence equals the angle o relection: a = r. (2) The incoming and outgoing rays, and the normal, are all in one plane.

5 Recall Law o Reraction Light traveling rom a medium o lower index o reraction to higher bends toward the normal. From higher to lower (eg. glass to air) the bending is away. n < n 2 n > n 2 n n 2 n n 2 The angles are calculated rom the Law o Reraction: n sin n2 sin 2 The critical angle, beyond which total internal relection occurs, or n > n 2 only: sin c n n 2

6 How a lens ocuses light Light rays going through glass plates emerge at their incident angles. But overall bending can be achieved by creating wedges, or prisms, o glass. A stack o prisms can bend light toward one line. A symmetric stack o prisms can bend (ocus) to a line on its symmetry plane. Smoothing the ront and back suraces into spherical sections will create a lens that can ocus incoming parallel rays to a sharp point, known as the ocal point.

7 Focal point o a converging lens As the picture shows at right, rays rom ininity (parallel rays), going through a converging lens, will pass through a ocal point. This is the way we deined ocal point on the previous slide. The second picture shows that a point source o light placed at a ocal point will cause parallel rays (plane waves) to emerge rom the other side o the lens. () Every lens has two ocal points one on each side, the same distance rom the center, and (2) the lenses pictured here are called converging lenses since they bend light toward their optical axis, causing the rays to converge. Notice that, beyond F 2 in the top picture, they are diverging.

8 The object-image relation or a thin lens As we know, a lens can ocus light to orm an image on a screen. In the diagram at right, the object is the arrow on the let, and the image is the inverted red arrow on the right. I we have been given the position and size o the object, the problem is to ind the position and size o the image. The method we are using here is called ray tracing. There are light rays leaving the top o the object in all directions. By knowing any two rays, we can ind where they cross, and that is the position where the light rom the top o the object ocuses. We know that () the ray traveling parallel to the lens axis will pass through the ocal point and, (2) the ray passing through the center o the lens will be straight (or a thin lens). We can calculate the crossing position, Q, rom similar triangles: OPQ sim OP Q : Equate y /y: s s s y s y s s y y s s s OAF 2 sim P Q F 2 : s s s y Object-image relation y s then m y s y y y s s Magniication

9 Images created by light rays passing through lenses From our everyday experience, we know that images we see in mirrors are inverted let-right ( mirror images ). Look at your let hand in a mirror some time, and you ll see a right-handed image o your let hand. This does not happen with images created by light passing through a lens. The ray tracing construction on the previous slide showed that a converging lens inverts an image in the y direction. It does the same thing in the x direction. As the picture below shows, the net result is that the image is rotated, but that its handedness is preserved. This is still true in systems with multiple lenses, since rays pass through the lenses in succession, and each lens preserves handedness.

10 Sign rules or object and image distance, and radii o curvature Sign rule or the object distance: When the object is on the same side o the relecting or reracting surace as the incoming light, the object distance s is positive; otherwise, it is negative. Sign rule or the image distance: When the image is on the same side o the relecting or reracting surace as the outgoing light, the image distance s is positive; otherwise, it is negative. Sign rule or the radius o curvature o a spherical surace: When the center o curvature C is on the same side as the outgoing light, the radius o curvature is positive; otherwise, it is negative.

11 Focal point o a diverging lens When we introduced the terminology converging lens, you may have suspected that lurking in the shadows would be a diverging lens. Well, here it is! Any lens that is thinner at the middle than at the edges is a diverging lens, which causes incoming light rays to spread (diverge) instead o ocusing (converging). Oddly enough, diverging lenses still have a ocal point. It is the point rom which parallel light seems to come when passed through the lens (upper picture). Also, light ocusing to a point can be made parallel i its ocal point coincides with that o the lens (lower picture). Fortunately, no new derivations are required. We can use the object-image relation with a diverging lens simply by making the ocal length,, negative! ( We ll discuss this again later.) Consider a converging lens,, ollowed by a diverging lens with = -.

12 The lenses at the top are all examples o converging lenses, and at the bottom, diverging lenses. Consider () how this creates convenience, (2) why certain combinations o a and b clearly have no net eect.

13 Real images and virtual images In the upper picture, light rom the object at P is passing through a converging lens and brought to a ocus at P, where it creates a real image on a screen. Diuse relection rom the screen is delivering light to the eye. In the lower picture, light rom the object at P is passing through a diverging lens. I we look through the lens we see a virtual image that appears to be at location P. This time the light comes directly rom the lens to the eye. As we shall see, however, under the right geometrical conditions, either type o lens can lead to either type o image!

14 Ray tracing & object-image relation or diverging lenses Recall the rays we constructed to analyze the converging lens, then construct analogous rays or the diverging lens. Note: we have drawn three rays in each case, but any two are enough to speciy the image location. I we repeated the derivation o the object-image relation or this lens, we would see that we get the same equation as beore as long as we speciy the ocal length o the diverging lens as a negative number. Diverging lenses are sometimes called negative lenses. s s Object-image relation y m y s s Magniication

15 MEPI Images produced with a converging lens

16 The lensmaker s equation Imagine that you have a piece o glass, with index o reraction n, that you want to orm into a lens. The problem involves determining the radii o curvature or the spherical suraces needed to achieve a certain ocal length. For this we use (without derivation) the lensmaker s equation: ( n ) R R 2 Note that radii with C on the outgoing side, such as R,, have a positive sign, whereas those on the incoming side have a negative sign. I the two radii are equal in magnitude, this simpliies to: 2( n ) R

17 The pinhole camera Image rom a cylindrical oatmeal box camera

18 The human eye Near-sightedness Far-sightedness

19 Correcting astigmatism Operator s manual Lens power, in diopters For lenses used to correct myopia or hyperopia in the eye, instead o speciying the ocal length o the corresponding diverging or converging lens, it is conventional to speciy the same inormation as the power o the lens in units o diopters. The conversion is simple: the power is the reciprocal o the ocal length in meters. Eg. =.4 m 2.5 diopters or a converging lens, with negative numbers or diverging lenses (since is negative).

20 A magniying glass A normal human eye can ocus at a nearest distance o about 25 cm. Usually we use a converging lens to create a real image on a screen. But i that screen is our eye, placed just inside the ocal point, we will see a large virtual image appearing nearby. The virtual image looks much larger than the original because it covers a larger angular range. This causes the image projected on our retinas to be larger by (approximately) the ratio o these angles, which we see as magniication, M: y / 25 cm M y / 25 cm A magniying glass cannot be used or M greater than about X3 to X4 because the lens becomes thick and introduces aberrations. For higher magniications, we need an optical microscope. (Below.)

21 Two lens system For optical systems with more than one optical element (lens, mirror), the image position and magniication are ound by stepping through the elements one at a time, inding the intermediate image at each step, until light rays have reached the inal image position. At each step, the previous image becomes the new object, and or each element in the system one applies the object-image relation or that particular element: s s

22 Optical microscope An optical microscope, otherwise known as a compound microscope has two lenses. The one nearest the object ( objective lens ) orms a magniied real image at location F, then the lens nearest the eye ( eyepiece lens ) acts as a magniying glass to magniy it urther. The total magniication M is the product o the magniications o the objective, m, and eyepiece, M 2. Once again, the near ocus limit o the eye at 25 cm is the limiting criterion. Magniication o the objective lens: m s s s Magniication o the eyepiece: M 2 25 cm 2 MEPI Combined magniication: M m M 2 (25 cm) s 2

23 Reracting telescope Like the compound microscope, the reracting telescope uses an objective lens to create a real image at a location within the tube, and this image is then viewed with an eyepiece lens to magniy the image urther. Like the magniying glass, the total magniication or a telescope is best understood in terms o angular magniication. F 2 angular range o object at ininity: tan y Eye angular range o image at F 2 : tan y 2 MEPI Magniication, rom ratio o angles: M y/ y/ 2 2

24 Images in a plane mirror To analyze lens optics we used the Law o Reraction, but or mirrors o any shape in an optical system, we use the Law o Relection. Diuse light coming rom any point on an object relects rom the mirror surace with a r. Some o the light rom this point enters our eye, orming a virtual image. For a plane mirror, the image distance behind the mirror surace is equal to the object distance in ront o the mirror. For an extended object, in a plane mirror, the virtual image is the same size as the object. So the magniication is. Discuss the rays we have constructed to ind the image position.

25 Chromatic aberration Dispersion, the variation o the index o reraction with requency in transparent materials, causes problems with the ocal properties o lenses. As we saw, in prisms, blue light bends more than red light. So the same eect must happen in lenses where one assumes that ray paths are independent o color. The irst picture below shows how lenses will have slightly dierent ocal lengths or dierent colors. This eect is called chromatic aberration and, when noticeable, the colors are seen to separate at the edges o images. The second picture shows one way to reduce this eect: an achromatic doublet, made o two lenses with dierent indices o reraction (oten ound in cameras).

26 MEPI Spherical mirrors, and their ocal points In many optical systems, concave or convex spherical mirrors may take the place o lenses. As seen in the pictures at right, parallel rays entering a concave spherical mirror will ocus at a point. And parallel rays shining on a convex spherical mirror will appear to come rom a ocal point. So concave spherical mirrors are similar in their action to converging lenses, and convex, to diverging lenses. In act, ollowing the sign rules listed in an earlier slide, we may use the object-image relation to ind images ormed by spherical mirrors. Notice: = R/2 Mirrors have several advantages over lenses. Among them: () they are based on the Law o Relection, so there is no chromatic aberration, and (2) it is practical to make them VERY large. (More later on the latter.)

27 Discuss The images ormed by concave spherical mirrors

28 The ocal length o a spherical mirror Two slides back, we saw (without any proo), that the ocal length o a spherical mirror is = R/2, where R is the radius o curvature. The text goes through a rather lengthy derivation o this result, using the two pictures below. We won t reproduce the proo here. This simple ormula is ine or doing homework problems. But it is based on the small angle approximation, and is not adequate or real optical systems. In act, most large, high quality concave or convex mirrors are not spherical sections, they are parabolic sections. We ll see why on the next slide.

29 Spherical aberration mirrors should be parabolic or perect ocus This demonstration shows that the geometry o a spherical mirror does not cause all rays to cross its axis at exactly the same point. Mathematics shows that the surace giving a perect ocus must be parabolic. (Try sketching rays entering the edge o a hemisphere to see why.) A sphere approximates a parabola at small angles, the domain where the simple ormula is acceptable. Spherical Parabolic

30 The U o A Mirror Lab Roger Angel, a Proessor o Astronomy at the University o Arizona, invented the method used to produce all the gigantic telescope mirrors being installed in observatories worldwide. The mirrors are spin-cast in a rotating oven at the Mirror Lab, below the ootball stadium seats. The oven melts the borosilicate glass as it rotates, causing the glass to low into a paraboloid shape that requires very little grinding and polishing to create the inal mirror.

31 The U o A Mirror Lab A mirror, ollowing spin-casting, being readied or removal rom the oven.

32 The U o A Mirror Lab Ater grinding, the mirrors are polished to a surace accuracy o a raction o a wavelength.

33 The U o A Mirror Lab 8.4 meter diameter mirror in place at the Large Binocular Telescope on Mount Graham Roger Angel

34 Examples

Physics 142 Lenses and Mirrors Page 1. Lenses and Mirrors. Now for the sequence of events, in no particular order. Dan Rather

Physics 142 Lenses and Mirrors Page 1. Lenses and Mirrors. Now for the sequence of events, in no particular order. Dan Rather Physics 142 Lenses and Mirrors Page 1 Lenses and Mirrors Now or the sequence o events, in no particular order. Dan Rather Overview: making use o the laws o relection and reraction We will now study ormation

More information

Phy 212: General Physics II

Phy 212: General Physics II Phy 212: General Physics II Chapter 34: Images Lecture Notes Geometrical (Ray) Optics Geometrical Optics is an approximate treatment o light waves as straight lines (rays) or the description o image ormation

More information

Refraction and Lenses

Refraction and Lenses Reraction and Lenses The most common application o reraction in science and technology is lenses. The kind o lenses we typically think o are made o glass or plastic. The basic rules o reraction still apply

More information

Thin Lens and Image Formation

Thin Lens and Image Formation Pre-Lab Quiz / PHYS 4 Thin Lens and Image Formation Name Lab Section. What do you investigate in this lab?. The ocal length o a bi-convex thin lens is 0 cm. To a real image with magniication o, what is

More information

SIMPLE LENSES. To measure the focal lengths of several lens and lens combinations.

SIMPLE LENSES. To measure the focal lengths of several lens and lens combinations. SIMPLE LENSES PURPOSE: To measure the ocal lengths o several lens and lens combinations. EQUIPMENT: Three convex lenses, one concave lens, lamp, image screen, lens holders, meter stick. INTRODUCTION: Combinations

More information

Physics 54. Lenses and Mirrors. And now for the sequence of events, in no particular order. Dan Rather

Physics 54. Lenses and Mirrors. And now for the sequence of events, in no particular order. Dan Rather Physics 54 Lenses and Mirrors And now or the seuence o events, in no articular order. Dan Rather Overview We will now study transmission o light energy in the ray aroximation, which assumes that the energy

More information

Marketed and Distributed by FaaDoOEngineers.com

Marketed and Distributed by FaaDoOEngineers.com REFRACTION OF LIGHT GUPTA CLASSES For any help contact: 995368795, 968789880 Nishant Gupta, D-, Prashant vihar, Rohini, Delhi-85 Contact: 995368795, 968789880 Reraction o light:. The ratio o the sine o

More information

9. THINK A concave mirror has a positive value of focal length.

9. THINK A concave mirror has a positive value of focal length. 9. THINK A concave mirror has a positive value o ocal length. EXPRESS For spherical mirrors, the ocal length is related to the radius o curvature r by r/2. The object distance p, the image distance i,

More information

lens Figure 1. A refractory focusing arrangement. Focal point

lens Figure 1. A refractory focusing arrangement. Focal point Laboratory 2 - Introduction to Lenses & Telescopes Materials Used: A set o our lenses, an optical bench with a centimeter scale, a white screen, several lens holders, a light source (with crossed arrows),

More information

COMP 558 lecture 5 Sept. 22, 2010

COMP 558 lecture 5 Sept. 22, 2010 Up to now, we have taken the projection plane to be in ront o the center o projection. O course, the physical projection planes that are ound in cameras (and eyes) are behind the center o the projection.

More information

A. Focal Length. 3. Lens Maker Equation. 2. Diverging Systems. f = 2 R. A. Focal Length B. Lens Law, object & image C. Optical Instruments

A. Focal Length. 3. Lens Maker Equation. 2. Diverging Systems. f = 2 R. A. Focal Length B. Lens Law, object & image C. Optical Instruments Physics 700 Geometric Optics Geometric Optics (rough drat) A. Focal Length B. Lens Law, object & image C. Optical Instruments W. Pezzaglia Updated: 0Aug A. Focal Length 3. Converging Systems 4. Converging

More information

3. What kind of mirror could you use to make image distance less than object distance?

3. What kind of mirror could you use to make image distance less than object distance? REFLETION REVIEW hoose one o the ollowing to answer questions 7-24. A response may be used more than once. a. plane mirror e. plane mirror or convex mirror b. concave mirror. concave mirror or convex mirror

More information

Chapter 23. Light Geometric Optics

Chapter 23. Light Geometric Optics Chapter 23. Light Geometric Optics There are 3 basic ways to gather light and focus it to make an image. Pinhole - Simple geometry Mirror - Reflection Lens - Refraction Pinhole Camera Image Formation (the

More information

Chapter 18 Optical Elements

Chapter 18 Optical Elements Chapter 18 Optical Elements GOALS When you have mastered the content of this chapter, you will be able to achieve the following goals: Definitions Define each of the following terms and use it in an operational

More information

Chapter 29/30. Wave Fronts and Rays. Refraction of Sound. Dispersion in a Prism. Index of Refraction. Refraction and Lenses

Chapter 29/30. Wave Fronts and Rays. Refraction of Sound. Dispersion in a Prism. Index of Refraction. Refraction and Lenses Chapter 29/30 Refraction and Lenses Refraction Refraction the bending of waves as they pass from one medium into another. Caused by a change in the average speed of light. Analogy A car that drives off

More information

Chapter 2 - Geometric Optics

Chapter 2 - Geometric Optics David J. Starling Penn State Hazleton PHYS 214 The human eye is a visual system that collects light and forms an image on the retina. The human eye is a visual system that collects light and forms an image

More information

Chapter 36. Image Formation

Chapter 36. Image Formation Chapter 36 Image Formation Image of Formation Images can result when light rays encounter flat or curved surfaces between two media. Images can be formed either by reflection or refraction due to these

More information

Chapter 36. Image Formation

Chapter 36. Image Formation Chapter 36 Image Formation Notation for Mirrors and Lenses The object distance is the distance from the object to the mirror or lens Denoted by p The image distance is the distance from the image to the

More information

Algebra Based Physics. Reflection. Slide 1 / 66 Slide 2 / 66. Slide 3 / 66. Slide 4 / 66. Slide 5 / 66. Slide 6 / 66.

Algebra Based Physics. Reflection. Slide 1 / 66 Slide 2 / 66. Slide 3 / 66. Slide 4 / 66. Slide 5 / 66. Slide 6 / 66. Slide 1 / 66 Slide 2 / 66 Algebra Based Physics Geometric Optics 2015-12-01 www.njctl.org Slide 3 / 66 Slide 4 / 66 Table of ontents lick on the topic to go to that section Reflection Refraction and Snell's

More information

Chapter 34 Geometric Optics (also known as Ray Optics) by C.-R. Hu

Chapter 34 Geometric Optics (also known as Ray Optics) by C.-R. Hu Chapter 34 Geometric Optics (also known as Ray Optics) by C.-R. Hu 1. Principles of image formation by mirrors (1a) When all length scales of objects, gaps, and holes are much larger than the wavelength

More information

OPTI-202R Geometrical and Instrumental Optics John E. Greivenkamp Final Exam Page 1/11 Spring 2017

OPTI-202R Geometrical and Instrumental Optics John E. Greivenkamp Final Exam Page 1/11 Spring 2017 Final Exam Page 1/11 Spring 2017 Name SOLUTIONS Closed book; closed notes. Time limit: 120 minutes. An equation sheet is attached and can be removed. A spare raytrace sheet is also attached. Use the back

More information

Dr. Todd Satogata (ODU/Jefferson Lab) Monday, April

Dr. Todd Satogata (ODU/Jefferson Lab)  Monday, April University Physics 227N/232N Mirrors and Lenses Homework Optics 2 due Friday AM Quiz Friday Optional review session next Monday (Apr 28) Bring Homework Notebooks to Final for Grading Dr. Todd Satogata

More information

24 Geometrical Optics &...

24 Geometrical Optics &... 804 CHAPTER 24 GEOMETRICAL OPTICS & OPTICAL EQUIPMEMT 24 Geometrical Optics &... Answers to Discussion Questions 24. The ocal length increases because the rays are not bent as strongly at the water-glasnterace.

More information

28 Thin Lenses: Ray Tracing

28 Thin Lenses: Ray Tracing 28 Thin Lenses: Ray Tracing A lens is a piece of transparent material whose surfaces have been shaped so that, when the lens is in another transparent material (call it medium 0), light traveling in medium

More information

EP118 Optics. Content TOPIC 9 ABERRATIONS. Department of Engineering Physics University of Gaziantep. 1. Introduction. 2. Spherical Aberrations

EP118 Optics. Content TOPIC 9 ABERRATIONS. Department of Engineering Physics University of Gaziantep. 1. Introduction. 2. Spherical Aberrations EP118 Optics TOPI 9 ABERRATIONS Department o Engineering Physics Uniersity o Gaziantep July 2011 Saya 1 ontent 1. Introduction 2. Spherical Aberrations 3. hromatic Aberrations 4. Other Types o Aberrations

More information

Unit #3 - Optics. Activity: D21 Observing Lenses (pg. 449) Lenses Lenses

Unit #3 - Optics. Activity: D21 Observing Lenses (pg. 449) Lenses Lenses ist10_ch11.qxd Unit #3 - Optics 11.3 Lenses 7/22/09 3:53 PM Page 449 Night vision goggles use lenses to ocus light onto a device called an image intensiier. Inside the intensiier, the light energy releases

More information

Mirrors, Lenses &Imaging Systems

Mirrors, Lenses &Imaging Systems Mirrors, Lenses &Imaging Systems We describe the path of light as straight-line rays And light rays from a very distant point arrive parallel 145 Phys 24.1 Mirrors Standing away from a plane mirror shows

More information

30 Lenses. Lenses change the paths of light.

30 Lenses. Lenses change the paths of light. Lenses change the paths of light. A light ray bends as it enters glass and bends again as it leaves. Light passing through glass of a certain shape can form an image that appears larger, smaller, closer,

More information

CH. 23 Mirrors and Lenses HW# 6, 7, 9, 11, 13, 21, 25, 31, 33, 35

CH. 23 Mirrors and Lenses HW# 6, 7, 9, 11, 13, 21, 25, 31, 33, 35 CH. 23 Mirrors and Lenses HW# 6, 7, 9, 11, 13, 21, 25, 31, 33, 35 Mirrors Rays of light reflect off of mirrors, and where the reflected rays either intersect or appear to originate from, will be the location

More information

CHAPTER 18 REFRACTION & LENSES

CHAPTER 18 REFRACTION & LENSES Physics Approximate Timeline Students are expected to keep up with class work when absent. CHAPTER 18 REFRACTION & LENSES Day Plans for the day Assignments for the day 1 18.1 Refraction of Light o Snell

More information

Applied Optics. , Physics Department (Room #36-401) , ,

Applied Optics. , Physics Department (Room #36-401) , , Applied Optics Professor, Physics Department (Room #36-401) 2290-0923, 019-539-0923, shsong@hanyang.ac.kr Office Hours Mondays 15:00-16:30, Wednesdays 15:00-16:30 TA (Ph.D. student, Room #36-415) 2290-0921,

More information

University of Rochester Department of Physics and Astronomy Physics123, Spring Homework 5 - Solutions

University of Rochester Department of Physics and Astronomy Physics123, Spring Homework 5 - Solutions Problem 5. University of Rochester Department of Physics and Astronomy Physics23, Spring 202 Homework 5 - Solutions An optometrist finds that a farsighted person has a near point at 25 cm. a) If the eye

More information

Ch 24. Geometric Optics

Ch 24. Geometric Optics text concept Ch 24. Geometric Optics Fig. 24 3 A point source of light P and its image P, in a plane mirror. Angle of incidence =angle of reflection. text. Fig. 24 4 The blue dashed line through object

More information

OPTICS DIVISION B. School/#: Names:

OPTICS DIVISION B. School/#: Names: OPTICS DIVISION B School/#: Names: Directions: Fill in your response for each question in the space provided. All questions are worth two points. Multiple Choice (2 points each question) 1. Which of the

More information

Astronomy 80 B: Light. Lecture 9: curved mirrors, lenses, aberrations 29 April 2003 Jerry Nelson

Astronomy 80 B: Light. Lecture 9: curved mirrors, lenses, aberrations 29 April 2003 Jerry Nelson Astronomy 80 B: Light Lecture 9: curved mirrors, lenses, aberrations 29 April 2003 Jerry Nelson Sensitive Countries LLNL field trip 2003 April 29 80B-Light 2 Topics for Today Optical illusion Reflections

More information

Lenses. A transparent object used to change the path of light Examples: Human eye Eye glasses Camera Microscope Telescope

Lenses. A transparent object used to change the path of light Examples: Human eye Eye glasses Camera Microscope Telescope SNC2D Lenses A transparent object used to change the path of light Examples: Human eye Eye glasses Camera Microscope Telescope Reading stones used by monks, nuns, and scholars ~1000 C.E. Lenses THERE ARE

More information

Notation for Mirrors and Lenses. Chapter 23. Types of Images for Mirrors and Lenses. More About Images

Notation for Mirrors and Lenses. Chapter 23. Types of Images for Mirrors and Lenses. More About Images Notation for Mirrors and Lenses Chapter 23 Mirrors and Lenses Sections: 4, 6 Problems:, 8, 2, 25, 27, 32 The object distance is the distance from the object to the mirror or lens Denoted by p The image

More information

Chapter 23. Mirrors and Lenses

Chapter 23. Mirrors and Lenses Chapter 23 Mirrors and Lenses Mirrors and Lenses The development of mirrors and lenses aided the progress of science. It led to the microscopes and telescopes. Allowed the study of objects from microbes

More information

PHYS 160 Astronomy. When analyzing light s behavior in a mirror or lens, it is helpful to use a technique called ray tracing.

PHYS 160 Astronomy. When analyzing light s behavior in a mirror or lens, it is helpful to use a technique called ray tracing. Optics Introduction In this lab, we will be exploring several properties of light including diffraction, reflection, geometric optics, and interference. There are two sections to this lab and they may

More information

Mirrors and Lenses. Images can be formed by reflection from mirrors. Images can be formed by refraction through lenses.

Mirrors and Lenses. Images can be formed by reflection from mirrors. Images can be formed by refraction through lenses. Mirrors and Lenses Images can be formed by reflection from mirrors. Images can be formed by refraction through lenses. Notation for Mirrors and Lenses The object distance is the distance from the object

More information

Optics Practice. Version #: 0. Name: Date: 07/01/2010

Optics Practice. Version #: 0. Name: Date: 07/01/2010 Optics Practice Date: 07/01/2010 Version #: 0 Name: 1. Which of the following diagrams show a real image? a) b) c) d) e) i, ii, iii, and iv i and ii i and iv ii and iv ii, iii and iv 2. A real image is

More information

Algebra Based Physics. Reflection. Slide 1 / 66 Slide 2 / 66. Slide 3 / 66. Slide 4 / 66. Slide 5 / 66. Slide 6 / 66.

Algebra Based Physics. Reflection. Slide 1 / 66 Slide 2 / 66. Slide 3 / 66. Slide 4 / 66. Slide 5 / 66. Slide 6 / 66. Slide 1 / 66 Slide 2 / 66 lgebra ased Physics Geometric Optics 2015-12-01 www.njctl.org Slide 3 / 66 Slide 4 / 66 Table of ontents lick on the topic to go to that section Reflection Refraction and Snell's

More information

NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT. Physics 211 E&M and Quantum Physics Spring Lab #8: Thin Lenses

NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT. Physics 211 E&M and Quantum Physics Spring Lab #8: Thin Lenses NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT Physics 211 E&M and Quantum Physics Spring 2018 Lab #8: Thin Lenses Lab Writeup Due: Mon/Wed/Thu/Fri, April 2/4/5/6, 2018 Background In the previous lab

More information

Converging Lenses. Parallel rays are brought to a focus by a converging lens (one that is thicker in the center than it is at the edge).

Converging Lenses. Parallel rays are brought to a focus by a converging lens (one that is thicker in the center than it is at the edge). Chapter 30: Lenses Types of Lenses Piece of glass or transparent material that bends parallel rays of light so they cross and form an image Two types: Converging Diverging Converging Lenses Parallel rays

More information

Your Comments. That test was brutal, but this is the last physics course I have to take here WOOOOOO!!!!!

Your Comments. That test was brutal, but this is the last physics course I have to take here WOOOOOO!!!!! Your Comments I'm kind o lost, this was a pretty heavy prelecture. I understand the equations and how we get them but I'm araid to say that I don't understand the concepts behind everything. Such as what

More information

Converging and Diverging Surfaces. Lenses. Converging Surface

Converging and Diverging Surfaces. Lenses. Converging Surface Lenses Sandy Skoglund 2 Converging and Diverging s AIR Converging If the surface is convex, it is a converging surface in the sense that the parallel rays bend toward each other after passing through the

More information

Unit 2: Optics Part 2

Unit 2: Optics Part 2 Unit 2: Optics Part 2 Refraction of Visible Light 1. Bent-stick effect: When light passes from one medium to another (for example, when a beam of light passes through air and into water, or vice versa),

More information

12:40-2:40 3:00-4:00 PM

12:40-2:40 3:00-4:00 PM Physics 294H l Professor: Joey Huston l email:huston@msu.edu l office: BPS3230 l Homework will be with Mastering Physics (and an average of 1 hand-written problem per week) Help-room hours: 12:40-2:40

More information

Average: Standard Deviation: Max: 99 Min: 40

Average: Standard Deviation: Max: 99 Min: 40 1 st Midterm Exam Average: 83.1 Standard Deviation: 12.0 Max: 99 Min: 40 Please contact me to fix an appointment, if you took less than 65. Chapter 33 Lenses and Op/cal Instruments Units of Chapter 33

More information

Image Formation. Light from distant things. Geometrical optics. Pinhole camera. Chapter 36

Image Formation. Light from distant things. Geometrical optics. Pinhole camera. Chapter 36 Light from distant things Chapter 36 We learn about a distant thing from the light it generates or redirects. The lenses in our eyes create images of objects our brains can process. This chapter concerns

More information

Physics 228 Lecture 3. Today: Spherical Mirrors Lenses.

Physics 228 Lecture 3. Today: Spherical Mirrors Lenses. Physics 228 Lecture 3 Today: Spherical Mirrors Lenses www.physics.rutgers.edu/ugrad/228 a) Santa as he sees himself in a mirrored sphere. b) Santa as he sees himself in a flat mirror after too much eggnog.

More information

25 cm. 60 cm. 50 cm. 40 cm.

25 cm. 60 cm. 50 cm. 40 cm. Geometrical Optics 7. The image formed by a plane mirror is: (a) Real. (b) Virtual. (c) Erect and of equal size. (d) Laterally inverted. (e) B, c, and d. (f) A, b and c. 8. A real image is that: (a) Which

More information

c v n = n r Sin n c = n i Refraction of Light Index of Refraction Snell s Law or Refraction Example Problem Total Internal Reflection Optics

c v n = n r Sin n c = n i Refraction of Light Index of Refraction Snell s Law or Refraction Example Problem Total Internal Reflection Optics Refraction is the bending of the path of a light wave as it passes from one material into another material. Refraction occurs at the boundary and is caused by a change in the speed of the light wave upon

More information

Laboratory 7: Properties of Lenses and Mirrors

Laboratory 7: Properties of Lenses and Mirrors Laboratory 7: Properties of Lenses and Mirrors Converging and Diverging Lens Focal Lengths: A converging lens is thicker at the center than at the periphery and light from an object at infinity passes

More information

Exam IV: Chapters 20 24

Exam IV: Chapters 20 24 PHYS 1420: College Physics II Fall 2008 Exam IV: Chapters 20 24 We want to use the magnet shown on the let to induce a current in the closed loop o wire. s shown in the picture, your eye is at some position

More information

Physics II. Chapter 23. Spring 2018

Physics II. Chapter 23. Spring 2018 Physics II Chapter 23 Spring 2018 IMPORTANT: Except for multiple-choice questions, you will receive no credit if you show only an answer, even if the answer is correct. Always show in the space on your

More information

Light: Lenses and. Mirrors. Test Date: Name 1ÿ-ÿ. Physics. Light: Lenses and Mirrors

Light: Lenses and. Mirrors. Test Date: Name 1ÿ-ÿ. Physics. Light: Lenses and Mirrors Name 1ÿ-ÿ Physics Light: Lenses and Mirrors i Test Date: "Shadows cannot see themselves in the mirror of the sun." -Evita Peron What are lenses? Lenses are made from transparent glass or plastice and refract

More information

Geometric Optics. Ray Model. assume light travels in straight line uses rays to understand and predict reflection & refraction

Geometric Optics. Ray Model. assume light travels in straight line uses rays to understand and predict reflection & refraction Geometric Optics Ray Model assume light travels in straight line uses rays to understand and predict reflection & refraction General Physics 2 Geometric Optics 1 Reflection Law of reflection the angle

More information

SNC2D PHYSICS 5/25/2013. LIGHT & GEOMETRIC OPTICS L Converging & Diverging Lenses (P ) Curved Lenses. Curved Lenses

SNC2D PHYSICS 5/25/2013. LIGHT & GEOMETRIC OPTICS L Converging & Diverging Lenses (P ) Curved Lenses. Curved Lenses SNC2D PHYSICS LIGHT & GEOMETRIC OPTICS L Converging & Diverging Lenses (P.448-450) Curved Lenses We see the world through lenses even if we do not wear glasses or contacts. We all have natural lenses in

More information

Chapter 23. Mirrors and Lenses

Chapter 23. Mirrors and Lenses Chapter 23 Mirrors and Lenses Notation for Mirrors and Lenses The object distance is the distance from the object to the mirror or lens Denoted by p The image distance is the distance from the image to

More information

Optics and Images. Lenses and Mirrors. Matthew W. Milligan

Optics and Images. Lenses and Mirrors. Matthew W. Milligan Optics and Images Lenses and Mirrors Light: Interference and Optics I. Light as a Wave - wave basics review - electromagnetic radiation II. Diffraction and Interference - diffraction, Huygen s principle

More information

Physics 6C. Cameras and the Human Eye. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Physics 6C. Cameras and the Human Eye. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Physics 6C Cameras and the Human Eye CAMERAS A typical camera uses a converging lens to ocus a real (inverted) image onto photographic ilm (or in a digital camera the image is on a CCD chip). Light goes

More information

Person s Optics Test KEY SSSS

Person s Optics Test KEY SSSS Person s Optics Test KEY SSSS 2017-18 Competitors Names: School Name: All questions are worth one point unless otherwise stated. Show ALL WORK or you may not receive credit. Include correct units whenever

More information

11.3. Lenses. Seeing in the Dark

11.3. Lenses. Seeing in the Dark .3 Lenses Here is a summary o what you will learn in this section: Lenses reract light in useul ways to orm s. Concave lenses, which cause light to diverge, are usen multi-lens systems to help produce

More information

OPTICAL SYSTEMS OBJECTIVES

OPTICAL SYSTEMS OBJECTIVES 101 L7 OPTICAL SYSTEMS OBJECTIVES Aims Your aim here should be to acquire a working knowledge of the basic components of optical systems and understand their purpose, function and limitations in terms

More information

Lights. Action. Cameras. Shutter/Iris Lens With focal length f. Image Distance. Object. Distance

Lights. Action. Cameras. Shutter/Iris Lens With focal length f. Image Distance. Object. Distance Lights. Action. Phys 1020, Day 17: Cameras, Blm 15.1 Reminders: HW 8 in/hw 9 out Make up lab week straight ater Sp.B. Check scores on CU learn 1 Object Cameras Shutter/Iris Lens With ocal length Dark Box

More information

Physics 11. Unit 8 Geometric Optics Part 2

Physics 11. Unit 8 Geometric Optics Part 2 Physics 11 Unit 8 Geometric Optics Part 2 (c) Refraction (i) Introduction: Snell s law Like water waves, when light is traveling from one medium to another, not only does its wavelength, and in turn the

More information

Final Reg Optics Review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Final Reg Optics Review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Final Reg Optics Review 1) How far are you from your image when you stand 0.75 m in front of a vertical plane mirror? 1) 2) A object is 12 cm in front of a concave mirror, and the image is 3.0 cm in front

More information

OPTI-202R Geometrical and Instrumental Optics John E. Greivenkamp Midterm II Page 1/7 Spring 2018

OPTI-202R Geometrical and Instrumental Optics John E. Greivenkamp Midterm II Page 1/7 Spring 2018 Midterm II Page 1/7 Spring 2018 Name SOUTIONS Closed book; closed notes. Time limit: 50 minutes. An equation sheet is attached and can be removed. A spare raytrace sheet is also attached. Use the back

More information

GEOMETRICAL OPTICS Practical 1. Part I. BASIC ELEMENTS AND METHODS FOR CHARACTERIZATION OF OPTICAL SYSTEMS

GEOMETRICAL OPTICS Practical 1. Part I. BASIC ELEMENTS AND METHODS FOR CHARACTERIZATION OF OPTICAL SYSTEMS GEOMETRICAL OPTICS Practical 1. Part I. BASIC ELEMENTS AND METHODS FOR CHARACTERIZATION OF OPTICAL SYSTEMS Equipment and accessories: an optical bench with a scale, an incandescent lamp, matte, a set of

More information

General Physics II. Optical Instruments

General Physics II. Optical Instruments General Physics II Optical Instruments 1 The Thin-Lens Equation 2 The Thin-Lens Equation Using geometry, one can show that 1 1 1 s+ =. s' f The magnification of the lens is defined by For a thin lens,

More information

PHYSICS FOR THE IB DIPLOMA CAMBRIDGE UNIVERSITY PRESS

PHYSICS FOR THE IB DIPLOMA CAMBRIDGE UNIVERSITY PRESS Option C Imaging C Introduction to imaging Learning objectives In this section we discuss the formation of images by lenses and mirrors. We will learn how to construct images graphically as well as algebraically.

More information

Reading: Lenses and Mirrors; Applications Key concepts: Focal points and lengths; real images; virtual images; magnification; angular magnification.

Reading: Lenses and Mirrors; Applications Key concepts: Focal points and lengths; real images; virtual images; magnification; angular magnification. Reading: Lenses and Mirrors; Applications Key concepts: Focal points and lengths; real images; virtual images; magnification; angular magnification. 1.! Questions about objects and images. Can a virtual

More information

Name: Lab Partner: Section:

Name: Lab Partner: Section: Chapter 10 Thin Lenses Name: Lab Partner: Section: 10.1 Purpose In this experiment, the formation of images by concave and convex lenses will be explored. The application of the thin lens equation and

More information

INDEX OF REFRACTION index of refraction n = c/v material index of refraction n

INDEX OF REFRACTION index of refraction n = c/v material index of refraction n INDEX OF REFRACTION The index of refraction (n) of a material is the ratio of the speed of light in vacuuo (c) to the speed of light in the material (v). n = c/v Indices of refraction for any materials

More information

Geometrical Optics. Have you ever entered an unfamiliar room in which one wall was covered with a

Geometrical Optics. Have you ever entered an unfamiliar room in which one wall was covered with a Return to Table of Contents HAPTER24 C. Geometrical Optics A mirror now used in the Hubble space telescope Have you ever entered an unfamiliar room in which one wall was covered with a mirror and thought

More information

REFLECTION THROUGH LENS

REFLECTION THROUGH LENS REFLECTION THROUGH LENS A lens is a piece of transparent optical material with one or two curved surfaces to refract light rays. It may converge or diverge light rays to form an image. Lenses are mostly

More information

Chapter 34. Images. Copyright 2014 John Wiley & Sons, Inc. All rights reserved.

Chapter 34. Images. Copyright 2014 John Wiley & Sons, Inc. All rights reserved. Chapter 34 Images Copyright 34-1 Images and Plane Mirrors Learning Objectives 34.01 Distinguish virtual images from real images. 34.02 Explain the common roadway mirage. 34.03 Sketch a ray diagram for

More information

Chapter 36. Image Formation

Chapter 36. Image Formation Chapter 36 Image Formation Image of Formation Images can result when light rays encounter flat or curved surfaces between two media. Images can be formed either by reflection or refraction due to these

More information

Chapter 24 Geometrical Optics. Copyright 2010 Pearson Education, Inc.

Chapter 24 Geometrical Optics. Copyright 2010 Pearson Education, Inc. Chapter 24 Geometrical Optics Lenses convex (converging) concave (diverging) Mirrors Ray Tracing for Mirrors We use three principal rays in finding the image produced by a curved mirror. The parallel ray

More information

Unit 3: Chapter 6. Refraction

Unit 3: Chapter 6. Refraction Unit 3: Chapter 6 Refraction Refraction of Visible Light 2 Examples: 1. Bent-stick effect: When light passes from one medium to another (ex: from air into water), the change of speed causes it to change

More information

7 = <» _1_. The Language of Physics. Summary of Important Equations. J_ Pi. \j?i rj

7 = <» _1_. The Language of Physics. Summary of Important Equations. J_ Pi. \j?i rj The Language of Physics Refraction The bending of light as it travels from one medium into another. It occurs because of the difference in the speed of light in the different mediums. Whenever a ray of

More information

Option G 2: Lenses. The diagram below shows the image of a square grid as produced by a lens that does not cause spherical aberration.

Option G 2: Lenses. The diagram below shows the image of a square grid as produced by a lens that does not cause spherical aberration. Name: Date: Option G 2: Lenses 1. This question is about spherical aberration. The diagram below shows the image of a square grid as produced by a lens that does not cause spherical aberration. In the

More information

Lenses. Optional Reading Stargazer: the life and times of the TELESCOPE, Fred Watson (Da Capo 2004).

Lenses. Optional Reading Stargazer: the life and times of the TELESCOPE, Fred Watson (Da Capo 2004). Lenses Equipment optical bench, incandescent light source, laser, No 13 Wratten filter, 3 lens holders, cross arrow, diffuser, white screen, case of lenses etc., vernier calipers, 30 cm ruler, meter stick

More information

Refraction is the when a ray changes mediums. Examples of mediums:

Refraction is the when a ray changes mediums. Examples of mediums: Refraction and Lenses Refraction is the when a ray changes mediums. Examples of mediums: Lenses are optical devices which take advantage of the refraction of light to 1. produces images real and 2. change

More information

Physics 197 Lab 7: Thin Lenses and Optics

Physics 197 Lab 7: Thin Lenses and Optics Physics 197 Lab 7: Thin Lenses and Optics Equipment: Item Part # Qty per Team # of Teams Basic Optics Light Source PASCO OS-8517 1 12 12 Power Cord for Light Source 1 12 12 Ray Optics Set (Concave Lens)

More information

Chapter 23. Geometrical Optics: Mirrors and Lenses and other Instruments

Chapter 23. Geometrical Optics: Mirrors and Lenses and other Instruments Chapter 23 Geometrical Optics: Mirrors and Lenses and other Instruments HITT 1 You stand two feet away from a plane mirror. How far is it from you to your image? a. 2.0 ft b. 3.0 ft c. 4.0 ft d. 5.0 ft

More information

Test Review # 8. Physics R: Form TR8.17A. Primary colors of light

Test Review # 8. Physics R: Form TR8.17A. Primary colors of light Physics R: Form TR8.17A TEST 8 REVIEW Name Date Period Test Review # 8 Light and Color. Color comes from light, an electromagnetic wave that travels in straight lines in all directions from a light source

More information

Basic Optics System OS-8515C

Basic Optics System OS-8515C 40 50 30 60 20 70 10 80 0 90 80 10 20 70 T 30 60 40 50 50 40 60 30 70 20 80 90 90 80 BASIC OPTICS RAY TABLE 10 0 10 70 20 60 50 40 30 Instruction Manual with Experiment Guide and Teachers Notes 012-09900B

More information

Spherical Mirrors. Concave Mirror, Notation. Spherical Aberration. Image Formed by a Concave Mirror. Image Formed by a Concave Mirror 4/11/2014

Spherical Mirrors. Concave Mirror, Notation. Spherical Aberration. Image Formed by a Concave Mirror. Image Formed by a Concave Mirror 4/11/2014 Notation for Mirrors and Lenses Chapter 23 Mirrors and Lenses The object distance is the distance from the object to the mirror or lens Denoted by p The image distance is the distance from the image to

More information

WHS-CH-23 Light: Geometric Optics Show all your work, equations used, and box in your answers!

WHS-CH-23 Light: Geometric Optics Show all your work, equations used, and box in your answers! WHS-CH-23 Light: Geometric Optics Show all your work, equations used, and box in your answers! Willebrord Snell (1591-1626) Snell developed methods for measuring the Earth. He proposed the method of triangulation

More information

King Saud University College of Science Physics & Astronomy Dept.

King Saud University College of Science Physics & Astronomy Dept. King Saud University College of Science Physics & Astronomy Dept. PHYS 111 (GENERAL PHYSICS 2) CHAPTER 36: Image Formation LECTURE NO. 9 Presented by Nouf Saad Alkathran 36.1 Images Formed by Flat Mirrors

More information

CHAPTER 3 OPTICAL INSTRUMENTS

CHAPTER 3 OPTICAL INSTRUMENTS 1 CHAPTER 3 OPTICAL INSTRUMENTS 3.1 Introduction The title of this chapter is to some extent false advertising, because the instruments described are the instruments of first-year optics courses, not optical

More information

INTRODUCTION THIN LENSES. Introduction. given by the paraxial refraction equation derived last lecture: Thin lenses (19.1) = 1. Double-lens systems

INTRODUCTION THIN LENSES. Introduction. given by the paraxial refraction equation derived last lecture: Thin lenses (19.1) = 1. Double-lens systems Chapter 9 OPTICAL INSTRUMENTS Introduction Thin lenses Double-lens systems Aberrations Camera Human eye Compound microscope Summary INTRODUCTION Knowledge of geometrical optics, diffraction and interference,

More information

Name. Light Chapter Summary Cont d. Refraction

Name. Light Chapter Summary Cont d. Refraction Page 1 of 17 Physics Week 12(Sem. 2) Name Light Chapter Summary Cont d with a smaller index of refraction to a material with a larger index of refraction, the light refracts towards the normal line. Also,

More information

AP Physics Problems -- Waves and Light

AP Physics Problems -- Waves and Light AP Physics Problems -- Waves and Light 1. 1974-3 (Geometric Optics) An object 1.0 cm high is placed 4 cm away from a converging lens having a focal length of 3 cm. a. Sketch a principal ray diagram for

More information

Chapter Ray and Wave Optics

Chapter Ray and Wave Optics 109 Chapter Ray and Wave Optics 1. An astronomical telescope has a large aperture to [2002] reduce spherical aberration have high resolution increase span of observation have low dispersion. 2. If two

More information

Chapter 34: Geometric Optics

Chapter 34: Geometric Optics Chapter 34: Geometric Optics It is all about images How we can make different kinds of images using optical devices Optical device example: mirror, a piece of glass, telescope, microscope, kaleidoscope,

More information

Activity 6.1 Image Formation from Spherical Mirrors

Activity 6.1 Image Formation from Spherical Mirrors PHY385H1F Introductory Optics Practicals Day 6 Telescopes and Microscopes October 31, 2011 Group Number (number on Intro Optics Kit):. Facilitator Name:. Record-Keeper Name: Time-keeper:. Computer/Wiki-master:..

More information

1) An electromagnetic wave is a result of electric and magnetic fields acting together. T 1)

1) An electromagnetic wave is a result of electric and magnetic fields acting together. T 1) Exam 3 Review Name TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) An electromagnetic wave is a result of electric and magnetic fields acting together. T 1) 2) Electromagnetic

More information