PHYS 160 Astronomy. When analyzing light s behavior in a mirror or lens, it is helpful to use a technique called ray tracing.

Save this PDF as:

Size: px
Start display at page:

Download "PHYS 160 Astronomy. When analyzing light s behavior in a mirror or lens, it is helpful to use a technique called ray tracing."

Transcription

1 Optics Introduction In this lab, we will be exploring several properties of light including diffraction, reflection, geometric optics, and interference. There are two sections to this lab and they may be done in any order. I. Mirrors and Lenses Mirrors and lenses come in all shapes and sizes. You are probably most experienced with a standard, flat mirror. Mirrors can also be formed into different shapes like parabolic, hyperbolic, or spherical. Lenses are grouped into converging and diverging lenses. In this lab we will work with a variety of shaped mirrors and lenses. A spherical mirror, with radius of curvature R, is one that uses a portion of a mirrored spherical surface. If the incident light (the light moving towards the mirror) approaches the inside of the curve, the mirror is said to be concave. If the incident light approaches the mirror on the outside of the curve, the mirror is said to be convex. Concave mirrors cause the light rays to converge (come together), while convex mirrors cause light rays to diverge (spread apart). If the reflected light rays converge to a single point, the image formed is called real. An image is real if you can place a screen at the position of the image and see the image on the screen. In general, if the image is magnified, it can be projected and therefore is real. If the light rays diverge from the mirror, the image is said to be virtual. A virtual image would not appear on a screen if it were placed at the location of the image. For example, think about a standard flat mirror. The image that appears when you stand in front appears to be behind the mirror. If you placed a screen behind the flat mirror, your image would not be projected on the screen. Therefore it is a virtual image. With virtual images, the light rays do not actually reach the position of the image. Instead, the eye and brain interpolate the image position from the direction of diverging light rays. When analyzing light s behavior in a mirror or lens, it is helpful to use a technique called ray tracing. The rules for ray tracing are: 1. A ray passing through the center of the lens is not deviated. 2. A ray parallel to the axis is refracted so that it passes through (or extends through) the focal point, F. 3. A ray that passes from the object, through the focal point, and then to the mirror or lens will emerge from the mirror or lens parallel to the axis. 4. The image will appear at the intersection of 2 or more of these lines. See Figure 1-3 for examples of ray tracing for spherical mirrors and lenses. Page 1

2 Figure 1 Concave mirror, real image Figure 2 Convex mirror, virtual image Figure 3: Various lens ray diagrams. Some important variables when dealing with lenses and mirrors are: p q f R M The distance between the object and the lens/mirror The distance between the image and the lens/mirror The distance between the lens/mirror and the focal point The radius of curvature of a lens/mirror Magnification Page 2

3 The location of an image is given by the equation: = p q R (1) It is usually more convenient to use a focal length instead of the radius of curvature. For curved surfaces, the focal length is half of the radius of curvature. To measure the focal length of a mirror, send parallel light rays towards the mirror and see where the reflected rays meet. See Figure 4 for an example. R f = 2 (2) Figure 4 Combining equations (1) and (2), we get: = p q f (3) To use these equations, you must be very careful about signs. The standard sign convention is: The numerical value of p is almost always positive. For this lab, assume p>0. For mirrors, the numerical value of q is positive if the image is in front of a mirror (real), and negative if the image is behind the mirror (virtual). For lenses, q is positive if the image is not on the same side as the object (real), and negative if the image is on the same side as the object (virtual). For mirrors, f>0 for concave and f<0 for convex. For lenses, f>0 for convergent and f<0 for divergent. The image qualities can be described by a quantity called magnification. Once q is found using Equation 3, magnification is calculated: M q = p (4) Page 3

4 Magnification describes the image in the following ways: If M is positive, the image will appear upright. If M is negative, the image will appear upside-down. M is the ratio of the image height (h ) and the object height (h ). q h' M = =. p h o If M is equal to 1, then the image is the same size as the object. o If M>1, then the image is larger than the object. o If M<1, then the image is smaller than the object. For example, If M=+2, then the image is twice as tall as the object and upright. If M=-1/3, then the object is three times taller than the image and the image is upside-down. A. Procedure: Ray Tracing At this station, you will find a light source with several aperture shapes as well as several glass shapes. 1. Place the aperture with five slits in the light source. Turn on the light. 2. Place the converging lens in the light path. Move the lens until you can clearly see the light converging to a focal point. Draw the light path. Trace the shape of the lens on the paper. Measure the focal length. 3. Repeat for the diverging lens. 4. Repeat for the half-circle lens. Rotate the lens until you can clearly see at least one total internal reflection. 5. Place the converging and diverging lenses together so they fit together like puzzle pieces. Place the two lenses (pressed together) in the light path. Draw the light path. 6. Replace the 5-slit aperture with the single wide slit aperture. Place a prism in the light path. Rotate the prism until a rainbow appears on a piece of paper (held by a lab partner). Draw a sketch and explain why the white light of the source is separated into colors by the prism. B. Procedure: Lenses This set-up includes an optics rail, several holders, a light source that produces an arrow pattern, several lenses. 1. Place a converging lens in the mirror holder. The lens box should be marked with its focal length, f. Find a place where the image is sharply focused on a paper screen. Make sure that the lens is at least 20 cm away from the light source. Describe the image (circle correct answer): The image is: Real Virtual Upright Upside-down Smaller than object Larger than object Page 4

5 Measure the distances p and q. p= (cm) q= (cm) Plug your numbers into equation 3. Calculate the focal length of the mirror, f. Calculated f (cm) The lens focal length should be printed on lens box. Compare your calculated value of focal length to the value on the box. Calculate the magnification using equation 4. M= Measure the height of the image (h ) and the height of the object (h). Compute h /h. Does it agree with you value of M? h /h= 2. Build a refracting telescope: a. Replace the arrow light source with the post that has a small word taped to the end. b. Place the converging lens from box 1 at a distance of 45 cm from the post. Place the converging lens from box 2 at a distance of approximately 100 cm from the post. Look through both lenses, towards the post. Adjust the rear lens until the word is in sharp focus. Describe the image (inverted/upright, magnified, etc). Page 5

Optics Practice. Version #: 0. Name: Date: 07/01/2010

Optics Practice Date: 07/01/2010 Version #: 0 Name: 1. Which of the following diagrams show a real image? a) b) c) d) e) i, ii, iii, and iv i and ii i and iv ii and iv ii, iii and iv 2. A real image is

Academic Year: 2017/2018 Term 3 Physics - Grade 10 Revision sheet Chapter 13: section 1,2,3 / Chapter 14: section 1 pages: ( ),( )

Academic Year: 2017/2018 Term 3 Physics - Grade 10 Revision sheet Chapter 13: section 1,2,3 / Chapter 14: section 1 pages: (442-462),(482-487) Spherical curved mirrors : a mirror that has the shape of

CH. 23 Mirrors and Lenses HW# 6, 7, 9, 11, 13, 21, 25, 31, 33, 35

CH. 23 Mirrors and Lenses HW# 6, 7, 9, 11, 13, 21, 25, 31, 33, 35 Mirrors Rays of light reflect off of mirrors, and where the reflected rays either intersect or appear to originate from, will be the location

Name: Lab Partner: Section:

Chapter 10 Thin Lenses Name: Lab Partner: Section: 10.1 Purpose In this experiment, the formation of images by concave and convex lenses will be explored. The application of the thin lens equation and

E X P E R I M E N T 12

E X P E R I M E N T 12 Mirrors and Lenses Produced by the Physics Staff at Collin College Copyright Collin College Physics Department. All Rights Reserved. University Physics II, Exp 12: Mirrors and Lenses

NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT. Physics 211 E&M and Quantum Physics Spring Lab #8: Thin Lenses

NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT Physics 211 E&M and Quantum Physics Spring 2018 Lab #8: Thin Lenses Lab Writeup Due: Mon/Wed/Thu/Fri, April 2/4/5/6, 2018 Background In the previous lab

Physics II. Chapter 23. Spring 2018

Physics II Chapter 23 Spring 2018 IMPORTANT: Except for multiple-choice questions, you will receive no credit if you show only an answer, even if the answer is correct. Always show in the space on your

Converging Lenses. Parallel rays are brought to a focus by a converging lens (one that is thicker in the center than it is at the edge).

Chapter 30: Lenses Types of Lenses Piece of glass or transparent material that bends parallel rays of light so they cross and form an image Two types: Converging Diverging Converging Lenses Parallel rays

Geometric Optics Practice Problems. Ray Tracing - Draw at least two principle rays and show the image created by the lens or mirror.

Geometric Optics Practice Problems Ray Tracing - Draw at least two principle rays and show the image created by the lens or mirror. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Practice Problems - Mirrors Classwork

Geometric Optics. Ray Model. assume light travels in straight line uses rays to understand and predict reflection & refraction

Geometric Optics Ray Model assume light travels in straight line uses rays to understand and predict reflection & refraction General Physics 2 Geometric Optics 1 Reflection Law of reflection the angle

Notation for Mirrors and Lenses. Chapter 23. Types of Images for Mirrors and Lenses. More About Images

Notation for Mirrors and Lenses Chapter 23 Mirrors and Lenses Sections: 4, 6 Problems:, 8, 2, 25, 27, 32 The object distance is the distance from the object to the mirror or lens Denoted by p The image

Image Formation. Light from distant things. Geometrical optics. Pinhole camera. Chapter 36

Light from distant things Chapter 36 We learn about a distant thing from the light it generates or redirects. The lenses in our eyes create images of objects our brains can process. This chapter concerns

Algebra Based Physics. Reflection. Slide 1 / 66 Slide 2 / 66. Slide 3 / 66. Slide 4 / 66. Slide 5 / 66. Slide 6 / 66.

Slide 1 / 66 Slide 2 / 66 Algebra Based Physics Geometric Optics 2015-12-01 www.njctl.org Slide 3 / 66 Slide 4 / 66 Table of ontents lick on the topic to go to that section Reflection Refraction and Snell's

Gaussian Ray Tracing Technique

Gaussian Ray Tracing Technique Positive Lenses. A positive lens has two focal points one on each side of the lens; both are at the same focal distance f from the lens. Parallel rays of light coming from

Final Reg Optics Review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Final Reg Optics Review 1) How far are you from your image when you stand 0.75 m in front of a vertical plane mirror? 1) 2) A object is 12 cm in front of a concave mirror, and the image is 3.0 cm in front

Physics Worksheet. Topic -Light. Q1 If the radius of curvature of spherical mirror is 20 cm, what is its focal length.

Physics Worksheet Topic -Light Q1 If the radius of curvature of spherical mirror is 20 cm, what is its focal length. (Ans: 10 cm) Q2 Calculate the radius of curvature of spherical mirror whose focal length

Determination of Focal Length of A Converging Lens and Mirror

Physics 41 Determination of Focal Length of A Converging Lens and Mirror Objective: Apply the thin-lens equation and the mirror equation to determine the focal length of a converging (biconvex) lens and

Assignment X Light. Reflection and refraction of light. (a) Angle of incidence (b) Angle of reflection (c) principle axis

Assignment X Light Reflection of Light: Reflection and refraction of light. 1. What is light and define the duality of light? 2. Write five characteristics of light. 3. Explain the following terms (a)

Physics 222, October 25

Physics 222, October 25 Key Concepts: Image formation by refraction Thin lenses The eye Optical instruments A single flat interface Images can be formed by refraction, when light traverses a boundary between

2015 EdExcel A Level Physics EdExcel A Level Physics. Lenses

2015 EdExcel A Level Physics 2015 EdExcel A Level Physics Topic Topic 5 5 Lenses Types of lenses Converging lens bi-convex has two convex surfaces Diverging lens bi-concave has two concave surfaces Thin

Mirrors and Lenses. Images can be formed by reflection from mirrors. Images can be formed by refraction through lenses.

Mirrors and Lenses Images can be formed by reflection from mirrors. Images can be formed by refraction through lenses. Notation for Mirrors and Lenses The object distance is the distance from the object

Introduction. Strand F Unit 3: Optics. Learning Objectives. Introduction. At the end of this unit you should be able to;

Learning Objectives At the end of this unit you should be able to; Identify converging and diverging lenses from their curvature Construct ray diagrams for converging and diverging lenses in order to locate

Ch 24. Geometric Optics

text concept Ch 24. Geometric Optics Fig. 24 3 A point source of light P and its image P, in a plane mirror. Angle of incidence =angle of reflection. text. Fig. 24 4 The blue dashed line through object

Chapter 23. Light Geometric Optics

Chapter 23. Light Geometric Optics There are 3 basic ways to gather light and focus it to make an image. Pinhole - Simple geometry Mirror - Reflection Lens - Refraction Pinhole Camera Image Formation (the

Algebra Based Physics. Reflection. Slide 1 / 66 Slide 2 / 66. Slide 3 / 66. Slide 4 / 66. Slide 5 / 66. Slide 6 / 66.

Slide 1 / 66 Slide 2 / 66 lgebra ased Physics Geometric Optics 2015-12-01 www.njctl.org Slide 3 / 66 Slide 4 / 66 Table of ontents lick on the topic to go to that section Reflection Refraction and Snell's

BHARATIYA VIDYA BHAVAN S V M PUBLIC SCHOOL, VADODARA QUESTION BANK

BHARATIYA VIDYA BHAVAN S V M PUBLIC SCHOOL, VADODARA QUESTION BANK Ch Light : Reflection and Refraction One mark questions Q1 Q3 What happens when a ray of light falls normally on the surface of a plane

Gaussian Ray Tracing Technique

Gaussian Ray Tracing Technique Positive Lenses. A positive lens has two focal points one on each side of the lens; both are at the same focal distance f from the lens. Parallel rays of light coming from

Chapter 2 - Geometric Optics

David J. Starling Penn State Hazleton PHYS 214 The human eye is a visual system that collects light and forms an image on the retina. The human eye is a visual system that collects light and forms an image

Chapter 23. Mirrors and Lenses

Chapter 23 Mirrors and Lenses Mirrors and Lenses The development of mirrors and lenses aided the progress of science. It led to the microscopes and telescopes. Allowed the study of objects from microbes

Chapter 23. Mirrors and Lenses

Chapter 23 Mirrors and Lenses Notation for Mirrors and Lenses The object distance is the distance from the object to the mirror or lens Denoted by p The image distance is the distance from the image to

King Saud University College of Science Physics & Astronomy Dept.

King Saud University College of Science Physics & Astronomy Dept. PHYS 111 (GENERAL PHYSICS 2) CHAPTER 36: Image Formation LECTURE NO. 9 Presented by Nouf Saad Alkathran 36.1 Images Formed by Flat Mirrors

Lenses. A transparent object used to change the path of light Examples: Human eye Eye glasses Camera Microscope Telescope

SNC2D Lenses A transparent object used to change the path of light Examples: Human eye Eye glasses Camera Microscope Telescope Reading stones used by monks, nuns, and scholars ~1000 C.E. Lenses THERE ARE

Physics 197 Lab 7: Thin Lenses and Optics

Physics 197 Lab 7: Thin Lenses and Optics Equipment: Item Part # Qty per Team # of Teams Basic Optics Light Source PASCO OS-8517 1 12 12 Power Cord for Light Source 1 12 12 Ray Optics Set (Concave Lens)

mirrors and lenses PHY232 Remco Zegers Room W109 cyclotron building

mirrors and lenses PHY232 Remco Zegers zegers@nscl.msu.edu Room W109 cyclotron building http://www.nscl.msu.edu/~zegers/phy232.html quiz (extra credit) a ray of light moves from air to a material with

Spherical Mirrors. Concave Mirror, Notation. Spherical Aberration. Image Formed by a Concave Mirror. Image Formed by a Concave Mirror 4/11/2014

Notation for Mirrors and Lenses Chapter 23 Mirrors and Lenses The object distance is the distance from the object to the mirror or lens Denoted by p The image distance is the distance from the image to

CHAPTER 18 REFRACTION & LENSES

Physics Approximate Timeline Students are expected to keep up with class work when absent. CHAPTER 18 REFRACTION & LENSES Day Plans for the day Assignments for the day 1 18.1 Refraction of Light o Snell

Physics 132: Lecture Fundamentals of Physics

Physics 132: Lecture Fundamentals of Physics II Agenda for Today Mirrors Concave Convex e Mirror equation Physics 201: Lecture 1, Pg 1 Curved mirrors A Spherical Mirror: section of a sphere. R light ray

Condition Mirror Refractive Lens Concave Focal Length Positive Focal Length Negative. Image distance positive

Comparison between mirror lenses and refractive lenses Condition Mirror Refractive Lens Concave Focal Length Positive Focal Length Negative Convex Focal Length Negative Focal Length Positive Image location

Chapter 23. Mirrors and Lenses

Chapter 23 Mirrors and Lenses Notation for Mirrors and Lenses The object distance is the distance from the object to the mirror or lens Denoted by p The image distance is the distance from the image to

Chapter 18 Optical Elements

Chapter 18 Optical Elements GOALS When you have mastered the content of this chapter, you will be able to achieve the following goals: Definitions Define each of the following terms and use it in an operational

Activity 6.1 Image Formation from Spherical Mirrors

PHY385H1F Introductory Optics Practicals Day 6 Telescopes and Microscopes October 31, 2011 Group Number (number on Intro Optics Kit):. Facilitator Name:. Record-Keeper Name: Time-keeper:. Computer/Wiki-master:..

Refraction is the when a ray changes mediums. Examples of mediums:

Refraction and Lenses Refraction is the when a ray changes mediums. Examples of mediums: Lenses are optical devices which take advantage of the refraction of light to 1. produces images real and 2. change

General Physics II. Ray Optics

General Physics II Ray Optics 1 Dispersion White light is a combination of all the wavelengths of the visible part of the electromagnetic spectrum. Red light has the longest wavelengths and violet light

Chapter 36. Image Formation

Chapter 36 Image Formation Real and Virtual Images Real images can be displayed on screens Virtual Images can not be displayed onto screens. Focal Length& Radius of Curvature When the object is very far

AP Physics Problems -- Waves and Light

AP Physics Problems -- Waves and Light 1. 1974-3 (Geometric Optics) An object 1.0 cm high is placed 4 cm away from a converging lens having a focal length of 3 cm. a. Sketch a principal ray diagram for

Experiment 3: Reflection

Model No. OS-8515C Experiment 3: Reflection Experiment 3: Reflection Required Equipment from Basic Optics System Light Source Mirror from Ray Optics Kit Other Required Equipment Drawing compass Protractor

Phys214 Fall 2004 Midterm Form A

1. A clear sheet of polaroid is placed on top of a similar sheet so that their polarizing axes make an angle of 30 with each other. The ratio of the intensity of emerging light to incident unpolarized

Geometric Optics. Objective: To study the basics of geometric optics and to observe the function of some simple and compound optical devices.

Geometric Optics Objective: To study the basics of geometric optics and to observe the function of some simple and compound optical devices. Apparatus: Pasco optical bench, mounted lenses (f= +100mm, +200mm,

GEOMETRICAL OPTICS Practical 1. Part I. BASIC ELEMENTS AND METHODS FOR CHARACTERIZATION OF OPTICAL SYSTEMS

GEOMETRICAL OPTICS Practical 1. Part I. BASIC ELEMENTS AND METHODS FOR CHARACTERIZATION OF OPTICAL SYSTEMS Equipment and accessories: an optical bench with a scale, an incandescent lamp, matte, a set of

Class-X Assignment (Chapter-10) Light-Reflection & Refraction

Class-X Assignment (Chapter-10) Light-Reflection & Refraction Q 1. How does light enable us to see an object? Q 2. What is a concave mirror? Q 3. What is the relationship between focal length and radius

2. The radius of curvature of a spherical mirror is 20 cm. What is its focal length?

1. Define the principle focus of a concave mirror? The principle focus of a concave mirror is a point on its principle axis to which all the light rays which are parallel and close to the axis, converge

Complete the diagram to show what happens to the rays. ... (1) What word can be used to describe this type of lens? ... (1)

Q1. (a) The diagram shows two parallel rays of light, a lens and its axis. Complete the diagram to show what happens to the rays. (2) Name the point where the rays come together. (iii) What word can be

LO - Lab #05 - How are images formed from light?

LO - Lab #05 - Helpful Definitions: The normal direction to a surface is defined as the direction that is perpendicular to a surface. For example, place this page flat on the table and then stand your

28 Thin Lenses: Ray Tracing

28 Thin Lenses: Ray Tracing A lens is a piece of transparent material whose surfaces have been shaped so that, when the lens is in another transparent material (call it medium 0), light traveling in medium

Section 3 Curved Mirrors. Calculate distances and focal lengths using the mirror equation for concave and convex spherical mirrors.

Objectives Calculate distances and focal lengths using the mirror equation for concave and convex spherical mirrors. Draw ray diagrams to find the image distance and magnification for concave and convex

INDIAN SCHOOL MUSCAT SENIOR SECTION DEPARTMENT OF PHYSICS CLASS X REFLECTION AND REFRACTION OF LIGHT QUESTION BANK

INDIAN SCHOOL MUSCAT SENIOR SECTION DEPARTMENT OF PHYSICS CLASS X REFLECTION AND REFRACTION OF LIGHT QUESTION BANK 1. Q. A small candle 2.5cm in size is placed at 27 cm in front of concave mirror of radius

Chapter 34 Images Copyright 34-1 Images and Plane Mirrors Learning Objectives 34.01 Distinguish virtual images from real images. 34.02 Explain the common roadway mirage. 34.03 Sketch a ray diagram for

Chapter 34 Geometric Optics

Chapter 34 Geometric Optics Lecture by Dr. Hebin Li Goals of Chapter 34 To see how plane and curved mirrors form images To learn how lenses form images To understand how a simple image system works Reflection

Geometric Optics. PSI AP Physics 2. Multiple-Choice

Geometric Optics PSI AP Physics 2 Name Multiple-Choice 1. When an object is placed in front of a plane mirror the image is: (A) Upright, magnified and real (B) Upright, the same size and virtual (C) Inverted,

Mirrors, Lenses &Imaging Systems

Mirrors, Lenses &Imaging Systems We describe the path of light as straight-line rays And light rays from a very distant point arrive parallel 145 Phys 24.1 Mirrors Standing away from a plane mirror shows

Section A Conceptual and application type questions. 1 Which is more observable diffraction of light or sound? Justify. (1)

INDIAN SCHOOL MUSCAT Department of Physics Class : XII Physics Worksheet - 6 (2017-2018) Chapter 9 and 10 : Ray Optics and wave Optics Section A Conceptual and application type questions 1 Which is more

Part 1 Investigating Snell s Law

Geometric Optics with Lenses PURPOSE: To observe the refraction of light off through lenses; to investigate the relationship between objects and images; to study the relationship between object distance,

Waves & Oscillations

Physics 42200 Waves & Oscillations Lecture 27 Geometric Optics Spring 205 Semester Matthew Jones Sign Conventions > + = Convex surface: is positive for objects on the incident-light side is positive for

Chapter Ray and Wave Optics

109 Chapter Ray and Wave Optics 1. An astronomical telescope has a large aperture to [2002] reduce spherical aberration have high resolution increase span of observation have low dispersion. 2. If two

OPTICS DIVISION B. School/#: Names:

OPTICS DIVISION B School/#: Names: Directions: Fill in your response for each question in the space provided. All questions are worth two points. Multiple Choice (2 points each question) 1. Which of the

Name. Light Chapter Summary Cont d. Refraction

Page 1 of 17 Physics Week 12(Sem. 2) Name Light Chapter Summary Cont d with a smaller index of refraction to a material with a larger index of refraction, the light refracts towards the normal line. Also,

Astronomy 80 B: Light. Lecture 9: curved mirrors, lenses, aberrations 29 April 2003 Jerry Nelson

Astronomy 80 B: Light Lecture 9: curved mirrors, lenses, aberrations 29 April 2003 Jerry Nelson Sensitive Countries LLNL field trip 2003 April 29 80B-Light 2 Topics for Today Optical illusion Reflections

Optics: Lenses & Mirrors

Warm-Up 1. A light ray is passing through water (n=1.33) towards the boundary with a transparent solid at an angle of 56.4. The light refracts into the solid at an angle of refraction of 42.1. Determine

General Physics Experiment 5 Optical Instruments: Simple Magnifier, Microscope, and Newtonian Telescope

General Physics Experiment 5 Optical Instruments: Simple Magnifier, Microscope, and Newtonian Telescope Objective: < To observe the magnifying properties of the simple magnifier, the microscope and the

Chapter 23. Geometrical Optics: Mirrors and Lenses and other Instruments

Chapter 23 Geometrical Optics: Mirrors and Lenses and other Instruments HITT 1 You stand two feet away from a plane mirror. How far is it from you to your image? a. 2.0 ft b. 3.0 ft c. 4.0 ft d. 5.0 ft

Lab 11: Lenses and Ray Tracing

Name: Lab 11: Lenses and Ray Tracing Group Members: Date: TA s Name: Materials: Ray box, two different converging lenses, one diverging lens, screen, lighted object, three stands, meter stick, two letter

Chapter 3 Mirrors. The most common and familiar optical device

Chapter 3 Mirrors The most common and familiar optical device Outline Plane mirrors Spherical mirrors Graphical image construction Two mirrors; The Cassegrain Telescope Plane mirrors Common household mirrors:

P202/219 Laboratory IUPUI Physics Department THIN LENSES

THIN LENSES OBJECTIVE To verify the thin lens equation, m = h i /h o = d i /d o. d o d i f, and the magnification equations THEORY In the above equations, d o is the distance between the object and the

REFLECTION THROUGH LENS

REFLECTION THROUGH LENS A lens is a piece of transparent optical material with one or two curved surfaces to refract light rays. It may converge or diverge light rays to form an image. Lenses are mostly

LECTURE 17 MIRRORS AND THIN LENS EQUATION

LECTURE 17 MIRRORS AND THIN LENS EQUATION 18.6 Image formation with spherical mirrors Concave mirrors Convex mirrors 18.7 The thin-lens equation Sign conventions for lenses and mirrors Spherical mirrors

10.2 Images Formed by Lenses SUMMARY. Refraction in Lenses. Section 10.1 Questions

10.2 SUMMARY Refraction in Lenses Converging lenses bring parallel rays together after they are refracted. Diverging lenses cause parallel rays to move apart after they are refracted. Rays are refracted

Preview. Light and Reflection Section 1. Section 1 Characteristics of Light. Section 2 Flat Mirrors. Section 3 Curved Mirrors

Light and Reflection Section 1 Preview Section 1 Characteristics of Light Section 2 Flat Mirrors Section 3 Curved Mirrors Section 4 Color and Polarization Light and Reflection Section 1 TEKS The student

QUESTION BANK SCIENCE STD-X PHYSICS REFLECTION & REFRACTION OF LIGHT (REVISION QUESTIONS) VERY SHORT ANSWER TYPE (1 MARK) 1. Out of red and blue lights, for which is the refractive index of glass greater?

Laboratory 7: Properties of Lenses and Mirrors

Laboratory 7: Properties of Lenses and Mirrors Converging and Diverging Lens Focal Lengths: A converging lens is thicker at the center than at the periphery and light from an object at infinity passes

Lenses. Optional Reading Stargazer: the life and times of the TELESCOPE, Fred Watson (Da Capo 2004).

Lenses Equipment optical bench, incandescent light source, laser, No 13 Wratten filter, 3 lens holders, cross arrow, diffuser, white screen, case of lenses etc., vernier calipers, 30 cm ruler, meter stick

LIGHT REFLECTION AND REFRACTION

LIGHT REFLECTION AND REFRACTION 1. List four properties of the image formed by a plane mirror. Properties of image formed by a plane mirror: 1. It is always virtual and erect. 2. Its size is equal to that

ii) When light falls on objects, it reflects the light and when the reflected light reaches our eyes then we see the objects.

Light i) Light is a form of energy which helps us to see objects. ii) When light falls on objects, it reflects the light and when the reflected light reaches our eyes then we see the objects. iii) Light

Focal Length of Lenses

Focal Length of Lenses OBJECTIVES Investigate the properties of converging and diverging lenses. Determine the focal length of converging lenses both by a real image of a distant object and by finite object

LAB 12 Reflection and Refraction

Cabrillo College Physics 10L Name LAB 12 Reflection and Refraction Read Hewitt Chapters 28 and 29 What to learn and explore Please read this! When light rays reflect off a mirror surface or refract through

Chapter 29/30. Wave Fronts and Rays. Refraction of Sound. Dispersion in a Prism. Index of Refraction. Refraction and Lenses

Chapter 29/30 Refraction and Lenses Refraction Refraction the bending of waves as they pass from one medium into another. Caused by a change in the average speed of light. Analogy A car that drives off

Rutgers Analytical Physics 750:228, Spring 2013 ( RUPHYS228S13 ) My Courses Course Settings University Physics with Modern Physics, 13e Young/Freedman

Signed in as RONALD GILMAN, Instructor Help Sign Out Rutgers Analytical Physics 750:228, Spring 2013 ( RUPHYS228S13 ) My Courses Course Settings University Physics with Modern Physics, 13e Young/Freedman

Video. Part I. Equipment

1 of 7 11/8/2013 11:32 AM There are two parts to this lab that can be done in either order. In Part I you will study the Laws of Reflection and Refraction, measure the index of refraction of glass and

19. Ray Optics. S. G. Rajeev. April 2, 2009

9. Ray Optics S. G. Rajeev April 2, 2009 When the wave length is small light travels along straightlines called rays. Ray optics (also called geometrical optics) is the study of this light in this situation.

PRINCIPLE PROCEDURE ACTIVITY. AIM To observe diffraction of light due to a thin slit.

ACTIVITY 12 AIM To observe diffraction of light due to a thin slit. APPARATUS AND MATERIAL REQUIRED Two razor blades, one adhesive tape/cello-tape, source of light (electric bulb/ laser pencil), a piece

Physics 132: Lecture Fundamentals of Physics II

Physics 132: Lecture Fundamentals of Physics II Mirrors Agenda for Today Concave Convex Mirror equation Curved mirrors A Spherical Mirror: section of a sphere. R light ray C Concave mirror principal axis

WAVES: REFLECTION QUESTIONS

WAVES: REFLECTION QUESTIONS Concave and convex mirrors (2017;1) Sarah placed a candle in front of a concave mirror. Draw two rays from the candle (object) to locate the position of the image. Draw and

The Law of Reflection

PHY132H1F Introduction to Physics II Class 5 Outline: Reflection and Refraction Fibre-Optics Colour and Dispersion Thin Lens Equation Image Formation Quick reading quiz.. virtual image is. the cause of

Practice Problems (Geometrical Optics)

1 Practice Problems (Geometrical Optics) 1. A convex glass lens (refractive index = 3/2) has a focal length of 8 cm when placed in air. What is the focal length of the lens when it is immersed in water

PHYSICS FOR THE IB DIPLOMA CAMBRIDGE UNIVERSITY PRESS

Option C Imaging C Introduction to imaging Learning objectives In this section we discuss the formation of images by lenses and mirrors. We will learn how to construct images graphically as well as algebraically.

LENSES. A lens is any glass, plastic or transparent refractive medium with two opposite faces, and at least one of the faces must be curved.

1 LENSES A lens is any glass, plastic or transparent refractive medium with two opposite faces, and at least one of the faces must be curved. Types of Lenses There are two types of basic lenses: Converging/

Refraction by Spherical Lenses by

Page1 Refraction by Spherical Lenses by www.examfear.com To begin with this topic, let s first know, what is a lens? A lens is a transparent material bound by two surfaces, of which one or both the surfaces

Light: Lenses and. Mirrors. Test Date: Name 1ÿ-ÿ. Physics. Light: Lenses and Mirrors

Name 1ÿ-ÿ Physics Light: Lenses and Mirrors i Test Date: "Shadows cannot see themselves in the mirror of the sun." -Evita Peron What are lenses? Lenses are made from transparent glass or plastice and refract

Exam 4--PHYS 102--S15

Name: Class: Date: Exam 4--PHYS 102--S15 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A mirror produces an upright image. The object is 2 cm high; the