# Lab 10: Lenses & Telescopes

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Physics 2020, Fall 2010 Lab 8 page 1 of 6 Circle your lab day and time. Your name: Mon Tue Wed Thu Fri TA name: INTRODUCTION Lab 10: Lenses & Telescopes In this experiment, you will study converging lenses and the lens equation. You will make several measurements of the focal lengths of lenses and you will construct a simple astronomical telescope. There are a number of different types of converging lenses, but all of them are thicker in the middle than at the edges. A common converging lens shape, the double-convex lens (so called because both sides are curved outward), is shown to the right. When a bundle of parallel light rays enters a converging lens, the rays are focused at a point in space at a distance f, the focal length, from the lens. The rays from a small source that is far away from the lens are approximately parallel and will satisfy this condition. PART I: IMAGE FORMATION A. In the figure below, draw rays of light coming from the tip of the arrow-shaped object and going out in many directions. Next, draw rays of light coming from the middle of the object going out in many directions. If you were to expose a piece of photographic film to this mess of rays at some distance away, what would it look like? Would it form an image?

2 Physics 2020, Fall 2010 Lab 8 page 2 of 6 B. Now we put a lens in place. The points labeled F are the focal points (the distance from the center of the lens along the optical axis to either of the points F). Three different rays coming from the tip of the object to the lens are shown. Draw carefully how these rays continue after they go through the lens (Hint: The figure of the converging lens in the Introduction may help). Do the rays meet at one point on the other side of the lens? Draw another three rays coming from the middle of the object (one parallel to the optical axis, one through the center of the lens and one through the focal point on the same side of the lens as the object). Do these rays meet at one point? Check your drawing with your TA. C. All light rays that originate from a specific point on the object and then go through the lens are redirected to arrive at a single point. All these points together form the image of the object on the other side of the lens. Draw the image in the figure above. If you were to expose a piece of film to the rays that arrive at the image location, what would it look like?

3 Physics 2020, Fall 2010 Lab 8 page 3 of 6 PART II: MEASURING FOCAL LENGTH BY IMAGE FORMATION The focal length f of a lens, the object distance from the lens d o and the image location d i are related by the lens equation: The object distance d o and the focal length f are given in the figure from B on the previous page. Label the image distance in the same figure. How can you use the lens equation to determine the focal length (f) of a lens if you can measure d o and d i? In the lab, you will use an optics bench, which is simply a rail on which lenses are placed, with a ruler on the side, for measuring distances. The other equipment includes a small bright light, which acts almost like a point source, and three converging lenses labeled A, B, and C. There is a frosted glass screen, labeled I on which you can view images. Finally, there is a metal plate with an aperture (a hole) in the shape of an arrow. The hole is covered with a frosted, translucent material (scotch tape). When this aperture is placed in front of the light source, it forms a convenient object for image-forming experiments. Place the light source at the end of the optics bench and attach it with the thumbscrew in the slot. Place the arrow aperture on the front of the light source; there is a magnet to hold it in place. It will save a little trouble in your calculations if you position the source so that the object (the frosted arrow) is exactly beside an integer mark (e.g. 2.0 cm) on the scale of the bench. Gently tighten the thumbscrew to secure the source, and record the position of the object. Turn on the light source. Place the frosted screen, I, at the far end of the bench. Again, it will save some trouble if you locate it a convenient integer mark, like 90.0 cm or 92.0 cm. Record its position, as indicated by the ring inscribed on the housing. Now put lens B on the bench close to the object (the arrow) and move it slowly away from the source until you see a clear image on the screen. The image is most easily seen looking through the screen towards the light source, but it can also be seen from the other side. Adjust the position of the lens to give the sharpest image and record the position of the lens (as indicated by the ring on the housing). Draw a sketch of the setup, labeling the appropriate parts. Measure d 0 and d i and record them below.

4 Physics 2020, Fall 2010 Lab 8 page 4 of 6 From the lens equation, calculate the focal length f. If the image is not centered on the screen, adjust the position of the object plate on the front of the light source until the image is centered. Measure h 0 and h i, the heights of the object and image, and record them below. Compute the magnification and the value. Are they the same? If not, why not? What do you expect will happen to the image if you block half of the lens? Look at your diagram at page 2 and imaging blocking half of the rays that are going through the lens. Would you still form an image? Would there be any differences? Block half of the lens with a piece of paper. What happens to the image? PART III: MEASURING FOCAL LENGTH WITH A COLLIMATED BEAM A. If d i was set to in the lens equation and we could measure d 0, how could we determine the focal length f? What would the rays of light look like near the lens if the rays converged to an image at infinity? Make a diagram, indicating the lens, the rays which emerge from a point at a distance d 0 on the left side and then form an image at infinity on the other. Indicate focal length f on the figure.

5 Physics 2020, Fall 2010 Lab 8 page 5 of 6 The beam on the other side of the lens is called a collimated beam. Remove the frosted arrow plate from the light source. The source itself is very small and can be considered to be a point source. Readjust its position so that the source is at a convenient integer mark on your bench. Now place lens A close to the source and slide it away until it produces a parallel, collimated beam. A good way to check that it is parallel is this: point the beam at a nearby wall, where it will produce a disc of light. Why does a collimated beam produce a disc of light? Adjust the position of lens A until the diameter of the disc is exactly that of the lens opening. Now measure the distance from the point source to the lens; this is the focal length f A. Compare your measurement of f A with your previous value. Do you think this method is more or less accurate than the previous method? (Ask your TA for the focal length of lens A.) B. If a point source and a lens have been set up to produce a collimated beam (i.e. parallel rays), then the focal length of another lens can be easily measured. The second lens (lens B) is placed in the collimated beam, and the place where the rays are brought to focus is measured. The distance from lens B to the focal point is f B, the focal length of lens B. How is the lens equation used in this situation to determine f B? Now you will use this method to measure the focal lengths of lenses B and C. Without moving lens A, place lens B just beyond A, at a convenient integer mark, and put the frosted screen beyond B. Now move the screen until you get a sharp image of the point source on the screen. The distance from lens B to the screen is f B. How would you compare the accuracy of this result with the accuracy of the results obtained using the other methods? Repeat the previous step with lens C in place of lens B. Record the focal length of lens C below.

6 Physics 2020, Fall 2010 Lab 8 page 6 of 6 PART IV: THE ASTRONOMICAL TELESCOPE In the last part of this lab, you will construct a simple astronomical telescope. The astronomical telescope consists of two lenses: an objective lens with a long focal length f 0, and an eyepiece lens with a short focal length f e. The objective lens forms an image of a distant object (an object at infinity ). By the lens equation, if the object distance is d 0 =, what is the image distance? This image, which appears a distance f 0 behind the objective lens, is called an intermediate image, because it is intermediate between the objective and eyepiece lens. The observer views this image through the eyepiece lens, which acts as a magnifying glass. In this diagram, the rays entering the objective lens represent rays from the topmost point of the distant object. The rays exiting the eyepiece lens are parallel rays, which are about to enter the observer's eye. Show on the diagram how these rays enter the eye and proceed to the retina. What does the observer see as a result of just these rays? When you look through a telescope will you see things right side up or inverted? How does the diagram above help you answer this question? The magnification of the telescope is given by the formula M = f 0 / f e. (This is derived in the lecture notes.) Choose the lens with the longest focal length. This will be the objective lens with focal length f 0. Also choose the lens with the shortest focal length. This will be the eyepiece with focal length f e. Place the eyepiece at one end of the optics rail and place the objective lens a distance l = f 0 + f e from the eyepiece. Aim the telescope towards the far end of the room, where there is an arrow and a graduated scale mounted on the wall, and adjust the telescope position until you can see the arrow through the telescope. It may be difficult to find the image since your telescope has a narrow field of view. Also, you may need to adjust the position of the eyepiece lens to get a sharp image. Is the final image you are looking at upright or inverted? Based on the telescope/lens configuration, calculate the theoretical value of the magnification M.

### O5: Lenses and the refractor telescope

O5. 1 O5: Lenses and the refractor telescope Introduction In this experiment, you will study converging lenses and the lens equation. You will make several measurements of the focal length of lenses and

### OPTICS I LENSES AND IMAGES

APAS Laboratory Optics I OPTICS I LENSES AND IMAGES If at first you don t succeed try, try again. Then give up- there s no sense in being foolish about it. -W.C. Fields SYNOPSIS: In Optics I you will learn

### Activity 6.1 Image Formation from Spherical Mirrors

PHY385H1F Introductory Optics Practicals Day 6 Telescopes and Microscopes October 31, 2011 Group Number (number on Intro Optics Kit):. Facilitator Name:. Record-Keeper Name: Time-keeper:. Computer/Wiki-master:..

### PHYS 160 Astronomy. When analyzing light s behavior in a mirror or lens, it is helpful to use a technique called ray tracing.

Optics Introduction In this lab, we will be exploring several properties of light including diffraction, reflection, geometric optics, and interference. There are two sections to this lab and they may

### 10.2 Images Formed by Lenses SUMMARY. Refraction in Lenses. Section 10.1 Questions

10.2 SUMMARY Refraction in Lenses Converging lenses bring parallel rays together after they are refracted. Diverging lenses cause parallel rays to move apart after they are refracted. Rays are refracted

### Instructions. To run the slideshow:

Instructions To run the slideshow: Click: view full screen mode, or press Ctrl +L. Left click advances one slide, right click returns to previous slide. To exit the slideshow press the Esc key. Optical

### 13. Optical Instruments*

13. Optical Instruments* Objective: Here what you have been learning about thin lenses is applied to make a telescope. In the process you encounter general optical instrument design concepts. The learning

### Lab 12. Optical Instruments

Lab 12. Optical Instruments Goals To construct a simple telescope with two positive lenses having known focal lengths, and to determine the angular magnification (analogous to the magnifying power of a

### OPTICS LENSES AND TELESCOPES

ASTR 1030 Astronomy Lab 97 Optics - Lenses & Telescopes OPTICS LENSES AND TELESCOPES SYNOPSIS: In this lab you will explore the fundamental properties of a lens and investigate refracting and reflecting

### Chapter 8. The Telescope. 8.1 Purpose. 8.2 Introduction A Brief History of the Early Telescope

Chapter 8 The Telescope 8.1 Purpose In this lab, you will measure the focal lengths of two lenses and use them to construct a simple telescope which inverts the image like the one developed by Johannes

### LAB 12 Reflection and Refraction

Cabrillo College Physics 10L Name LAB 12 Reflection and Refraction Read Hewitt Chapters 28 and 29 What to learn and explore Please read this! When light rays reflect off a mirror surface or refract through

### General Physics Experiment 5 Optical Instruments: Simple Magnifier, Microscope, and Newtonian Telescope

General Physics Experiment 5 Optical Instruments: Simple Magnifier, Microscope, and Newtonian Telescope Objective: < To observe the magnifying properties of the simple magnifier, the microscope and the

### Lenses. Optional Reading Stargazer: the life and times of the TELESCOPE, Fred Watson (Da Capo 2004).

Lenses Equipment optical bench, incandescent light source, laser, No 13 Wratten filter, 3 lens holders, cross arrow, diffuser, white screen, case of lenses etc., vernier calipers, 30 cm ruler, meter stick

### CHAPTER 3LENSES. 1.1 Basics. Convex Lens. Concave Lens. 1 Introduction to convex and concave lenses. Shape: Shape: Symbol: Symbol:

CHAPTER 3LENSES 1 Introduction to convex and concave lenses 1.1 Basics Convex Lens Shape: Concave Lens Shape: Symbol: Symbol: Effect to parallel rays: Effect to parallel rays: Explanation: Explanation:

### INSIDE LAB 6: The Properties of Lenses and Telescopes

INSIDE LAB 6: The Properties of Lenses and Telescopes OBJECTIVE: To construct a simple refracting telescope and to measure some of its properties. DISCUSSION: In tonight s lab we will build a simple telescope

### Thin Lenses. Physics 227 Lab. Introduction:

Introduction: From last week's lab, Reflection and Refraction, you should already be familiar with the following terms: principle axis, focal point, focal length,f, converging lens (f is +), and diverging

### Name: Lab Partner: Section:

Chapter 10 Thin Lenses Name: Lab Partner: Section: 10.1 Purpose In this experiment, the formation of images by concave and convex lenses will be explored. The application of the thin lens equation and

### Notes from Lens Lecture with Graham Reed

Notes from Lens Lecture with Graham Reed Light is refracted when in travels between different substances, air to glass for example. Light of different wave lengths are refracted by different amounts. Wave

### Lecture 17. Image formation Ray tracing Calculation. Lenses Convex Concave. Mirrors Convex Concave. Optical instruments

Lecture 17. Image formation Ray tracing Calculation Lenses Convex Concave Mirrors Convex Concave Optical instruments Image formation Laws of refraction and reflection can be used to explain how lenses

### Determination of Focal Length of A Converging Lens and Mirror

Physics 41 Determination of Focal Length of A Converging Lens and Mirror Objective: Apply the thin-lens equation and the mirror equation to determine the focal length of a converging (biconvex) lens and

### PHYS 1020 LAB 7: LENSES AND OPTICS. Pre-Lab

PHYS 1020 LAB 7: LENSES AND OPTICS Note: Print and complete the separate pre-lab assignment BEFORE the lab. Hand it in at the start of the lab. Pre-Lab Start by reading the entire prelab and lab write-up.

### Chapter 29/30. Wave Fronts and Rays. Refraction of Sound. Dispersion in a Prism. Index of Refraction. Refraction and Lenses

Chapter 29/30 Refraction and Lenses Refraction Refraction the bending of waves as they pass from one medium into another. Caused by a change in the average speed of light. Analogy A car that drives off

### Snell s Law, Lenses, and Optical Instruments

Physics 4 Laboratory Snell s Law, Lenses, and Optical Instruments Prelab Exercise Please read the Procedure section and try to understand the physics involved and how the experimental procedure works.

### Chapter 2 - Geometric Optics

David J. Starling Penn State Hazleton PHYS 214 The human eye is a visual system that collects light and forms an image on the retina. The human eye is a visual system that collects light and forms an image

### Lecture Outline Chapter 27. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 27 Physics, 4 th Edition James S. Walker Chapter 27 Optical Instruments Units of Chapter 27 The Human Eye and the Camera Lenses in Combination and Corrective Optics The Magnifying

### Basic Optics System OS-8515C

40 50 30 60 20 70 10 80 0 90 80 10 20 70 T 30 60 40 50 50 40 60 30 70 20 80 90 90 80 BASIC OPTICS RAY TABLE 10 0 10 70 20 60 50 40 30 Instruction Manual with Experiment Guide and Teachers Notes 012-09900B

### There is a range of distances over which objects will be in focus; this is called the depth of field of the lens. Objects closer or farther are

Chapter 25 Optical Instruments Some Topics in Chapter 25 Cameras The Human Eye; Corrective Lenses Magnifying Glass Telescopes Compound Microscope Aberrations of Lenses and Mirrors Limits of Resolution

### AP Physics Problems -- Waves and Light

AP Physics Problems -- Waves and Light 1. 1974-3 (Geometric Optics) An object 1.0 cm high is placed 4 cm away from a converging lens having a focal length of 3 cm. a. Sketch a principal ray diagram for

### Geometric Optics. This equation is known as the mirror equation or the thin lens equation, depending on the setup.

Geometric Optics Purpose (Write the purposes at the beginning of each problem.) Problem 1: find the focal length of a concave mirror to verify the mirror equation; Problem 2: find the focal length of a

### THE TELESCOPE. PART 1: The Eye and Visual Acuity

THE TELESCOPE OBJECTIVE: As seen with the naked eye the heavens are a wonderfully fascinating place. With a little careful watching the brighter stars can be grouped into constellations and an order seen

### Image Formation by Lenses

Image Formation by Lenses Bởi: OpenStaxCollege Lenses are found in a huge array of optical instruments, ranging from a simple magnifying glass to the eye to a camera s zoom lens. In this section, we will

### VISUAL PHYSICS ONLINE DEPTH STUDY: ELECTRON MICROSCOPES

VISUAL PHYSICS ONLINE DEPTH STUDY: ELECTRON MICROSCOPES Shortly after the experimental confirmation of the wave properties of the electron, it was suggested that the electron could be used to examine objects

### CHAPTER 18 REFRACTION & LENSES

Physics Approximate Timeline Students are expected to keep up with class work when absent. CHAPTER 18 REFRACTION & LENSES Day Plans for the day Assignments for the day 1 18.1 Refraction of Light o Snell

### Refraction, Lenses, and Prisms

CHAPTER 16 14 SECTION Sound and Light Refraction, Lenses, and Prisms KEY IDEAS As you read this section, keep these questions in mind: What happens to light when it passes from one medium to another? How

### The Optics of Mirrors

Use with Text Pages 558 563 The Optics of Mirrors Use the terms in the list below to fill in the blanks in the paragraphs about mirrors. reversed smooth eyes concave focal smaller reflect behind ray convex

### Geometric!Op9cs! Reflec9on! Refrac9on!`!Snell s!law! Mirrors!and!Lenses! Other!topics! Thin!Lens!Equa9on! Magnifica9on! Lensmaker s!formula!

Geometric!Op9cs! Reflec9on! Refrac9on!`!Snell s!law! Mirrors!and!Lenses! Thin!Lens!Equa9on! Magnifica9on! Lensmaker s!formula! Other!topics! Telescopes! Apertures! Reflec9on! Angle!of!incidence!equals!angle!of!reflec9on!

### Chapter 34 Geometric Optics

Chapter 34 Geometric Optics Lecture by Dr. Hebin Li Goals of Chapter 34 To see how plane and curved mirrors form images To learn how lenses form images To understand how a simple image system works Reflection

### !"#\$%&\$'()(*'+,&-./,'(0' focal point! parallel rays! converging lens" image of an object in a converging lens" converging lens: 3 easy rays" !

!"#\$%&\$'()(*'+,&-./,'(0' converging lens"! +,7\$,\$'! 8,9/4&:27'473'+,7\$,\$'! 84#';%4?.4:27' 1234#5\$'126%&\$'''! @4=,/4\$'! 1",'A.=47'>#,*'+,7\$,\$'473'B4

### TOPICS Recap of PHYS110-1 lecture Physical Optics - 4 lectures EM spectrum and colour Light sources Interference and diffraction Polarization

TOPICS Recap of PHYS110-1 lecture Physical Optics - 4 lectures EM spectrum and colour Light sources Interference and diffraction Polarization Lens Aberrations - 3 lectures Spherical aberrations Coma, astigmatism,

### Lenses- Worksheet. (Use a ray box to answer questions 3 to 7)

Lenses- Worksheet 1. Look at the lenses in front of you and try to distinguish the different types of lenses? Describe each type and record its characteristics. 2. Using the lenses in front of you, look

### Part 1 Investigating Snell s Law

Geometric Optics with Lenses PURPOSE: To observe the refraction of light off through lenses; to investigate the relationship between objects and images; to study the relationship between object distance,

### Topic 4: Lenses and Vision. Lens a curved transparent material through which light passes (transmit) Ex) glass, plastic

Topic 4: Lenses and Vision Lens a curved transparent material through which light passes (transmit) Ex) glass, plastic Double Concave Lenses Are thinner and flatter in the middle than around the edges.

### Chapter 34 Geometric Optics (also known as Ray Optics) by C.-R. Hu

Chapter 34 Geometric Optics (also known as Ray Optics) by C.-R. Hu 1. Principles of image formation by mirrors (1a) When all length scales of objects, gaps, and holes are much larger than the wavelength

### Physics 1230 Homework 8 Due Friday June 24, 2016

At this point, you know lots about mirrors and lenses and can predict how they interact with light from objects to form images for observers. In the next part of the course, we consider applications of

### Dr. Todd Satogata (ODU/Jefferson Lab) Monday, April

University Physics 227N/232N Mirrors and Lenses Homework Optics 2 due Friday AM Quiz Friday Optional review session next Monday (Apr 28) Bring Homework Notebooks to Final for Grading Dr. Todd Satogata

### WAVES: LENSES QUESTIONS

WAVES: LENSES QUESTIONS LIGHT (2016;1) Tim was looking into a convex mirror ball in his garden. Standing behind a small plant, he noticed that when he looked at the reflection of the plant in the convex

### CHAPTER 3 OPTICAL INSTRUMENTS

1 CHAPTER 3 OPTICAL INSTRUMENTS 3.1 Introduction The title of this chapter is to some extent false advertising, because the instruments described are the instruments of first-year optics courses, not optical

### Instructional Resources/Materials: Light vocabulary cards printed (class set) Enough for each student (See card sort below)

Grade Level/Course: Grade 7 Life Science Lesson/Unit Plan Name: Light Card Sort Rationale/Lesson Abstract: Light vocabulary building, students identify and share vocabulary meaning. Timeframe: 10 to 20

### Geometric Optics Practice Problems. Ray Tracing - Draw at least two principle rays and show the image created by the lens or mirror.

Geometric Optics Practice Problems Ray Tracing - Draw at least two principle rays and show the image created by the lens or mirror. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Practice Problems - Mirrors Classwork

### Physics 228 Lecture 3. Today: Spherical Mirrors Lenses.

Physics 228 Lecture 3 Today: Spherical Mirrors Lenses www.physics.rutgers.edu/ugrad/228 a) Santa as he sees himself in a mirrored sphere. b) Santa as he sees himself in a flat mirror after too much eggnog.

### Lenses. Images. Difference between Real and Virtual Images

Linear Magnification (m) This is the factor by which the size of the object has been magnified by the lens in a direction which is perpendicular to the axis of the lens. Linear magnification can be calculated

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A plane mirror is placed on the level bottom of a swimming pool that holds water (n =

### CHAPTER 34. Optical Images

CHAPTER 34 1* Can a virtual image be photographed? Yes. Note that a virtual image is seen because the eye focuses the diverging rays to form a real image on the retina. Similarly, the camera lens can focus

### Using Mirrors to Form Images. Reflections of Reflections. Key Terms. Find Out ACTIVITY

5.2 Using Mirrors to Form Images All mirrors reflect light according to the law of reflection. Plane mirrors form an image that is upright and appears to be as far behind the mirror as the is in front

### Physics 3340 Spring Fourier Optics

Physics 3340 Spring 011 Purpose Fourier Optics In this experiment we will show how the Fraunhofer diffraction pattern or spatial Fourier transform of an object can be observed within an optical system.

### always positive for virtual image

Point to be remembered: sign convention for Spherical mirror Object height, h = always positive Always +ve for virtual image Image height h = Always ve for real image. Object distance from pole (u) = always

### JPN Pahang Physics Module Form 4 Chapter 5 Light. In each of the following sentences, fill in the bracket the appropriate word or words given below.

JPN Pahang Physics Module orm 4 HAPTER 5: LIGHT In each of the following sentences, fill in the bracket the appropriate word or words given below. solid, liquid, gas, vacuum, electromagnetic wave, energy

### University of Rochester Department of Physics and Astronomy Physics123, Spring Homework 5 - Solutions

Problem 5. University of Rochester Department of Physics and Astronomy Physics23, Spring 202 Homework 5 - Solutions An optometrist finds that a farsighted person has a near point at 25 cm. a) If the eye

### The microscope is useful in making observations and collecting data in scientific experiments. Microscopy involves three basic concepts:

AP BIOLOGY Chapter 6 NAME DATE Block MICROSCOPE LAB PART I: COMPOUND MICROSCOPE OBJECTIVES: After completing this exercise you should be able to: Demonstrate proper care and use of a compound microscope.

### mirrors and lenses PHY232 Remco Zegers Room W109 cyclotron building

mirrors and lenses PHY232 Remco Zegers zegers@nscl.msu.edu Room W109 cyclotron building http://www.nscl.msu.edu/~zegers/phy232.html quiz (extra credit) a ray of light moves from air to a material with

### FRAUNHOFER AND FRESNEL DIFFRACTION IN ONE DIMENSION

FRAUNHOFER AND FRESNEL DIFFRACTION IN ONE DIMENSION Revised November 15, 2017 INTRODUCTION The simplest and most commonly described examples of diffraction and interference from two-dimensional apertures

### Image Formation. Light from distant things. Geometrical optics. Pinhole camera. Chapter 36

Light from distant things Chapter 36 We learn about a distant thing from the light it generates or redirects. The lenses in our eyes create images of objects our brains can process. This chapter concerns

### Gaussian Ray Tracing Technique

Gaussian Ray Tracing Technique Positive Lenses. A positive lens has two focal points one on each side of the lens; both are at the same focal distance f from the lens. Parallel rays of light coming from

### FIELD LENS -EYE LENS VEYE

* IF YOU made one of the telescopes described last * month, you already are familiar with the basic information necessary to construct a terrestrial telescope, which is one for viewing objects on land.

### Chapter 26. The Refraction of Light: Lenses and Optical Instruments

Chapter 26 The Refraction of Light: Lenses and Optical Instruments 26.1 The Index of Refraction Light travels through a vacuum at a speed c=3. 00 10 8 m/ s Light travels through materials at a speed less

### OPTICAL BENCH - simple type

GENERAL DESCRIPTION: OPTICAL BENCH - simple type Cat: HL2240-001 Complete with Hodson Light Box. Cat: HL2241-001 Not including Hodson Light Box The IEC Optical Bench system is designed to be used with

### Telescope Basics by Keith Beadman

Telescope Basics 2009 by Keith Beadman Table of Contents Introduction...1 The Basics...2 What a telescope is...2 Aperture size...3 Focal length...4 Focal ratio...5 Magnification...6 Introduction In the

### SUBJECT: PHYSICS. Use and Succeed.

SUBJECT: PHYSICS I hope this collection of questions will help to test your preparation level and useful to recall the concepts in different areas of all the chapters. Use and Succeed. Navaneethakrishnan.V

### SIPS instructions for installation and use

SIPS instructions for installation and use Introduction Thank you for purchasing the Starlight Integrated Paracorr System (referred to as SIPS hereafter), which incorporates the best focuser on the market

### Geometrical Optics Optical systems

Phys 322 Lecture 16 Chapter 5 Geometrical Optics Optical systems Magnifying glass Purpose: enlarge a nearby object by increasing its image size on retina Requirements: Image should not be inverted Image

### PHYS:1200 LECTURE 31 LIGHT AND OPTICS (3)

1 PHYS:1200 LECTURE 31 LIGHT AND OPTICS (3) In lecture 30, we applied the law of reflection to understand how images are formed using plane and curved mirrors. In this lecture we will use the law of refraction

### LIGHT REFLECTION AND REFRACTION

LIGHT REFLECTION AND REFRACTION REFLECTION OF LIGHT A highly polished surface, such as a mirror, reflects most of the light falling on it. Laws of Reflection: (i) The angle of incidence is equal to the

### Refraction by Spherical Lenses by

Page1 Refraction by Spherical Lenses by www.examfear.com To begin with this topic, let s first know, what is a lens? A lens is a transparent material bound by two surfaces, of which one or both the surfaces

### How Microscopes Work By Cindy Grigg

By Cindy Grigg 1 Inventions often lead scientists to make new discoveries. One of the most important discoveries in life science was the microscope. A microscope is used for looking at things too small

### 1) An electromagnetic wave is a result of electric and magnetic fields acting together. T 1)

Exam 3 Review Name TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) An electromagnetic wave is a result of electric and magnetic fields acting together. T 1) 2) Electromagnetic

### OPTICS DIVISION B. School/#: Names:

OPTICS DIVISION B School/#: Names: Directions: Fill in your response for each question in the space provided. All questions are worth two points. Multiple Choice (2 points each question) 1. Which of the

### MICROSCOPE LAB. Resolving Power How well specimen detail is preserved during the magnifying process.

AP BIOLOGY Cells ACTIVITY #2 MICROSCOPE LAB OBJECTIVES 1. Demonstrate proper care and use of a compound microscope. 2. Identify the parts of the microscope and describe the function of each part. 3. Compare

### Chapter 34: Geometrical Optics (Part 2)

Chapter 34: Geometrical Optics (Part 2) Brief review Optical instruments Camera Human eye Magnifying glass Telescope Microscope Optical Aberrations Phys Phys 2435: 22: Chap. 34, 31, Pg 1 The Lens Equation

### Name. Light Chapter Summary Cont d. Refraction

Page 1 of 17 Physics Week 12(Sem. 2) Name Light Chapter Summary Cont d with a smaller index of refraction to a material with a larger index of refraction, the light refracts towards the normal line. Also,

### Laboratory 12: Image Formation by Lenses

Phys 112L Spring 2013 Laboratory 12: Image Formation by Lenses The process by which convex lenses produce images can be described with reference to the scenario illustrated in Fig. 1. An object is placed

### LIGHT REFLECTION AND REFRACTION

LIGHT REFLECTION AND REFRACTION 1. List four properties of the image formed by a plane mirror. Properties of image formed by a plane mirror: 1. It is always virtual and erect. 2. Its size is equal to that

### Lecture PowerPoint. Chapter 25 Physics: Principles with Applications, 6 th edition Giancoli

Lecture PowerPoint Chapter 25 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the

Chapter 34 Images Copyright 34-1 Images and Plane Mirrors Learning Objectives 34.01 Distinguish virtual images from real images. 34.02 Explain the common roadway mirage. 34.03 Sketch a ray diagram for

### c v n = n r Sin n c = n i Refraction of Light Index of Refraction Snell s Law or Refraction Example Problem Total Internal Reflection Optics

Refraction is the bending of the path of a light wave as it passes from one material into another material. Refraction occurs at the boundary and is caused by a change in the speed of the light wave upon

### Geometric Optics. Ray Model. assume light travels in straight line uses rays to understand and predict reflection & refraction

Geometric Optics Ray Model assume light travels in straight line uses rays to understand and predict reflection & refraction General Physics 2 Geometric Optics 1 Reflection Law of reflection the angle

### ii) When light falls on objects, it reflects the light and when the reflected light reaches our eyes then we see the objects.

Light i) Light is a form of energy which helps us to see objects. ii) When light falls on objects, it reflects the light and when the reflected light reaches our eyes then we see the objects. iii) Light

### Chapter 34: Geometric Optics

Chapter 34: Geometric Optics It is all about images How we can make different kinds of images using optical devices Optical device example: mirror, a piece of glass, telescope, microscope, kaleidoscope,

### PHY 431 Homework Set #5 Due Nov. 20 at the start of class

PHY 431 Homework Set #5 Due Nov. 0 at the start of class 1) Newton s rings (10%) The radius of curvature of the convex surface of a plano-convex lens is 30 cm. The lens is placed with its convex side down

### Person s Optics Test KEY SSSS

Person s Optics Test KEY SSSS 2017-18 Competitors Names: School Name: All questions are worth one point unless otherwise stated. Show ALL WORK or you may not receive credit. Include correct units whenever

### Lecture 4: Geometrical Optics 2. Optical Systems. Images and Pupils. Rays. Wavefronts. Aberrations. Outline

Lecture 4: Geometrical Optics 2 Outline 1 Optical Systems 2 Images and Pupils 3 Rays 4 Wavefronts 5 Aberrations Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Lecture 4: Geometrical

### Chapter 23. Mirrors and Lenses

Chapter 23 Mirrors and Lenses Mirrors and Lenses The development of mirrors and lenses aided the progress of science. It led to the microscopes and telescopes. Allowed the study of objects from microbes

### Unit 5.B Geometric Optics

Unit 5.B Geometric Optics Early Booklet E.C.: + 1 Unit 5.B Hwk. Pts.: / 18 Unit 5.B Lab Pts.: / 25 Late, Incomplete, No Work, No Units Fees? Y / N Essential Fundamentals of Geometric Optics 1. Convex surfaces

### Chapter 23. Light Geometric Optics

Chapter 23. Light Geometric Optics There are 3 basic ways to gather light and focus it to make an image. Pinhole - Simple geometry Mirror - Reflection Lens - Refraction Pinhole Camera Image Formation (the

### UNIT SUMMARY: Electromagnetic Spectrum, Color, & Light Name: Date:

UNIT SUMMARY: Electromagnetic Spectrum, Color, & Light Name: Date: Topics covered in the unit: 1. Electromagnetic Spectrum a. Order of classifications and respective wavelengths b. requency, wavelength,

### EXPRIMENT 3 COUPLING FIBERS TO SEMICONDUCTOR SOURCES

EXPRIMENT 3 COUPLING FIBERS TO SEMICONDUCTOR SOURCES OBJECTIVES In this lab, firstly you will learn to couple semiconductor sources, i.e., lightemitting diodes (LED's), to optical fibers. The coupling

### Lab: The Compound Microscope

Lab: The Compound Microscope Purpose: To learn the parts of the compound microscope and to learn the basic skills needed to use the microscope properly. Materials: Microscope Colored paper Cover slips