# Geometric!Op9cs! Reflec9on! Refrac9on!`!Snell s!law! Mirrors!and!Lenses! Other!topics! Thin!Lens!Equa9on! Magnifica9on! Lensmaker s!formula!

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Geometric!Op9cs! Reflec9on! Refrac9on!`!Snell s!law! Mirrors!and!Lenses! Thin!Lens!Equa9on! Magnifica9on! Lensmaker s!formula! Other!topics! Telescopes! Apertures!

2 Reflec9on! Angle!of!incidence!equals!angle!of!reflec9on! θ in!=!θ out!

3 Snell s!law! Relates!angle!of!incidence!to!angle!of!refrac9on! n!represents!refrac&on)index!of!material' Can!change!depending!on!light!wavelength!

4 Snell s!law! 97. A beam of light has a small wavelength spread d l about a central wavelength l. The beam travels in vacuum until it enters a glass plate at an angle q relative to the normal to the plate, as shown in the figure above. The index of refraction of the glass is given by n( l ). The angular spread dq of the refracted beam is given by (A) dq 1 n dl (B) dq dn ( l) dl dl 1 dl (C) dq dl l dn (D) dq sin q sin q dl l (E) dq tan q dn( l) n dl dl

5 Thin!Lens!Equa9on! This!is!the!only!equa9on!you!need,!provided!you! can!interpret!it!correctly! O!=!object!distance!from!lens! I!=!image!distance!from!lens! F!=!focal!point!distance!from!lens!

6 Thin!Lens!!Geeng!Signs!Right! Sign conventions (why this is nontrivial) A is where light comes from, B is where light passes to Note side B is different for mirrors and lenses

7 Thin!Lens!!Geeng!Signs!Right! Recommend!picking!on!case!to!memorize! O!>!0! F!>!0! I!=!?!

8 Thin!Lens!Example! 74. The figure above shows an object O placed at a distance R to the left of a convex spherical mirror that has a radius of curvature R. Point C is the center of curvature of the mirror. The image formed by the mirror is at (A) infinity (B) a distance R to the left of the mirror and inverted (C) a distance R to the right of the mirror and upright (D) a distance R 3 to the left of the mirror and inverted (E) a distance R 3 to the right of the mirror and upright

9 Thin!Lens!Example!!Ray!Diagram! Draw!rays!to!get!qualita9ve!sense!of!image! Rays!from!object!to!focus!reflect!parallel! Parallel!rays!from!object!reflect!from!focus! Rays!from!object!to!center!reflect!at!equal!angle! Same!deal!for!lenses,!but!with!passing!through!!

10 Example!Ray!Diagrams!`!Lenses! h]p://hyperphysics.phy`astr.gsu.edu/%e2%80%8chbase/geoopt/raydiag.html!

11 Magnifica9on! Magnifica9on!is!image!size!rela9ve!to!object! Image!is! imaginary!if!not!in!real!space!(i!<!0)! Image!is! real!if!projected!into!real!space!

12 One!more!example:!Mul9ple!Lenses! Treat the image from the first lens as a virtual object 1. Find the image from the first lens 2. Use geometry to find O for the second lens 3. Apply lens equation a second time 11. An object is located 40 centimeters from the first of two thin converging lenses of focal lengths 20 centimeters and 10 centimeters, respectively, as shown in the figure above. The lenses are separated by 30 centimeters. The final image formed by the two-lens system is located (A) 5.0 cm to the right of the second lens (B) 13.3 cm to the right of the second lens (C) infinitely far to the right of the second lens (D) 13.3 cm to the left of the second lens (E) 100 cm to the left of the second lens

13 Mul9ple!lenses! 11. An object is located 40 centimeters from the first of two thin converging lenses of focal lengths 20 centimeters and 10 centimeters, respectively, as shown in the figure above. The lenses are separated by 30 centimeters. The final image formed by the two-lens system is located (A) 5.0 cm to the right of the second lens (B) 13.3 cm to the right of the second lens (C) infinitely far to the right of the second lens (D) 13.3 cm to the left of the second lens (E) 100 cm to the left of the second lens First lens: O = 40 cm, F = 20 cm, I =? Second lens: F = 10 cm, O =?, I =?

14 Lensmaker s!formula! Find!the!focal!point,! given!the!radii!of!the! two!faces!of!the!lens! 15. If the five lenses shown below are made of the same material, which lens has the shortest positive focal length? (A) (B) (C) (D) (E) h]p://hyperphysics.phy`astr.gsu.edu/hbase/hframe.html!

15 Telescopes! Telescope angular magnification f E : Focal length of eyepiece f O : Focal length of objective Note: The two lenses share a focal point

### Geometric Optics. Ray Model. assume light travels in straight line uses rays to understand and predict reflection & refraction

Geometric Optics Ray Model assume light travels in straight line uses rays to understand and predict reflection & refraction General Physics 2 Geometric Optics 1 Reflection Law of reflection the angle

### Chapter 2 - Geometric Optics

David J. Starling Penn State Hazleton PHYS 214 The human eye is a visual system that collects light and forms an image on the retina. The human eye is a visual system that collects light and forms an image

### CH. 23 Mirrors and Lenses HW# 6, 7, 9, 11, 13, 21, 25, 31, 33, 35

CH. 23 Mirrors and Lenses HW# 6, 7, 9, 11, 13, 21, 25, 31, 33, 35 Mirrors Rays of light reflect off of mirrors, and where the reflected rays either intersect or appear to originate from, will be the location

### Department of Physics & Astronomy Undergraduate Labs. Thin Lenses

Thin Lenses Reflection and Refraction When light passes from one medium to another, part of the light is reflected and the rest is transmitted. Light rays that are transmitted undergo refraction (bending)

### Activity 6.1 Image Formation from Spherical Mirrors

PHY385H1F Introductory Optics Practicals Day 6 Telescopes and Microscopes October 31, 2011 Group Number (number on Intro Optics Kit):. Facilitator Name:. Record-Keeper Name: Time-keeper:. Computer/Wiki-master:..

### Physics 222, October 25

Physics 222, October 25 Key Concepts: Image formation by refraction Thin lenses The eye Optical instruments A single flat interface Images can be formed by refraction, when light traverses a boundary between

### Condition Mirror Refractive Lens Concave Focal Length Positive Focal Length Negative. Image distance positive

Comparison between mirror lenses and refractive lenses Condition Mirror Refractive Lens Concave Focal Length Positive Focal Length Negative Convex Focal Length Negative Focal Length Positive Image location

### Final Reg Optics Review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Final Reg Optics Review 1) How far are you from your image when you stand 0.75 m in front of a vertical plane mirror? 1) 2) A object is 12 cm in front of a concave mirror, and the image is 3.0 cm in front

### Algebra Based Physics. Reflection. Slide 1 / 66 Slide 2 / 66. Slide 3 / 66. Slide 4 / 66. Slide 5 / 66. Slide 6 / 66.

Slide 1 / 66 Slide 2 / 66 Algebra Based Physics Geometric Optics 2015-12-01 www.njctl.org Slide 3 / 66 Slide 4 / 66 Table of ontents lick on the topic to go to that section Reflection Refraction and Snell's

### Reading: Lenses and Mirrors; Applications Key concepts: Focal points and lengths; real images; virtual images; magnification; angular magnification.

Reading: Lenses and Mirrors; Applications Key concepts: Focal points and lengths; real images; virtual images; magnification; angular magnification. 1.! Questions about objects and images. Can a virtual

### Physics 228 Lecture 3. Today: Spherical Mirrors Lenses.

Physics 228 Lecture 3 Today: Spherical Mirrors Lenses www.physics.rutgers.edu/ugrad/228 a) Santa as he sees himself in a mirrored sphere. b) Santa as he sees himself in a flat mirror after too much eggnog.

### Chapter 23. Mirrors and Lenses

Chapter 23 Mirrors and Lenses Mirrors and Lenses The development of mirrors and lenses aided the progress of science. It led to the microscopes and telescopes. Allowed the study of objects from microbes

### Option G 2: Lenses. The diagram below shows the image of a square grid as produced by a lens that does not cause spherical aberration.

Name: Date: Option G 2: Lenses 1. This question is about spherical aberration. The diagram below shows the image of a square grid as produced by a lens that does not cause spherical aberration. In the

### General Physics II. Optical Instruments

General Physics II Optical Instruments 1 The Thin-Lens Equation 2 The Thin-Lens Equation Using geometry, one can show that 1 1 1 s+ =. s' f The magnification of the lens is defined by For a thin lens,

### Physics 197 Lab 7: Thin Lenses and Optics

Physics 197 Lab 7: Thin Lenses and Optics Equipment: Item Part # Qty per Team # of Teams Basic Optics Light Source PASCO OS-8517 1 12 12 Power Cord for Light Source 1 12 12 Ray Optics Set (Concave Lens)

### Chapter 23. Mirrors and Lenses

Chapter 23 Mirrors and Lenses Notation for Mirrors and Lenses The object distance is the distance from the object to the mirror or lens Denoted by p The image distance is the distance from the image to

### Determination of Focal Length of A Converging Lens and Mirror

Physics 41 Determination of Focal Length of A Converging Lens and Mirror Objective: Apply the thin-lens equation and the mirror equation to determine the focal length of a converging (biconvex) lens and

### Notation for Mirrors and Lenses. Chapter 23. Types of Images for Mirrors and Lenses. More About Images

Notation for Mirrors and Lenses Chapter 23 Mirrors and Lenses Sections: 4, 6 Problems:, 8, 2, 25, 27, 32 The object distance is the distance from the object to the mirror or lens Denoted by p The image

### Mirrors and Lenses. Images can be formed by reflection from mirrors. Images can be formed by refraction through lenses.

Mirrors and Lenses Images can be formed by reflection from mirrors. Images can be formed by refraction through lenses. Notation for Mirrors and Lenses The object distance is the distance from the object

### Chapter 23. Mirrors and Lenses

Chapter 23 Mirrors and Lenses Notation for Mirrors and Lenses The object distance is the distance from the object to the mirror or lens Denoted by p The image distance is the distance from the image to

### Converging Lenses. Parallel rays are brought to a focus by a converging lens (one that is thicker in the center than it is at the edge).

Chapter 30: Lenses Types of Lenses Piece of glass or transparent material that bends parallel rays of light so they cross and form an image Two types: Converging Diverging Converging Lenses Parallel rays

### Spherical Mirrors. Concave Mirror, Notation. Spherical Aberration. Image Formed by a Concave Mirror. Image Formed by a Concave Mirror 4/11/2014

Notation for Mirrors and Lenses Chapter 23 Mirrors and Lenses The object distance is the distance from the object to the mirror or lens Denoted by p The image distance is the distance from the image to

### Physics II. Chapter 23. Spring 2018

Physics II Chapter 23 Spring 2018 IMPORTANT: Except for multiple-choice questions, you will receive no credit if you show only an answer, even if the answer is correct. Always show in the space on your

### Algebra Based Physics. Reflection. Slide 1 / 66 Slide 2 / 66. Slide 3 / 66. Slide 4 / 66. Slide 5 / 66. Slide 6 / 66.

Slide 1 / 66 Slide 2 / 66 lgebra ased Physics Geometric Optics 2015-12-01 www.njctl.org Slide 3 / 66 Slide 4 / 66 Table of ontents lick on the topic to go to that section Reflection Refraction and Snell's

### BHARATIYA VIDYA BHAVAN S V M PUBLIC SCHOOL, VADODARA QUESTION BANK

BHARATIYA VIDYA BHAVAN S V M PUBLIC SCHOOL, VADODARA QUESTION BANK Ch Light : Reflection and Refraction One mark questions Q1 Q3 What happens when a ray of light falls normally on the surface of a plane

### Assignment X Light. Reflection and refraction of light. (a) Angle of incidence (b) Angle of reflection (c) principle axis

Assignment X Light Reflection of Light: Reflection and refraction of light. 1. What is light and define the duality of light? 2. Write five characteristics of light. 3. Explain the following terms (a)

### Chapter 23. Light Geometric Optics

Chapter 23. Light Geometric Optics There are 3 basic ways to gather light and focus it to make an image. Pinhole - Simple geometry Mirror - Reflection Lens - Refraction Pinhole Camera Image Formation (the

### Mirrors, Lenses &Imaging Systems

Mirrors, Lenses &Imaging Systems We describe the path of light as straight-line rays And light rays from a very distant point arrive parallel 145 Phys 24.1 Mirrors Standing away from a plane mirror shows

### Physics 1411 Telescopes Lab

Name: Section: Partners: Physics 1411 Telescopes Lab Refracting and Reflecting telescopes are the two most common types of telescopes you will find. Each of these can be mounted on either an equatorial

### Reflection and Refraction of Light

Reflection and Refraction of Light Physics 102 28 March 2002 Lecture 6 28 Mar 2002 Physics 102 Lecture 6 1 Light waves and light rays Last time we showed: Time varying B fields E fields B fields to create

### PHYS 160 Astronomy. When analyzing light s behavior in a mirror or lens, it is helpful to use a technique called ray tracing.

Optics Introduction In this lab, we will be exploring several properties of light including diffraction, reflection, geometric optics, and interference. There are two sections to this lab and they may

### Image Formation. Light from distant things. Geometrical optics. Pinhole camera. Chapter 36

Light from distant things Chapter 36 We learn about a distant thing from the light it generates or redirects. The lenses in our eyes create images of objects our brains can process. This chapter concerns

### Optics Practice. Version #: 0. Name: Date: 07/01/2010

Optics Practice Date: 07/01/2010 Version #: 0 Name: 1. Which of the following diagrams show a real image? a) b) c) d) e) i, ii, iii, and iv i and ii i and iv ii and iv ii, iii and iv 2. A real image is

### NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT. Physics 211 E&M and Quantum Physics Spring Lab #8: Thin Lenses

NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT Physics 211 E&M and Quantum Physics Spring 2018 Lab #8: Thin Lenses Lab Writeup Due: Mon/Wed/Thu/Fri, April 2/4/5/6, 2018 Background In the previous lab

### Physics 1C. Lecture 25B

Physics 1C Lecture 25B "More than 50 years ago, Austrian researcher Ivo Kohler gave people goggles thats severely distorted their vision: The lenses turned the world upside down. After several weeks, subjects

### Phys 102 Lecture 21 Optical instruments

Phys 102 Lecture 21 Optical instruments 1 Today we will... Learn how combinations of lenses form images Thin lens equation & magnification Learn about the compound microscope Eyepiece & objective Total

### Average: Standard Deviation: Max: 99 Min: 40

1 st Midterm Exam Average: 83.1 Standard Deviation: 12.0 Max: 99 Min: 40 Please contact me to fix an appointment, if you took less than 65. Chapter 33 Lenses and Op/cal Instruments Units of Chapter 33

### Dr. Todd Satogata (ODU/Jefferson Lab) Monday, April

University Physics 227N/232N Mirrors and Lenses Homework Optics 2 due Friday AM Quiz Friday Optional review session next Monday (Apr 28) Bring Homework Notebooks to Final for Grading Dr. Todd Satogata

### Chapter 26. The Refraction of Light: Lenses and Optical Instruments

Chapter 26 The Refraction of Light: Lenses and Optical Instruments 26.1 The Index of Refraction Light travels through a vacuum at a speed c=3. 00 10 8 m/ s Light travels through materials at a speed less

### University of Rochester Department of Physics and Astronomy Physics123, Spring Homework 5 - Solutions

Problem 5. University of Rochester Department of Physics and Astronomy Physics23, Spring 202 Homework 5 - Solutions An optometrist finds that a farsighted person has a near point at 25 cm. a) If the eye

### b) (4) If you could look at a snapshot of the waves, how far apart in space are two successive positive peaks of the electric field?

General Physics II Exam 3 - Chs. 22 25 - EM Waves & Optics October 20, 206 Name Rec. Instr. Rec. Time For full credit, make your work clear. Show formulas used, essential steps, and results with correct

### The Law of Reflection

PHY132H1F Introduction to Physics II Class 5 Outline: Reflection and Refraction Fibre-Optics Colour and Dispersion Thin Lens Equation Image Formation Quick reading quiz.. virtual image is. the cause of

### 2015 EdExcel A Level Physics EdExcel A Level Physics. Lenses

2015 EdExcel A Level Physics 2015 EdExcel A Level Physics Topic Topic 5 5 Lenses Types of lenses Converging lens bi-convex has two convex surfaces Diverging lens bi-concave has two concave surfaces Thin

### LECTURE 17 MIRRORS AND THIN LENS EQUATION

LECTURE 17 MIRRORS AND THIN LENS EQUATION 18.6 Image formation with spherical mirrors Concave mirrors Convex mirrors 18.7 The thin-lens equation Sign conventions for lenses and mirrors Spherical mirrors

### Ch 24. Geometric Optics

text concept Ch 24. Geometric Optics Fig. 24 3 A point source of light P and its image P, in a plane mirror. Angle of incidence =angle of reflection. text. Fig. 24 4 The blue dashed line through object

### Phy Ph s y 102 Lecture Lectur 21 Optical instruments 1

Phys 102 Lecture 21 Optical instruments 1 Today we will... Learn how combinations of lenses form images Thin lens equation & magnification Learn about the compound microscope Eyepiece & objective Total

### There is a range of distances over which objects will be in focus; this is called the depth of field of the lens. Objects closer or farther are

Chapter 25 Optical Instruments Some Topics in Chapter 25 Cameras The Human Eye; Corrective Lenses Magnifying Glass Telescopes Compound Microscope Aberrations of Lenses and Mirrors Limits of Resolution

### Name. Light Chapter Summary Cont d. Refraction

Page 1 of 17 Physics Week 12(Sem. 2) Name Light Chapter Summary Cont d with a smaller index of refraction to a material with a larger index of refraction, the light refracts towards the normal line. Also,

### PHYSICS FOR THE IB DIPLOMA CAMBRIDGE UNIVERSITY PRESS

Option C Imaging C Introduction to imaging Learning objectives In this section we discuss the formation of images by lenses and mirrors. We will learn how to construct images graphically as well as algebraically.

### mirrors and lenses PHY232 Remco Zegers Room W109 cyclotron building

mirrors and lenses PHY232 Remco Zegers zegers@nscl.msu.edu Room W109 cyclotron building http://www.nscl.msu.edu/~zegers/phy232.html quiz (extra credit) a ray of light moves from air to a material with

### Geometric Optics Practice Problems. Ray Tracing - Draw at least two principle rays and show the image created by the lens or mirror.

Geometric Optics Practice Problems Ray Tracing - Draw at least two principle rays and show the image created by the lens or mirror. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Practice Problems - Mirrors Classwork

### Converging and Diverging Surfaces. Lenses. Converging Surface

Lenses Sandy Skoglund 2 Converging and Diverging s AIR Converging If the surface is convex, it is a converging surface in the sense that the parallel rays bend toward each other after passing through the

5. GEOMETRIC OPTICS Readings: Hecht, Chapter 24 Introduction In this lab you will measure the index of refraction of glass using Snell s Law, study the application of the laws of geometric optics to systems

### 2. The radius of curvature of a spherical mirror is 20 cm. What is its focal length?

1. Define the principle focus of a concave mirror? The principle focus of a concave mirror is a point on its principle axis to which all the light rays which are parallel and close to the axis, converge

### AP Physics Problems -- Waves and Light

AP Physics Problems -- Waves and Light 1. 1974-3 (Geometric Optics) An object 1.0 cm high is placed 4 cm away from a converging lens having a focal length of 3 cm. a. Sketch a principal ray diagram for

### OPTICS DIVISION B. School/#: Names:

OPTICS DIVISION B School/#: Names: Directions: Fill in your response for each question in the space provided. All questions are worth two points. Multiple Choice (2 points each question) 1. Which of the

### 25 cm. 60 cm. 50 cm. 40 cm.

Geometrical Optics 7. The image formed by a plane mirror is: (a) Real. (b) Virtual. (c) Erect and of equal size. (d) Laterally inverted. (e) B, c, and d. (f) A, b and c. 8. A real image is that: (a) Which

### Lab 2 Geometrical Optics

Lab 2 Geometrical Optics March 22, 202 This material will span much of 2 lab periods. Get through section 5.4 and time permitting, 5.5 in the first lab. Basic Equations Lensmaker s Equation for a thin

### Lenses. Light refracts at both surfaces. Non-parallel surfaces results in net bend.

Lenses Light refracts at both surfaces. Non-parallel surfaces results in net bend. Lenses Focusing power of the lens is function of radius of curvature of each surface and index of refraction of lens.

### PHYS 202 OUTLINE FOR PART III LIGHT & OPTICS

PHYS 202 OUTLINE FOR PART III LIGHT & OPTICS Electromagnetic Waves A. Electromagnetic waves S-23,24 1. speed of waves = 1/( o o ) ½ = 3 x 10 8 m/s = c 2. waves and frequency: the spectrum (a) radio red

### Chapter 36. Image Formation

Chapter 36 Image Formation Image of Formation Images can result when light rays encounter flat or curved surfaces between two media. Images can be formed either by reflection or refraction due to these

Chapter 34 Images Copyright 34-1 Images and Plane Mirrors Learning Objectives 34.01 Distinguish virtual images from real images. 34.02 Explain the common roadway mirage. 34.03 Sketch a ray diagram for

### Lecture Outline Chapter 27. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 27 Physics, 4 th Edition James S. Walker Chapter 27 Optical Instruments Units of Chapter 27 The Human Eye and the Camera Lenses in Combination and Corrective Optics The Magnifying

### Applied Optics. , Physics Department (Room #36-401) , ,

Applied Optics Professor, Physics Department (Room #36-401) 2290-0923, 019-539-0923, shsong@hanyang.ac.kr Office Hours Mondays 15:00-16:30, Wednesdays 15:00-16:30 TA (Ph.D. student, Room #36-415) 2290-0921,

### Chapter 36. Image Formation

Chapter 36 Image Formation Notation for Mirrors and Lenses The object distance is the distance from the object to the mirror or lens Denoted by p The image distance is the distance from the image to the

### Name: Lab Partner: Section:

Chapter 10 Thin Lenses Name: Lab Partner: Section: 10.1 Purpose In this experiment, the formation of images by concave and convex lenses will be explored. The application of the thin lens equation and

### Laboratory 7: Properties of Lenses and Mirrors

Laboratory 7: Properties of Lenses and Mirrors Converging and Diverging Lens Focal Lengths: A converging lens is thicker at the center than at the periphery and light from an object at infinity passes

### Chapter 23. Geometrical Optics: Mirrors and Lenses and other Instruments

Chapter 23 Geometrical Optics: Mirrors and Lenses and other Instruments HITT 1 You stand two feet away from a plane mirror. How far is it from you to your image? a. 2.0 ft b. 3.0 ft c. 4.0 ft d. 5.0 ft

### Chapter 3 Mirrors. The most common and familiar optical device

Chapter 3 Mirrors The most common and familiar optical device Outline Plane mirrors Spherical mirrors Graphical image construction Two mirrors; The Cassegrain Telescope Plane mirrors Common household mirrors:

### General Physics II. Ray Optics

General Physics II Ray Optics 1 Dispersion White light is a combination of all the wavelengths of the visible part of the electromagnetic spectrum. Red light has the longest wavelengths and violet light

### Chapter 34 Geometric Optics (also known as Ray Optics) by C.-R. Hu

Chapter 34 Geometric Optics (also known as Ray Optics) by C.-R. Hu 1. Principles of image formation by mirrors (1a) When all length scales of objects, gaps, and holes are much larger than the wavelength

### LIGHT REFLECTION AND REFRACTION

LIGHT REFLECTION AND REFRACTION REFLECTION OF LIGHT A highly polished surface, such as a mirror, reflects most of the light falling on it. Laws of Reflection: (i) The angle of incidence is equal to the

### PHY385H1F Introductory Optics Term Test 2 November 6, 2012 Duration: 50 minutes. NAME: Student Number:.

PHY385H1F Introductory Optics Term Test 2 November 6, 2012 Duration: 50 minutes NAME: Student Number:. Aids allowed: A pocket calculator with no communication ability. One 8.5x11 aid sheet, written on

### Lecture 21. Physics 1202: Lecture 21 Today s Agenda

Physics 1202: Lecture 21 Today s Agenda Announcements: Team problems today Team 14: Gregory Desautels, Benjamin Hallisey, Kyle Mcginnis Team 15: Austin Dion, Nicholas Gandza, Paul Macgillis-Falcon Homework

### Chapter 36. Image Formation

Chapter 36 Image Formation Real and Virtual Images Real images can be displayed on screens Virtual Images can not be displayed onto screens. Focal Length& Radius of Curvature When the object is very far

### Lecture 17. Image formation Ray tracing Calculation. Lenses Convex Concave. Mirrors Convex Concave. Optical instruments

Lecture 17. Image formation Ray tracing Calculation Lenses Convex Concave Mirrors Convex Concave Optical instruments Image formation Laws of refraction and reflection can be used to explain how lenses

### SUBJECT: PHYSICS. Use and Succeed.

SUBJECT: PHYSICS I hope this collection of questions will help to test your preparation level and useful to recall the concepts in different areas of all the chapters. Use and Succeed. Navaneethakrishnan.V

### Chapter 18 Optical Elements

Chapter 18 Optical Elements GOALS When you have mastered the content of this chapter, you will be able to achieve the following goals: Definitions Define each of the following terms and use it in an operational

### More problems for Chapter 12 of Introduction to Wave Phenomena (Hirose- Lonngren) θ =.

More problems for Chapter 1 of Introduction to Wave Phenomena (Hirose- Lonngren). In the 18-th century, Bradley observed apparent change in angular location of distant stars by " when the earth is moving

### Gaussian Ray Tracing Technique

Gaussian Ray Tracing Technique Positive Lenses. A positive lens has two focal points one on each side of the lens; both are at the same focal distance f from the lens. Parallel rays of light coming from

### Chapter 34 Geometric Optics

Chapter 34 Geometric Optics Lecture by Dr. Hebin Li Goals of Chapter 34 To see how plane and curved mirrors form images To learn how lenses form images To understand how a simple image system works Reflection

### Section A Conceptual and application type questions. 1 Which is more observable diffraction of light or sound? Justify. (1)

INDIAN SCHOOL MUSCAT Department of Physics Class : XII Physics Worksheet - 6 (2017-2018) Chapter 9 and 10 : Ray Optics and wave Optics Section A Conceptual and application type questions 1 Which is more

### Thin Lenses. Lecture 25. Chapter 23. Ray Optics. Physics II. Course website:

Lecture 25 Chapter 23 Physics II Ray Optics Thin Lenses Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Lecture Capture: http://echo360.uml.edu/danylov201415/physics2spring.html

### Physics 132: Lecture Fundamentals of Physics

Physics 132: Lecture Fundamentals of Physics II Agenda for Today Mirrors Concave Convex e Mirror equation Physics 201: Lecture 1, Pg 1 Curved mirrors A Spherical Mirror: section of a sphere. R light ray

### 12:40-2:40 3:00-4:00 PM

Physics 294H l Professor: Joey Huston l email:huston@msu.edu l office: BPS3230 l Homework will be with Mastering Physics (and an average of 1 hand-written problem per week) Help-room hours: 12:40-2:40

### Section 3 Curved Mirrors. Calculate distances and focal lengths using the mirror equation for concave and convex spherical mirrors.

Objectives Calculate distances and focal lengths using the mirror equation for concave and convex spherical mirrors. Draw ray diagrams to find the image distance and magnification for concave and convex

### INDIAN SCHOOL MUSCAT SENIOR SECTION DEPARTMENT OF PHYSICS CLASS X REFLECTION AND REFRACTION OF LIGHT QUESTION BANK

INDIAN SCHOOL MUSCAT SENIOR SECTION DEPARTMENT OF PHYSICS CLASS X REFLECTION AND REFRACTION OF LIGHT QUESTION BANK 1. Q. A small candle 2.5cm in size is placed at 27 cm in front of concave mirror of radius

### Practice Problems (Geometrical Optics)

1 Practice Problems (Geometrical Optics) 1. A convex glass lens (refractive index = 3/2) has a focal length of 8 cm when placed in air. What is the focal length of the lens when it is immersed in water

### CHAPTER 18 REFRACTION & LENSES

Physics Approximate Timeline Students are expected to keep up with class work when absent. CHAPTER 18 REFRACTION & LENSES Day Plans for the day Assignments for the day 1 18.1 Refraction of Light o Snell

### Exam 3--PHYS 2021M-Spring 2009

Name: Class: Date: Exam 3--PHYS 2021M-Spring 2009 Multiple Choice Identify the choice that best completes the statement or answers the question Each question is worth 2 points 1 Images made by mirrors

### Basic Optics System OS-8515C

40 50 30 60 20 70 10 80 0 90 80 10 20 70 T 30 60 40 50 50 40 60 30 70 20 80 90 90 80 BASIC OPTICS RAY TABLE 10 0 10 70 20 60 50 40 30 Instruction Manual with Experiment Guide and Teachers Notes 012-09900B

### EP 324 Applied Optics. Topic 3 Lenses. Department of Engineering of Physics Gaziantep University. Oct Sayfa 1

EP 324 Applied Optics Topic 3 Lenses Department of Engineering of Physics Gaziantep University Oct 205 Sayfa PART I SPHERICAL LENSES Sayfa 2 Lens: The main instrument for image formation Sayfa 3 Lens A

### Optics: Lenses & Mirrors

Warm-Up 1. A light ray is passing through water (n=1.33) towards the boundary with a transparent solid at an angle of 56.4. The light refracts into the solid at an angle of refraction of 42.1. Determine

### REFLECTION THROUGH LENS

REFLECTION THROUGH LENS A lens is a piece of transparent optical material with one or two curved surfaces to refract light rays. It may converge or diverge light rays to form an image. Lenses are mostly

### always positive for virtual image

Point to be remembered: sign convention for Spherical mirror Object height, h = always positive Always +ve for virtual image Image height h = Always ve for real image. Object distance from pole (u) = always

### Light sources can be natural or artificial (man-made)

Light The Sun is our major source of light Light sources can be natural or artificial (man-made) People and insects do not see the same type of light - people see visible light - insects see ultraviolet

### Types of lenses. Shown below are various types of lenses, both converging and diverging.

Types of lenses Shown below are various types of lenses, both converging and diverging. Any lens that is thicker at its center than at its edges is a converging lens with positive f; and any lens that