# Photolithography II ( Part 2 )

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 1 Photolithography II ( Part 2 ) Chapter 14 : Semiconductor Manufacturing Technology by M. Quirk & J. Serda Saroj Kumar Patra, Department of Electronics and Telecommunication, Norwegian University of Science and Technology ( NTNU )

2 2 Objectives of this Lecture 1. State and explain the critical aspects of optics for optical lithography. Reflection of Light Refraction of Light Lens Diffraction Numerical Aperture, NA Antireflective Coating 2. Explain resolution, describe its critical parameters, and discuss how it is calculated.

3 3 Ten steps of Photolithography UV Light HMDS Resist Mask 1-3) Vapor prime 4) Spin coat 5) Soft bake 6) Alignment and Exposure 7) Post-exposure bake (PEB) 8) Develop 9) Hard bake 10) Develop inspect

4 4 Laws of Reflection The angle of incidence of a light wavefront with a plane mirror is equal to the angle of reflection. Incident light i r Reflected light Law of Reflection: i r Figure Quirk & Serda

5 5 Application of Mirrors Flat mirror Illuminator for a simple aligner Ellipsoidal mirror Mask Important for uniform illumination of the mask Flat mirror Used with permission from Canon USA Figure Quirk & Serda

6 6 Refraction of Light based on two mediums Snell s Law: sin i = n sin r Index of refraction, n = sin i / sin r Speed of light: c = c 0 / n fast medium air (n 1.0) slow medium glass (n 1.5) glass (n 1.5) slow medium air (n 1.0) fast medium Figure Quirk & Serda

7 7 Absolute Index of Refraction for selected materials Material Index of Refraction (n) Air Water 1.33 Fused Silica (Amorphous Quartz) Diamond Table 14.4 Quirk & Serda

8 8 Converging Lens with Focal Point 2f f f = focal length F = focal point S = 2f O = origin, center of lens S Object Real F O F image S Figure Quirk & Serda

9 9 Diverging Lens with Focal Point f = focal length F = focal point S = 2f O = origin, center of lens S Object Virtual image F O F S Figure Quirk & Serda

10 10 Optical System of Lenses Masking unit Mirror Condenser lens Condenser lens Fly s eye lens Mirror Flat mirror Collimator lens Optical filter Shutter Mercury lamp Light sensor Reticle Reticle stage (X, Y, ) Lamp monitor Lamp position knob Ellipsoidal mirror Fiber optics X-drive motor Projection optics Optical focus sensor Interferometer mirror -Z drive stage Y-drive motor Vacuum chuck Wafer stage assembly Used with permission from Canon U.S.A., FPA-2000 i1 exposure system Figure 14.14

11 11 Lens Material 365 nm UV: glass (traditionally) 248 nm DUV: fused silica (less light absorption at DUV wavelengths) 193 nm DUV and 157 nm VUV: calcium fluoride (CaF 2 ) which is more transparent at these wavelengths then fused silica Absorption => loss in exposure power and induces heat in the optics, which leads to refractive index changes and imaging problems

12 12 Laser-Induced Lens Compaction => reduced image quality Compacted area of lens Figure Quirk & Serda

13 13 Interference Pattern from Light Diffraction at Small Opening Light travels in straight lines. Diffraction occurs when light hits edges of objects. Diffraction bands, or interference patterns, occur when light waves pass through narrow slits. Diffraction bands Figure Quirk & Serda

14 14 Diffraction in a Reticle Pattern Diffracted light rays Slit Plane light wave Figure Quirk & Serda

15 15 Lens Capturing Diffracted Light Quartz UV Mask Chrome Diffraction patterns Lens Figure Quirk & Serda

16 16 Numerical Aperture (NA) For a lens, the NA is a measure of how much diffracted light the lens can accept and image by converging the diffracted light to a single point. NA = (n) sin θ m (n) (radius of lens) / (focal length of lens) where, n = index of refraction of the image medium (n 1 for air) θ m = angle between the optical principal axis and the marginal ray at the edge of the lens

17 17 Effect of Numerical Aperture on Imaging Pinhole masks Lens NA Image results Bad Poor Good Diffracted light Figure Quirk & Serda

18 18 Typical NA Values for Photolithography Tools Type of Equipment Scanning Projection Aligner with mirrors (1970s technology) NA Value 0.25 Step-and-Repeat Step-and-Scan Table 14.5 Quirk & Serda

19 19 Photoresist Reflective Notching Due to Light Reflections UV exposure light Mask Edge diffraction Exposed photoresist Unexposed photoresist Surface reflection Polysilicon Notched photoresist STI Substrate STI Figure Quirk & Serda

20 20 Light Suppression (up to 99 %) with Bottom Antireflective Coating (BARC) UV exposure light Mask Exposed photoresist Polysilicon Unexposed photoresist BARC STI Substrate STI Figure Quirk & Serda

21 21 Incident and Reflected Light Wave Interference in Photoresist Incident wave Reflected wave Photoresist Film Substrate Standing waves cause nonuniform exposure along the thickness of the photoresist film. Figure Quirk & Serda

22 22 Effect of Standing Waves in Photoresist Photograph courtesy of the Willson Research Group, University of Texas at Austin Photo 14.1 Quirk & Serda

23 23 Antireflective Coating to Prevent Standing Waves Incident wave Antireflective coating Å Photoresist 1 μm Film Substrate The use of antireflective coatings, dyes, and filters can help prevent interference. Figure Quirk & Serda

24 24 BARC Phase-Shift Cancellation of Light (A) Incident light (B) Top surface reflection (C) (D) Photoresist C and D cancel due to phase difference BARC (TiN) Aluminum Figure Quirk & Serda

25 25 Top Antireflective Coating (TARC) Incident light Resist-substrate reflections Incident light Top antireflective coating absorbs substrate reflections. Photoresist Photoresist Substrate reflection Substrate Substrate Figure Quirk & Serda

26 26 Antireflective Coatings (ARC) Organic ARC reduces reflection by absorbing light Inorganic ARC (e.g. TiN) work by phase-shift cancellation Organic ARC easier to remove than inorganic ARC (sometimes left to become part of the device) BARC in general more effective than TARC

27 27 Optical Lithography Resolution Calculating Resolution Depth of Focus Resolution Versus Depth of Focus Surface Planarity

28 28 Resolution of Features The dimensions of linewidths and spaces must be equal. As feature sizes decrease, it is more difficult to separate features from each other. Figure Quirk & Serda

29 29 Calculating Resolution for a given, NA and k k = 0.6 Illuminator, R = k NA Mask Lens, NA Wafer R i-line DUV R 365 nm nm 365 nm nm 193 nm nm 193 nm nm Figure Quirk & Serda

30 30 Depth of Focus (DOF) Lens Center of focus - Depth of focus Photoresist + Film Figure Quirk & Serda

31 31 Resolution Versus Depth of Focus for Varying NA DOF = 2(NA) 2 Illuminator, Mask i-line DUV R DOF 365 nm nm 901 nm 365 nm nm 507 nm 193 nm nm 476 nm 193 nm nm 268 nm Lens, NA Center of focus - Depth of focus Photoresist Wafer DOF + Film Figure Quirk & Serda

32 32 g{tç~ léâ

### Device Fabrication: Photolithography

Device Fabrication: Photolithography 1 Objectives List the four components of the photoresist Describe the difference between +PR and PR Describe a photolithography process sequence List four alignment

### Chapter 6 Photolithography

Chapter 6 Photolithography Hong Xiao, Ph. D. hxiao89@hotmail.com www2.austin.cc.tx.us/hongxiao/book.htm Hong Xiao, Ph. D. www2.austin.cc.tx.us/hongxiao/book.htm 1 Objectives List the four components of

### Lecture 7. Lithography and Pattern Transfer. Reading: Chapter 7

Lecture 7 Lithography and Pattern Transfer Reading: Chapter 7 Used for Pattern transfer into oxides, metals, semiconductors. 3 types of Photoresists (PR): Lithography and Photoresists 1.) Positive: PR

### 5. Lithography. 1. photolithography intro: overall, clean room 2. principle 3. tools 4. pattern transfer 5. resolution 6. next-gen

5. Lithography 1. photolithography intro: overall, clean room 2. principle 3. tools 4. pattern transfer 5. resolution 6. next-gen References: Semiconductor Devices: Physics and Technology. 2 nd Ed. SM

### Image Formation. Light from distant things. Geometrical optics. Pinhole camera. Chapter 36

Light from distant things Chapter 36 We learn about a distant thing from the light it generates or redirects. The lenses in our eyes create images of objects our brains can process. This chapter concerns

### Physics 1520, Spring 2013 Quiz 2, Form: A

Physics 1520, Spring 2013 Quiz 2, Form: A Name: Date: Section 1. Exercises 1. The index of refraction of a certain type of glass for red light is 1.52. For violet light, it is 1.54. Which color of light,

### Will contain image distance after raytrace Will contain image height after raytrace

Name: LASR 51 Final Exam May 29, 2002 Answer all questions. Module numbers are for guidance, some material is from class handouts. Exam ends at 8:20 pm. Ynu Raytracing The first questions refer to the

### Chapter 17: Wave Optics. What is Light? The Models of Light 1/11/13

Chapter 17: Wave Optics Key Terms Wave model Ray model Diffraction Refraction Fringe spacing Diffraction grating Thin-film interference What is Light? Light is the chameleon of the physical world. Under

### Collimation Tester Instructions

Description Use shear-plate collimation testers to examine and adjust the collimation of laser light, or to measure the wavefront curvature and divergence/convergence magnitude of large-radius optical

### Phys214 Fall 2004 Midterm Form A

1. A clear sheet of polaroid is placed on top of a similar sheet so that their polarizing axes make an angle of 30 with each other. The ratio of the intensity of emerging light to incident unpolarized

### CHAPTER 2 Principle and Design

CHAPTER 2 Principle and Design The binary and gray-scale microlens will be designed and fabricated. Silicon nitride and photoresist will be taken as the material of the microlens in this thesis. The design

### Test procedures Page: 1 of 5

Test procedures Page: 1 of 5 1 Scope This part of document establishes uniform requirements for measuring the numerical aperture of optical fibre, thereby assisting in the inspection of fibres and cables

### Module - 2 Lecture - 13 Lithography I

Nano Structured Materials-Synthesis, Properties, Self Assembly and Applications Prof. Ashok. K.Ganguli Department of Chemistry Indian Institute of Technology, Delhi Module - 2 Lecture - 13 Lithography

### Geometric Optics. Ray Model. assume light travels in straight line uses rays to understand and predict reflection & refraction

Geometric Optics Ray Model assume light travels in straight line uses rays to understand and predict reflection & refraction General Physics 2 Geometric Optics 1 Reflection Law of reflection the angle

### The Formation of an Aerial Image, part 3

T h e L i t h o g r a p h y T u t o r (July 1993) The Formation of an Aerial Image, part 3 Chris A. Mack, FINLE Technologies, Austin, Texas In the last two issues, we described how a projection system

### Name. Light Chapter Summary Cont d. Refraction

Page 1 of 17 Physics Week 12(Sem. 2) Name Light Chapter Summary Cont d with a smaller index of refraction to a material with a larger index of refraction, the light refracts towards the normal line. Also,

### Oriel Flood Exposure Sources

218 Oriel Flood Exposure Sources High intensity outputs CALIBRATION SOURCES Highly uniform, large collimated beams Efficient out of band rejection Timed exposures DEUTERIUM SOURCES ARC SOURCES INCANDESCENT

### Optical Projection Printing and Modeling

Optical Projection Printing and Modeling Overview of optical lithography, concepts, trends Basic Parameters and Effects (1-14) Resolution Depth of Focus; Proximity, MEEF, LES Image Calculation, Characterization

### Copyright 2000 by the Society of Photo-Optical Instrumentation Engineers.

Copyright by the Society of Photo-Optical Instrumentation Engineers. This paper was published in the proceedings of Optical Microlithography XIII, SPIE Vol. 4, pp. 658-664. It is made available as an electronic

### T in sec, I in W/cm 2, E in J/cm 2

Exposures from Mask Aligner into Resist Mask aligner images created by shadowing from mask into resist Soft contact and Proximity good for 3 micron structures Vacuum Hard Contact: no shadow effects at

### From Extended Light Source to Collimated Illumination

Chapter 2 From Extended Light Source to Collimated Illumination 2.1 Introduction The collimation obtained in the manner shown in Fig. 1.10(b) uses a suitable projection lens with diameter-to-focal-length

### StarBright XLT Optical Coatings

StarBright XLT Optical Coatings StarBright XLT is Celestron s revolutionary optical coating system that outperforms any other coating in the commercial telescope market. Our most popular Schmidt-Cassegrain

### Computer Generated Holograms for Optical Testing

Computer Generated Holograms for Optical Testing Dr. Jim Burge Associate Professor Optical Sciences and Astronomy University of Arizona jburge@optics.arizona.edu 520-621-8182 Computer Generated Holograms

### Basic Optics System OS-8515C

40 50 30 60 20 70 10 80 0 90 80 10 20 70 T 30 60 40 50 50 40 60 30 70 20 80 90 90 80 BASIC OPTICS RAY TABLE 10 0 10 70 20 60 50 40 30 Instruction Manual with Experiment Guide and Teachers Notes 012-09900B

### Properties of Structured Light

Properties of Structured Light Gaussian Beams Structured light sources using lasers as the illumination source are governed by theories of Gaussian beams. Unlike incoherent sources, coherent laser sources

### INTRODUCTION THIN LENSES. Introduction. given by the paraxial refraction equation derived last lecture: Thin lenses (19.1) = 1. Double-lens systems

Chapter 9 OPTICAL INSTRUMENTS Introduction Thin lenses Double-lens systems Aberrations Camera Human eye Compound microscope Summary INTRODUCTION Knowledge of geometrical optics, diffraction and interference,

### Semiconductor Technology

Semiconductor Technology from A to Z + - x 1 0 x Photolithographie www.halbleiter.org Contents Contents List of Figures III 1 Photolithographie 1 1.1 Exposure and resist coating..........................

### Tutor43.doc; Version 8/15/03 T h e L i t h o g r a p h y E x p e r t (November 2003)

Tutor43.doc; Version /15/03 T h e L i t h o g r a p h y E x p e r t (November 2003) Scattering Bars Chris A. Mack, KLA-Tencor, FINLE Division, Austin, Texas Resolution enhancement technologies refer to

### (ksaligner & quintel resolution)

Process [4.10] (ksaligner & quintel resolution) 1.0 Process Summary 1.1 Since Karl Suss ksaligner is heavily used and Quintel aligner is not, nanolab decided to compare the 2 micron line resolution from

### EE119 Introduction to Optical Engineering Fall 2009 Final Exam. Name:

EE119 Introduction to Optical Engineering Fall 2009 Final Exam Name: SID: CLOSED BOOK. THREE 8 1/2 X 11 SHEETS OF NOTES, AND SCIENTIFIC POCKET CALCULATOR PERMITTED. TIME ALLOTTED: 180 MINUTES Fundamental

### INDEX OF REFRACTION index of refraction n = c/v material index of refraction n

INDEX OF REFRACTION The index of refraction (n) of a material is the ratio of the speed of light in vacuuo (c) to the speed of light in the material (v). n = c/v Indices of refraction for any materials

### PHY 431 Homework Set #5 Due Nov. 20 at the start of class

PHY 431 Homework Set #5 Due Nov. 0 at the start of class 1) Newton s rings (10%) The radius of curvature of the convex surface of a plano-convex lens is 30 cm. The lens is placed with its convex side down

### Low-cost Interference Lithography

Low-cost Interference Lithography 343 Corey P. Fucetola, Hasan Korre and Karl K. Berggren Research Laboratory of Electronics Massachusetts Institute of Technology, Cambridge, MA, 02139 Abstract We report

### Lecture 22 Optical MEMS (4)

EEL6935 Advanced MEMS (Spring 2005) Instructor: Dr. Huikai Xie Lecture 22 Optical MEMS (4) Agenda: Refractive Optical Elements Microlenses GRIN Lenses Microprisms Reference: S. Sinzinger and J. Jahns,

### Final Reg Optics Review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Final Reg Optics Review 1) How far are you from your image when you stand 0.75 m in front of a vertical plane mirror? 1) 2) A object is 12 cm in front of a concave mirror, and the image is 3.0 cm in front

### Introduction to Light Microscopy. (Image: T. Wittman, Scripps)

Introduction to Light Microscopy (Image: T. Wittman, Scripps) The Light Microscope Four centuries of history Vibrant current development One of the most widely used research tools A. Khodjakov et al. Major

### Chapter 23 Study Questions Name: Class:

Chapter 23 Study Questions Name: Class: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. When you look at yourself in a plane mirror, you

### Chapter 29/30. Wave Fronts and Rays. Refraction of Sound. Dispersion in a Prism. Index of Refraction. Refraction and Lenses

Chapter 29/30 Refraction and Lenses Refraction Refraction the bending of waves as they pass from one medium into another. Caused by a change in the average speed of light. Analogy A car that drives off

### Multi-Element Overview

Intro Lenses Overview........ 128 Windows Achromats 425-675nm Cemented Doublets. 132 425-675nm Fast Achromats..... 133 1064/633nm Air-Spaced...... 134 1064/532nm Air-Spaced...... 135 Aplanats Visible....................

### Lecture 4: Geometrical Optics 2. Optical Systems. Images and Pupils. Rays. Wavefronts. Aberrations. Outline

Lecture 4: Geometrical Optics 2 Outline 1 Optical Systems 2 Images and Pupils 3 Rays 4 Wavefronts 5 Aberrations Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Lecture 4: Geometrical

### Assignment X Light. Reflection and refraction of light. (a) Angle of incidence (b) Angle of reflection (c) principle axis

Assignment X Light Reflection of Light: Reflection and refraction of light. 1. What is light and define the duality of light? 2. Write five characteristics of light. 3. Explain the following terms (a)

### PHYS 160 Astronomy. When analyzing light s behavior in a mirror or lens, it is helpful to use a technique called ray tracing.

Optics Introduction In this lab, we will be exploring several properties of light including diffraction, reflection, geometric optics, and interference. There are two sections to this lab and they may

### AP Physics Problems -- Waves and Light

AP Physics Problems -- Waves and Light 1. 1974-3 (Geometric Optics) An object 1.0 cm high is placed 4 cm away from a converging lens having a focal length of 3 cm. a. Sketch a principal ray diagram for

### 3.Photolithography and resist systems

3.Photolithography and resist systems Exposure Mercury arc lamp Shadow printing projection printing Photomask Substrates Resist systems DNQ-Novolak-based Epoxy-based Polyimide based 1 Exposure Mercury

### 1. INTRODUCTION ABSTRACT

Experimental verification of Sub-Wavelength Holographic Lithography physical concept for single exposure fabrication of complex structures on planar and non-planar surfaces Michael V. Borisov, Dmitry A.

### Chapter 7. Optical Measurement and Interferometry

Chapter 7 Optical Measurement and Interferometry 1 Introduction Optical measurement provides a simple, easy, accurate and reliable means for carrying out inspection and measurements in the industry the

### Diffraction. Interference with more than 2 beams. Diffraction gratings. Diffraction by an aperture. Diffraction of a laser beam

Diffraction Interference with more than 2 beams 3, 4, 5 beams Large number of beams Diffraction gratings Equation Uses Diffraction by an aperture Huygen s principle again, Fresnel zones, Arago s spot Qualitative

### always positive for virtual image

Point to be remembered: sign convention for Spherical mirror Object height, h = always positive Always +ve for virtual image Image height h = Always ve for real image. Object distance from pole (u) = always

### DOE Project: Resist Characterization

DOE Project: Resist Characterization GOAL To achieve high resolution and adequate throughput, a photoresist must possess relatively high contrast and sensitivity to exposing radiation. The objective of

### LASER INTERFERENCE LITHOGRAPHY

In: Lithography: Principles, Processes and Materials ISBN: 978-1-61761-837-6 Editor: Theodore C. Hennessy, pp. 133-148 2011 Nova Science Publishers, Inc. The exclusive license for this PDF is limited to

### Microscope anatomy, image formation and resolution

Microscope anatomy, image formation and resolution Ian Dobbie Buy this book for your lab: D.B. Murphy, "Fundamentals of light microscopy and electronic imaging", ISBN 0-471-25391-X Visit these websites:

### Optical and mechanical parameters. 100 mm N. of elements 20.5 mm Dimensions 11.7 degrees Weight F/N = 4 (fixed) N.A.

OB SWIR 100 LENS OB-SWIR100/4 P/N C0416 General Description This family of high resolution SWIR lenses image from 0.9 2.3 µmm making them especially well-suited for PCB inspection, special laser applications,

### OPTICS DIVISION B. School/#: Names:

OPTICS DIVISION B School/#: Names: Directions: Fill in your response for each question in the space provided. All questions are worth two points. Multiple Choice (2 points each question) 1. Which of the

### The Design, Fabrication, and Application of Diamond Machined Null Lenses for Testing Generalized Aspheric Surfaces

The Design, Fabrication, and Application of Diamond Machined Null Lenses for Testing Generalized Aspheric Surfaces James T. McCann OFC - Diamond Turning Division 69T Island Street, Keene New Hampshire

### Converging and Diverging Surfaces. Lenses. Converging Surface

Lenses Sandy Skoglund 2 Converging and Diverging s AIR Converging If the surface is convex, it is a converging surface in the sense that the parallel rays bend toward each other after passing through the

### Surface Topography and Alignment Effects in UV-Modified Polyimide Films with Micron Size Patterns

CHINESE JOURNAL OF PHYSICS VOL. 41, NO. 2 APRIL 2003 Surface Topography and Alignment Effects in UV-Modified Polyimide Films with Micron Size Patterns Ru-Pin Pan 1, Hua-Yu Chiu 1,Yea-FengLin 1,andJ.Y.Huang

### Principles of Optics for Engineers

Principles of Optics for Engineers Uniting historically different approaches by presenting optical analyses as solutions of Maxwell s equations, this unique book enables students and practicing engineers

### i- Line Photoresist Development: Replacement Evaluation of OiR

i- Line Photoresist Development: Replacement Evaluation of OiR 906-12 Nishtha Bhatia High School Intern 31 July 2014 The Marvell Nanofabrication Laboratory s current i-line photoresist, OiR 897-10i, has

### Human Retina. Sharp Spot: Fovea Blind Spot: Optic Nerve

I am Watching YOU!! Human Retina Sharp Spot: Fovea Blind Spot: Optic Nerve Human Vision Optical Antennae: Rods & Cones Rods: Intensity Cones: Color Energy of Light 6 10 ev 10 ev 4 1 2eV 40eV KeV MeV Energy

### Photonics and Optical Communication

Photonics and Optical Communication (Course Number 300352) Spring 2007 Dr. Dietmar Knipp Assistant Professor of Electrical Engineering http://www.faculty.iu-bremen.de/dknipp/ 1 Photonics and Optical Communication

### Week IX: INTERFEROMETER EXPERIMENTS

Week IX: INTERFEROMETER EXPERIMENTS Notes on Adjusting the Michelson Interference Caution: Do not touch the mirrors or beam splitters they are front surface and difficult to clean without damaging them.

### LIGHT REFLECTION AND REFRACTION

LIGHT REFLECTION AND REFRACTION REFLECTION OF LIGHT A highly polished surface, such as a mirror, reflects most of the light falling on it. Laws of Reflection: (i) The angle of incidence is equal to the

### EXPRIMENT 3 COUPLING FIBERS TO SEMICONDUCTOR SOURCES

EXPRIMENT 3 COUPLING FIBERS TO SEMICONDUCTOR SOURCES OBJECTIVES In this lab, firstly you will learn to couple semiconductor sources, i.e., lightemitting diodes (LED's), to optical fibers. The coupling

### Chapter 36. Image Formation

Chapter 36 Image Formation Real and Virtual Images Real images can be displayed on screens Virtual Images can not be displayed onto screens. Focal Length& Radius of Curvature When the object is very far

### ii) When light falls on objects, it reflects the light and when the reflected light reaches our eyes then we see the objects.

Light i) Light is a form of energy which helps us to see objects. ii) When light falls on objects, it reflects the light and when the reflected light reaches our eyes then we see the objects. iii) Light

### c v n = n r Sin n c = n i Refraction of Light Index of Refraction Snell s Law or Refraction Example Problem Total Internal Reflection Optics

Refraction is the bending of the path of a light wave as it passes from one material into another material. Refraction occurs at the boundary and is caused by a change in the speed of the light wave upon

### VISUAL PHYSICS ONLINE DEPTH STUDY: ELECTRON MICROSCOPES

VISUAL PHYSICS ONLINE DEPTH STUDY: ELECTRON MICROSCOPES Shortly after the experimental confirmation of the wave properties of the electron, it was suggested that the electron could be used to examine objects

### White Paper: Modifying Laser Beams No Way Around It, So Here s How

White Paper: Modifying Laser Beams No Way Around It, So Here s How By John McCauley, Product Specialist, Ophir Photonics There are many applications for lasers in the world today with even more on the

### Project Staff: Timothy A. Savas, Michael E. Walsh, Thomas B. O'Reilly, Dr. Mark L. Schattenburg, and Professor Henry I. Smith

9. Interference Lithography Sponsors: National Science Foundation, DMR-0210321; Dupont Agreement 12/10/99 Project Staff: Timothy A. Savas, Michael E. Walsh, Thomas B. O'Reilly, Dr. Mark L. Schattenburg,

### k λ NA Resolution of optical systems depends on the wavelength visible light λ = 500 nm Extreme ultra-violet and soft x-ray light λ = 1-50 nm

Resolution of optical systems depends on the wavelength visible light λ = 500 nm Spatial Resolution = k λ NA EUV and SXR microscopy can potentially resolve full-field images with 10-100x smaller features

### SUBJECT: PHYSICS. Use and Succeed.

SUBJECT: PHYSICS I hope this collection of questions will help to test your preparation level and useful to recall the concepts in different areas of all the chapters. Use and Succeed. Navaneethakrishnan.V

### Light and Applications of Optics

UNIT 4 Light and Applications of Optics Topic 4.1: What is light and how is it produced? Topic 4.6: What are lenses and what are some of their applications? Topic 4.2 : How does light interact with objects

### Chapter 23. Light Geometric Optics

Chapter 23. Light Geometric Optics There are 3 basic ways to gather light and focus it to make an image. Pinhole - Simple geometry Mirror - Reflection Lens - Refraction Pinhole Camera Image Formation (the

### FABRICATION OF MICROPOLARIZER AND NARROW BANDPASS PIXEL FILTERS FOR FOCAL PLANE ARRAY

FABRICATION OF MICROPOLARIZER AND NARROW BANDPASS PIXEL FILTERS FOR FOCAL PLANE ARRAY Thesis Submitted to The School of Engineering of the UNIVERSITY OF DAYTON In Partial Fulfillment of the Requirements

### Holography. Introduction

Holography Introduction Holography is the technique of using monochromatic light sources to produce 3D images on photographic film or specially designed plates. In this experiment you will learn about

### Part 1 Investigating Snell s Law

Geometric Optics with Lenses PURPOSE: To observe the refraction of light off through lenses; to investigate the relationship between objects and images; to study the relationship between object distance,

### Optical Waveguide Types

8 Refractive Micro Optics Optical Waveguide Types There are two main types of optical waveguide structures: the step index and the graded index. In a step-index waveguide, the interface between the core

### The Formation of an Aerial Image, part 2

T h e L i t h o g r a p h y T u t o r (April 1993) The Formation of an Aerial Image, part 2 Chris A. Mack, FINLE Technologies, Austin, Texas In the last issue, we began to described how a projection system

### Chapter 34 Geometric Optics (also known as Ray Optics) by C.-R. Hu

Chapter 34 Geometric Optics (also known as Ray Optics) by C.-R. Hu 1. Principles of image formation by mirrors (1a) When all length scales of objects, gaps, and holes are much larger than the wavelength

### The LINOS Singlets. Our quality criteria:

The LINOS From convergent lenses and diffuse lenses to best form lenses and aspheres, our extensive selection of simple lenses, or singlets, with various focal lengths and diameters guarantees that you

### An Off-Axis Hartmann Sensor for Measurement of Wavefront Distortion in Interferometric Detectors

An Off-Axis Hartmann Sensor for Measurement of Wavefront Distortion in Interferometric Detectors Aidan Brooks, Peter Veitch, Jesper Munch Department of Physics, University of Adelaide Outline of Talk Discuss

### Basic principles of photography. David Capel 346B IST

Basic principles of photography David Capel 346B IST Latin Camera Obscura = Dark Room Light passing through a small hole produces an inverted image on the opposite wall Safely observing the solar eclipse

### Katarina Logg, Kristofer Bodvard, Mikael Käll. Dept. of Applied Physics. 12 September Optical Microscopy. Supervisor s signature:...

Katarina Logg, Kristofer Bodvard, Mikael Käll Dept. of Applied Physics 12 September 2007 O1 Optical Microscopy Name:.. Date:... Supervisor s signature:... Introduction Over the past decades, the number

### Lecture Outline Chapter 27. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 27 Physics, 4 th Edition James S. Walker Chapter 27 Optical Instruments Units of Chapter 27 The Human Eye and the Camera Lenses in Combination and Corrective Optics The Magnifying

### Geometrical Optics Optical systems

Phys 322 Lecture 16 Chapter 5 Geometrical Optics Optical systems Magnifying glass Purpose: enlarge a nearby object by increasing its image size on retina Requirements: Image should not be inverted Image

### Update on 193nm immersion exposure tool

Update on 193nm immersion exposure tool S. Owa, H. Nagasaka, Y. Ishii Nikon Corporation O. Hirakawa and T. Yamamoto Tokyo Electron Kyushu Ltd. January 28, 2004 Litho Forum 1 What is immersion lithography?

### Chapter 26. The Refraction of Light: Lenses and Optical Instruments

Chapter 26 The Refraction of Light: Lenses and Optical Instruments 26.1 The Index of Refraction Light travels through a vacuum at a speed c=3. 00 10 8 m/ s Light travels through materials at a speed less

### JPN Pahang Physics Module Form 4 Chapter 5 Light. In each of the following sentences, fill in the bracket the appropriate word or words given below.

JPN Pahang Physics Module orm 4 HAPTER 5: LIGHT In each of the following sentences, fill in the bracket the appropriate word or words given below. solid, liquid, gas, vacuum, electromagnetic wave, energy

### UV EXCIMER LASER BEAM HOMOGENIZATION FOR MICROMACHINING APPLICATIONS

Optics and Photonics Letters Vol. 4, No. 2 (2011) 75 81 c World Scientific Publishing Company DOI: 10.1142/S1793528811000226 UV EXCIMER LASER BEAM HOMOGENIZATION FOR MICROMACHINING APPLICATIONS ANDREW

### PicoMaster 100. Unprecedented finesse in creating 3D micro structures. UV direct laser writer for maskless lithography

UV direct laser writer for maskless lithography Unprecedented finesse in creating 3D micro structures Highest resolution in the market utilizing a 405 nm diode laser Structures as small as 300 nm 375 nm

### Line End Shortening. T h e L i t h o g r a p h y E x p e r t (Spring 2000) Chris A. Mack, FINLE Technologies, Austin, Texas

Tutor29.doc: Version 2/15/00 Line End Shortening Chris A. Mack, FINLE Technologies, Austin, Texas T h e L i t h o g r a p h y E x p e r t (Spring 2000) Historically, lithography engineering has focused

### Confocal Imaging Through Scattering Media with a Volume Holographic Filter

Confocal Imaging Through Scattering Media with a Volume Holographic Filter Michal Balberg +, George Barbastathis*, Sergio Fantini % and David J. Brady University of Illinois at Urbana-Champaign, Urbana,

### DPMPHOTONICS. Precision Optics Catalog. P.O. Box 3002 Vernon, CT Tel: (860) Fax: (860)

DPMPHOTONICS Precision Optics Catalog DPMPHOTONICS P.O. Box 3002 Vernon, CT 06066. Tel: (860) 872-6573. Fax: (860) 454-4217. Welcome to DPM Photonics... Company Background DPM Photonics was founded in

### Lenses. Images. Difference between Real and Virtual Images

Linear Magnification (m) This is the factor by which the size of the object has been magnified by the lens in a direction which is perpendicular to the axis of the lens. Linear magnification can be calculated

### Interferometric Lithography Optical System Utilizing a 442nm HeCd Laser

Interferometric Lithography Optical System Utilizing a 442nm HeCd Laser Frank C. Cropanese Microelectronic Engineering Rochester Institute of Technology Rochester, NY 14623 Abstract - An interferometric

### Aspheric Lenses. Contact us for a Stock or Custom Quote Today! Edmund Optics BROCHURE

Edmund Optics BROCHURE Aspheric Lenses products & capabilities Contact us for a Stock or Custom Quote Today! USA: +1-856-547-3488 EUROPE: +44 (0) 1904 788600 ASIA: +65 6273 6644 JAPAN: +81-3-3944-6210

### 2.1 BASIC THEORY: INTERFERENCE OF TWO BEAMS

2 LASER INTERFERENCE LITHOGRAPHY (LIL) 9 2 LASER INTERFERENCE LITHOGRAPHY (LIL) Laser interference lithography [3~22] (LIL) is a method to produce periodic structures using two interfering highly-coherent