Micro- and Nano-Technology... for Optics

Size: px
Start display at page:

Download "Micro- and Nano-Technology... for Optics"

Transcription

1 Micro- and Nano-Technology for Optics 3.2 Lithography U.D. Zeitner Fraunhofer Institut für Angewandte Optik und Feinmechanik Jena

2 Printing on Stones Map of Munich Stone Print

3 Contact Printing light mask resist substrate

4 Mask Aligner

5 Mask Aligner

6 Mercury Emission Spectrum i h g e - line

7 Proximity Printing light mask proximity gap resist substrate

8 Projection Lithography light mask projection optics resist substrate

9 The inverse microscope microscope lithography light source image object microscope lens object projection lens image light source

10 Photolithography Examples

11 ASML-Stepper

12 Stepper Objective for DUV-Lithography aspheric lenses Zeiss SMT, WO 2003/075049

13 Double Patterning

14

15 Physics of Half-Tone- and Gray-Tone-Masks filling factor: small medium high grating period or pitch > λ Principle of half tone masks blocking of higher orders by a lens grating period ore pitch < λ brightness in the wafer plane Principle of gray tone masks higher orders do not exist - Sub wavelength masks - HEBS glass masks - LDW glass masks

16 Half-Tone Lithography type of masks pulse width pulse density Also possible: - combinations - Error diffusion half tone mask Courtesy of K. Reimer, ISIT/FhG objective gray tone image

17 Holography Examples

18 Mask Aligner With Collimated Illumination normal incidence Suss MA6-NFH oblique incidence mercury lamp collimator polarizer interference filter cold-light mirror mask substrate special features: adjustable angle of incidence: 0deg- 55deg ( ±1deg ) low divergence: 0.1deg interference filter: 313nm, 365nm, 435nm 6 7

19 Principle of Pattern Transfer Mask Resist Substrate ϕ L ϕ 0 ϕ d b -1 0 th -1 st h Parameters: Wavelength λ / Pitch d Angle of incidence ϕ Groove depth h Duty cycle f = b / d Two beam interference only 0 th and -1 st order wavelength 2d 3 < λ < 2d Symmetric diffraction angles Littrow - mounting angle of incidence sin ϕ = L λ 2d Equal intensities rigorous calculations duty cycle and groove depth of the mask grating

20 Experimental Results Phase mask Amplitude mask Mask 1 µm Copy 1 µm 1 µm

21 Incidence Angle p p m p p=p m /2 λ/2 < p < 3λ/2 λ/2 < p < λ also usable for gratings with different orientations (e.g. circular gratings)

22 Laser Lithography

23 Laser Lithography Scanning Beam AOM AOD U~ profile U~ deflection angle mirror focusing lens scan width substrate motion

24 DWL 400-FF Laser Writer HIMT

25 DWL 400-FF Laser Writer basis system: Laser: max. writing field: min. spot size: autofocus system: writing mode: writing speed: DWL 400, Heidelberg Instruments λ=405nm (laser diode) 200mm x 200mm 1µm optical variable dose (max. 128 level) spot positioning by stage movement and beam deflection lateral scan (width up to 200µm at max. resolution) mm²/min on planar substrates (depending on structure) writing on curved substrates: substrate table: cardanic mount, tilt in two orthogonal axes min. radius of curvature: 10mm max. surface tilt angle: <10 max. sag: 30mm

26 Lithography with variable dose exposure e-beam, laser beam variable dose exposure: intensity modulated exposure beam resist substrate y writing path x substrate movement development: t 1 t 2 dose dependent profile depth after development process high flexibility for arbitrary surface profiles

27 Laserlithography Example Structures refractive lens array profile depth: 35µm diffractive lens array profile depth: 1.5µm diffractive beam shaper profile depth: 1.2µm refractive beam shaper depth: 1.7µm refractive beam shaper profile depth: 6µm

28 Electron Beam Column electron gun beam on/of control magnetic deflection system and objective aperture detector stage positioning system x/y-stage Laser interferometer (position feedback)

29 Beam Diameter (Example) here: about 6nm beam size with proper systems 0.5nm beam size is achievable

30 Material Interaction Photons Electrons electron beam 20keV Dose 5-8µm (material dependent) scattering of electrons in the material distribution of deposited dose exponential absorption (Lambert-Beer) complex distribution

31 Electron Deceleration deceleration: numerous material dependent secondary effects: secondary electrons Auger-electrons characteristic x-ray radiation Bremsstrahlung radiation primary electrons resist substrate direction changes in statistical order

32 Interaction Volume primary electrons increasing beam energy resist substrate scattering volume

33 Monte-Carlo Simulation of Electron Scattering electron beam resist substrate Proximity Function

34 Proximity Function logε region 2: back scattered electrons L... total path length of an electron relative energy density region 1: primary electrons 0 r < 0, 5µm 0,5µm r < L region 3: x-ray radiation and extensions of the beam radius r

35 Direct Exposure of a NaCl-Crystal exposure with high dose atoms are ionized and can be released from the crystal direct image of the beam pattern, realized by a fine electron beam on a NaCl crystal

36 Statistics of the Exposure Process PMMA 250µC/cm² 10nm desired structure without diffusion with diffusion of molecules

37 Statistics of the Exposure Process FEP µC/cm² 10nm desired structure without diffusion with diffusion of molecules

38 Statistics of the Exposure Process comparison of structures in the resist 10nm desired structure PMMA 250µC/cm² FEP µC/cm²

39 High resist sensitivity in EBL no more statistical independency Resist exposure dose (µc/cm²) e - /(10nm x 10nm) LER (nm) PMMA nm ZEP nm FEP (6)nm Photoresists photons/(10nm x 10nm) DUV 5,000 20,000 2nm EUV ?? DUV Photoresist PMMA ZEP 520 FEP

40 Roughness caused by statistic electron impact experiment (resist pattern FEP 171) schematic modeling (polymer deprotection) 400nm modeling parameters dose: 0.65 e - /nm² (10 µc/cm²) Gauss: 30 nm diffusion: 10 nm no quenching, no proximity effect

41 The Vistec SB350 OS e-beam writer basis system: SB350 OS (Optics Special), Vistec Electron Beam electron energy: 50keV max. writing field: 300mm x 300mm max. substrate thickness: 15mm resolution (direct write): <50nm number of dose levels: 128 address grid: 1nm overlay accuracy: 12nm (mask to mean) writing strategy: variable shaped beam / cell projection vector scan write-on-the-fly mode 43nm wafer resist grating 100nm period 500 nm

42 The Vistec SB350 OS e-beam writer 50keV electron column substrate loading station

43 E-beam writing strategies Gaussian beam Variable shaped beam Cell-Projection incident beam cross-section aperture angular apertures lattice aperture electron optics Gaussian spot shaped beam resolution: writing speed: >1nm low >30nm fast >30nm extreme fast

44 E-Beam Lithography: Example Structures binary grating 400nm period 2µm effective medium grating photonic crystal

45 E-Beam Lithography: Variable Dose Exposure resist depth [nm] fit model: h = a Exp(b D) + c a = (-54.4 ± 0.74) nm b = ( ± 7.9E-7) cm 2 /µc c = (53 ± 3.1) nm 3µm ARP 610 exposure: 0.5A/cm 2, dose layer 1.0, 1.2, 1.5µC/cm 2 development:60s ARP-developer + 15s Isopropanol 20s ARP-developer + 15s Isopropanol measured fit blazed grating electron dose [µc/cm 2 ] diffractive element

46 Multilevel Profile Fabrication Principle: multiple executions of a binary structuring step mask 1 mask 2 mask 3 8 level profile N masks/exposures and etching steps 2 N levels

47 Expected Diffraction Efficiency (for a grating) diffraction efficiency [%] scalar theory: η = sinc 2 1 N N η % % % % % number of phase levels N

48 Diffraction Efficiency reduced by overlay error Efficiency normalized to ideal element [%] simulation 4-level measurement 20 due to random alignment error misalignment normalized to pixel size [%] Alignment error in x and y normalized to pixel size [%] 4-level element 90% of the design efficiency 6% misalignment allowed pixel size misalignment allowed 500nm 30nm 250nm 15nm

49 Diffraction Efficiency in Reality Diffraction efficiency expected (scalar theory) diffraction efficiency η The real diffraction efficiency depends on: - Overlay error - line width error - depth error - edge angle - design - wavelength - deflection angle - number of diffraction orders number of phase levels You will not get the best efficiency with the highest number of phase levels!!!! N

50 Resist melting technique for micro-lens fabrication resist substrate resist coating Courtesy of A. Schilling, IMT UV - light photo mask photolithography modeling of the melting development - thermal resist melting - or reflow in solvent atmosphere

51 Simplified lens design d L curvature radius of the lens: r L α R h L focal length: refraction index: n f r L = f ( nl nair ) d C h C h L = r Ideal: diameter resist cylinder = diameter lens volume resist cylinder = volume lens L r 2 L 1 4 d 2 L resist cylinder substrate 1 h C = hl h d 3 L 2 L

52 NA limitation by wetting angle The rim angle α R of the lens must be larger than the wetting angle α W α W α R Typical wetting angle resist substrate ca. 25 deg dent If not: α W α 35 and n = 1.46 NA min 0.35 How to overcome this problem?

53 Reflow process 1) exposure resist substrate light 3) reflow solvent atmosphere pedestal 2) development 4) baking reflow technique reduces the wetting angle edge of pedestal or passivation limits the spreading Wetting angle < 1deg possible

Micro- and Nano-Technology... for Optics

Micro- and Nano-Technology... for Optics Micro- and Nano-Technology...... for Optics 3.2 Lithography U.D. Zeitner Fraunhofer Institut für Angewandte Optik und Feinmechanik Jena Printing on Stones Map of Munich Stone Print Shadow Printing Photomask

More information

Lithography. 3 rd. lecture: introduction. Prof. Yosi Shacham-Diamand. Fall 2004

Lithography. 3 rd. lecture: introduction. Prof. Yosi Shacham-Diamand. Fall 2004 Lithography 3 rd lecture: introduction Prof. Yosi Shacham-Diamand Fall 2004 1 List of content Fundamental principles Characteristics parameters Exposure systems 2 Fundamental principles Aerial Image Exposure

More information

EE-527: MicroFabrication

EE-527: MicroFabrication EE-57: MicroFabrication Exposure and Imaging Photons white light Hg arc lamp filtered Hg arc lamp excimer laser x-rays from synchrotron Electrons Ions Exposure Sources focused electron beam direct write

More information

Part 5-1: Lithography

Part 5-1: Lithography Part 5-1: Lithography Yao-Joe Yang 1 Pattern Transfer (Patterning) Types of lithography systems: Optical X-ray electron beam writer (non-traditional, no masks) Two-dimensional pattern transfer: limited

More information

Optical Waveguide Types

Optical Waveguide Types 8 Refractive Micro Optics Optical Waveguide Types There are two main types of optical waveguide structures: the step index and the graded index. In a step-index waveguide, the interface between the core

More information

Photolithography II ( Part 2 )

Photolithography II ( Part 2 ) 1 Photolithography II ( Part 2 ) Chapter 14 : Semiconductor Manufacturing Technology by M. Quirk & J. Serda Saroj Kumar Patra, Department of Electronics and Telecommunication, Norwegian University of Science

More information

Half-tone proximity lithography

Half-tone proximity lithography Half-tone proximity lithography Torsten Harzendorf* a, Lorenz Stuerzebecher a, Uwe Vogler b, Uwe D. Zeitner a, Reinhard Voelkel b a Fraunhofer Institut für Angewandte Optik und Feinmechanik IOF, Albert

More information

PHY 431 Homework Set #5 Due Nov. 20 at the start of class

PHY 431 Homework Set #5 Due Nov. 20 at the start of class PHY 431 Homework Set #5 Due Nov. 0 at the start of class 1) Newton s rings (10%) The radius of curvature of the convex surface of a plano-convex lens is 30 cm. The lens is placed with its convex side down

More information

Section 2: Lithography. Jaeger Chapter 2 Litho Reader. The lithographic process

Section 2: Lithography. Jaeger Chapter 2 Litho Reader. The lithographic process Section 2: Lithography Jaeger Chapter 2 Litho Reader The lithographic process Photolithographic Process (a) (b) (c) (d) (e) (f) (g) Substrate covered with silicon dioxide barrier layer Positive photoresist

More information

Integrated Focusing Photoresist Microlenses on AlGaAs Top-Emitting VCSELs

Integrated Focusing Photoresist Microlenses on AlGaAs Top-Emitting VCSELs Integrated Focusing Photoresist Microlenses on AlGaAs Top-Emitting VCSELs Andrea Kroner We present 85 nm wavelength top-emitting vertical-cavity surface-emitting lasers (VCSELs) with integrated photoresist

More information

5. Lithography. 1. photolithography intro: overall, clean room 2. principle 3. tools 4. pattern transfer 5. resolution 6. next-gen

5. Lithography. 1. photolithography intro: overall, clean room 2. principle 3. tools 4. pattern transfer 5. resolution 6. next-gen 5. Lithography 1. photolithography intro: overall, clean room 2. principle 3. tools 4. pattern transfer 5. resolution 6. next-gen References: Semiconductor Devices: Physics and Technology. 2 nd Ed. SM

More information

Section 2: Lithography. Jaeger Chapter 2 Litho Reader. EE143 Ali Javey Slide 5-1

Section 2: Lithography. Jaeger Chapter 2 Litho Reader. EE143 Ali Javey Slide 5-1 Section 2: Lithography Jaeger Chapter 2 Litho Reader EE143 Ali Javey Slide 5-1 The lithographic process EE143 Ali Javey Slide 5-2 Photolithographic Process (a) (b) (c) (d) (e) (f) (g) Substrate covered

More information

Section 2: Lithography. Jaeger Chapter 2. EE143 Ali Javey Slide 5-1

Section 2: Lithography. Jaeger Chapter 2. EE143 Ali Javey Slide 5-1 Section 2: Lithography Jaeger Chapter 2 EE143 Ali Javey Slide 5-1 The lithographic process EE143 Ali Javey Slide 5-2 Photolithographic Process (a) (b) (c) (d) (e) (f) (g) Substrate covered with silicon

More information

MICROCHIP MANUFACTURING by S. Wolf

MICROCHIP MANUFACTURING by S. Wolf MICROCHIP MANUFACTURING by S. Wolf Chapter 19 LITHOGRAPHY II: IMAGE-FORMATION and OPTICAL HARDWARE 2004 by LATTICE PRESS CHAPTER 19 - CONTENTS Preliminaries: Wave- Motion & The Behavior of Light Resolution

More information

Lecture 22 Optical MEMS (4)

Lecture 22 Optical MEMS (4) EEL6935 Advanced MEMS (Spring 2005) Instructor: Dr. Huikai Xie Lecture 22 Optical MEMS (4) Agenda: Refractive Optical Elements Microlenses GRIN Lenses Microprisms Reference: S. Sinzinger and J. Jahns,

More information

MICRO AND NANOPROCESSING TECHNOLOGIES

MICRO AND NANOPROCESSING TECHNOLOGIES MICRO AND NANOPROCESSING TECHNOLOGIES LECTURE 4 Optical lithography Concepts and processes Lithography systems Fundamental limitations and other issues Photoresists Photolithography process Process parameter

More information

Major Fabrication Steps in MOS Process Flow

Major Fabrication Steps in MOS Process Flow Major Fabrication Steps in MOS Process Flow UV light Mask oxygen Silicon dioxide photoresist exposed photoresist oxide Silicon substrate Oxidation (Field oxide) Photoresist Coating Mask-Wafer Alignment

More information

EE143 Fall 2016 Microfabrication Technologies. Lecture 3: Lithography Reading: Jaeger, Chap. 2

EE143 Fall 2016 Microfabrication Technologies. Lecture 3: Lithography Reading: Jaeger, Chap. 2 EE143 Fall 2016 Microfabrication Technologies Lecture 3: Lithography Reading: Jaeger, Chap. 2 Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 1-1 The lithographic process 1-2 1 Photolithographic

More information

Lecture 7. Lithography and Pattern Transfer. Reading: Chapter 7

Lecture 7. Lithography and Pattern Transfer. Reading: Chapter 7 Lecture 7 Lithography and Pattern Transfer Reading: Chapter 7 Used for Pattern transfer into oxides, metals, semiconductors. 3 types of Photoresists (PR): Lithography and Photoresists 1.) Positive: PR

More information

Low aberration monolithic diffraction gratings for high performance optical spectrometers

Low aberration monolithic diffraction gratings for high performance optical spectrometers Low aberration monolithic diffraction gratings for high performance optical spectrometers Peter Triebel, Tobias Moeller, Torsten Diehl; Carl Zeiss Spectroscopy GmbH (Germany) Alexandre Gatto, Alexander

More information

Chapter 3 Fabrication

Chapter 3 Fabrication Chapter 3 Fabrication The total structure of MO pick-up contains four parts: 1. A sub-micro aperture underneath the SIL The sub-micro aperture is used to limit the final spot size from 300nm to 600nm for

More information

EUV Plasma Source with IR Power Recycling

EUV Plasma Source with IR Power Recycling 1 EUV Plasma Source with IR Power Recycling Kenneth C. Johnson kjinnovation@earthlink.net 1/6/2016 (first revision) Abstract Laser power requirements for an EUV laser-produced plasma source can be reduced

More information

Physics 431 Final Exam Examples (3:00-5:00 pm 12/16/2009) TIME ALLOTTED: 120 MINUTES Name: Signature:

Physics 431 Final Exam Examples (3:00-5:00 pm 12/16/2009) TIME ALLOTTED: 120 MINUTES Name: Signature: Physics 431 Final Exam Examples (3:00-5:00 pm 12/16/2009) TIME ALLOTTED: 120 MINUTES Name: PID: Signature: CLOSED BOOK. TWO 8 1/2 X 11 SHEET OF NOTES (double sided is allowed), AND SCIENTIFIC POCKET CALCULATOR

More information

Computer Generated Holograms for Optical Testing

Computer Generated Holograms for Optical Testing Computer Generated Holograms for Optical Testing Dr. Jim Burge Associate Professor Optical Sciences and Astronomy University of Arizona jburge@optics.arizona.edu 520-621-8182 Computer Generated Holograms

More information

A process for, and optical performance of, a low cost Wire Grid Polarizer

A process for, and optical performance of, a low cost Wire Grid Polarizer 1.0 Introduction A process for, and optical performance of, a low cost Wire Grid Polarizer M.P.C.Watts, M. Little, E. Egan, A. Hochbaum, Chad Jones, S. Stephansen Agoura Technology Low angle shadowed deposition

More information

Lecture 13 Basic Photolithography

Lecture 13 Basic Photolithography Lecture 13 Basic Photolithography Chapter 12 Wolf and Tauber 1/64 Announcements Homework: Homework 3 is due today, please hand them in at the front. Will be returned one week from Thursday (16 th Nov).

More information

Micro-Optic Solar Concentration and Next-Generation Prototypes

Micro-Optic Solar Concentration and Next-Generation Prototypes Micro-Optic Solar Concentration and Next-Generation Prototypes Jason H. Karp, Eric J. Tremblay and Joseph E. Ford Photonics Systems Integration Lab University of California San Diego Jacobs School of Engineering

More information

A novel tunable diode laser using volume holographic gratings

A novel tunable diode laser using volume holographic gratings A novel tunable diode laser using volume holographic gratings Christophe Moser *, Lawrence Ho and Frank Havermeyer Ondax, Inc. 85 E. Duarte Road, Monrovia, CA 9116, USA ABSTRACT We have developed a self-aligned

More information

COMPARISON OF ULTIMATE RESOLUTION ACHIEVED BY E-BEAM WRITERS WITH SHAPED BEAM AND WITH GAUSSIAN BEAM

COMPARISON OF ULTIMATE RESOLUTION ACHIEVED BY E-BEAM WRITERS WITH SHAPED BEAM AND WITH GAUSSIAN BEAM COMPARISON OF ULTIMATE RESOLUTION ACHIEVED BY E-BEAM WRITERS WITH SHAPED BEAM AND WITH GAUSSIAN BEAM Stanislav KRÁTKÝ a, Vladimír KOLAŘÍK a, Milan MATĚJKA a, Michal URBÁNEK a, Miroslav HORÁČEK a, Jana

More information

Radial Coupling Method for Orthogonal Concentration within Planar Micro-Optic Solar Collectors

Radial Coupling Method for Orthogonal Concentration within Planar Micro-Optic Solar Collectors Radial Coupling Method for Orthogonal Concentration within Planar Micro-Optic Solar Collectors Jason H. Karp, Eric J. Tremblay and Joseph E. Ford Photonics Systems Integration Lab University of California

More information

ECSE 6300 IC Fabrication Laboratory Lecture 3 Photolithography. Lecture Outline

ECSE 6300 IC Fabrication Laboratory Lecture 3 Photolithography. Lecture Outline ECSE 6300 IC Fabrication Laboratory Lecture 3 Photolithography Prof. James J. Q. Lu Bldg. CII, Rooms 6229 Rensselaer Polytechnic Institute Troy, NY 12180 Tel. (518)276 2909 e mails: luj@rpi.edu http://www.ecse.rpi.edu/courses/s18/ecse

More information

CHAPTER 2 Principle and Design

CHAPTER 2 Principle and Design CHAPTER 2 Principle and Design The binary and gray-scale microlens will be designed and fabricated. Silicon nitride and photoresist will be taken as the material of the microlens in this thesis. The design

More information

Beam Shaping and Simultaneous Exposure by Diffractive Optical Element in Laser Plastic Welding

Beam Shaping and Simultaneous Exposure by Diffractive Optical Element in Laser Plastic Welding Beam Shaping and Simultaneous Exposure by Diffractive Optical Element in Laser Plastic Welding AKL`12 9th May 2012 Dr. Daniel Vogler Page 1 Motivation: Quality and flexibility diffractive spot shaping

More information

Will contain image distance after raytrace Will contain image height after raytrace

Will contain image distance after raytrace Will contain image height after raytrace Name: LASR 51 Final Exam May 29, 2002 Answer all questions. Module numbers are for guidance, some material is from class handouts. Exam ends at 8:20 pm. Ynu Raytracing The first questions refer to the

More information

Fiber Optic Communications

Fiber Optic Communications Fiber Optic Communications ( Chapter 2: Optics Review ) presented by Prof. Kwang-Chun Ho 1 Section 2.4: Numerical Aperture Consider an optical receiver: where the diameter of photodetector surface area

More information

Optical Lithography. Keeho Kim Nano Team / R&D DongbuAnam Semi

Optical Lithography. Keeho Kim Nano Team / R&D DongbuAnam Semi Optical Lithography Keeho Kim Nano Team / R&D DongbuAnam Semi Contents Lithography = Photolithography = Optical Lithography CD : Critical Dimension Resist Pattern after Development Exposure Contents Optical

More information

Lecture 5. Optical Lithography

Lecture 5. Optical Lithography Lecture 5 Optical Lithography Intro For most of microfabrication purposes the process (e.g. additive, subtractive or implantation) has to be applied selectively to particular areas of the wafer: patterning

More information

EE119 Introduction to Optical Engineering Spring 2003 Final Exam. Name:

EE119 Introduction to Optical Engineering Spring 2003 Final Exam. Name: EE119 Introduction to Optical Engineering Spring 2003 Final Exam Name: SID: CLOSED BOOK. THREE 8 1/2 X 11 SHEETS OF NOTES, AND SCIENTIFIC POCKET CALCULATOR PERMITTED. TIME ALLOTTED: 180 MINUTES Fundamental

More information

Exercise 8: Interference and diffraction

Exercise 8: Interference and diffraction Physics 223 Name: Exercise 8: Interference and diffraction 1. In a two-slit Young s interference experiment, the aperture (the mask with the two slits) to screen distance is 2.0 m, and a red light of wavelength

More information

LOS 1 LASER OPTICS SET

LOS 1 LASER OPTICS SET LOS 1 LASER OPTICS SET Contents 1 Introduction 3 2 Light interference 5 2.1 Light interference on a thin glass plate 6 2.2 Michelson s interferometer 7 3 Light diffraction 13 3.1 Light diffraction on a

More information

Experimental Physics. Experiment C & D: Pulsed Laser & Dye Laser. Course: FY12. Project: The Pulsed Laser. Done by: Wael Al-Assadi & Irvin Mangwiza

Experimental Physics. Experiment C & D: Pulsed Laser & Dye Laser. Course: FY12. Project: The Pulsed Laser. Done by: Wael Al-Assadi & Irvin Mangwiza Experiment C & D: Course: FY1 The Pulsed Laser Done by: Wael Al-Assadi Mangwiza 8/1/ Wael Al Assadi Mangwiza Experiment C & D : Introduction: Course: FY1 Rev. 35. Page: of 16 1// In this experiment we

More information

Module - 2 Lecture - 13 Lithography I

Module - 2 Lecture - 13 Lithography I Nano Structured Materials-Synthesis, Properties, Self Assembly and Applications Prof. Ashok. K.Ganguli Department of Chemistry Indian Institute of Technology, Delhi Module - 2 Lecture - 13 Lithography

More information

Solid Immersion and Evanescent Wave Lithography at Numerical Apertures > 1.60

Solid Immersion and Evanescent Wave Lithography at Numerical Apertures > 1.60 Solid Immersion and Evanescent Wave Lithography at Numerical Apertures > 1.60 Bruce Smith Y. Fan, J. Zhou, L. Zavyalova, M. Slocum, J. Park, A. Bourov, E. Piscani, N. Lafferty, A. Estroff Rochester Institute

More information

EE119 Introduction to Optical Engineering Fall 2009 Final Exam. Name:

EE119 Introduction to Optical Engineering Fall 2009 Final Exam. Name: EE119 Introduction to Optical Engineering Fall 2009 Final Exam Name: SID: CLOSED BOOK. THREE 8 1/2 X 11 SHEETS OF NOTES, AND SCIENTIFIC POCKET CALCULATOR PERMITTED. TIME ALLOTTED: 180 MINUTES Fundamental

More information

Project Staff: Timothy A. Savas, Michael E. Walsh, Thomas B. O'Reilly, Dr. Mark L. Schattenburg, and Professor Henry I. Smith

Project Staff: Timothy A. Savas, Michael E. Walsh, Thomas B. O'Reilly, Dr. Mark L. Schattenburg, and Professor Henry I. Smith 9. Interference Lithography Sponsors: National Science Foundation, DMR-0210321; Dupont Agreement 12/10/99 Project Staff: Timothy A. Savas, Michael E. Walsh, Thomas B. O'Reilly, Dr. Mark L. Schattenburg,

More information

Properties of Structured Light

Properties of Structured Light Properties of Structured Light Gaussian Beams Structured light sources using lasers as the illumination source are governed by theories of Gaussian beams. Unlike incoherent sources, coherent laser sources

More information

Optolith 2D Lithography Simulator

Optolith 2D Lithography Simulator 2D Lithography Simulator Advanced 2D Optical Lithography Simulator 4/13/05 Introduction is a powerful non-planar 2D lithography simulator that models all aspects of modern deep sub-micron lithography It

More information

Chapter Ray and Wave Optics

Chapter Ray and Wave Optics 109 Chapter Ray and Wave Optics 1. An astronomical telescope has a large aperture to [2002] reduce spherical aberration have high resolution increase span of observation have low dispersion. 2. If two

More information

Design Description Document

Design Description Document UNIVERSITY OF ROCHESTER Design Description Document Flat Output Backlit Strobe Dare Bodington, Changchen Chen, Nick Cirucci Customer: Engineers: Advisor committee: Sydor Instruments Dare Bodington, Changchen

More information

Principles of Optics for Engineers

Principles of Optics for Engineers Principles of Optics for Engineers Uniting historically different approaches by presenting optical analyses as solutions of Maxwell s equations, this unique book enables students and practicing engineers

More information

Diffraction-limited performance of flat-substrate reflective imaging gratings patterned by DUV photolithography

Diffraction-limited performance of flat-substrate reflective imaging gratings patterned by DUV photolithography Diffraction-limited performance of flat-substrate reflective imaging gratings patterned by DUV photolithography Christoph M. Greiner, D. Iazikov, and T. W. Mossberg LightSmyth Technologies, 860 W Park

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Optically reconfigurable metasurfaces and photonic devices based on phase change materials S1: Schematic diagram of the experimental setup. A Ti-Sapphire femtosecond laser (Coherent Chameleon Vision S)

More information

Waveguiding in PMMA photonic crystals

Waveguiding in PMMA photonic crystals ROMANIAN JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY Volume 12, Number 3, 2009, 308 316 Waveguiding in PMMA photonic crystals Daniela DRAGOMAN 1, Adrian DINESCU 2, Raluca MÜLLER2, Cristian KUSKO 2, Alex.

More information

NANOFABRICATION, THE NEW GENERATION OF LITHOGRAPHY. Cheng-Sheng Huang & Alvin Chang ABSTRACT

NANOFABRICATION, THE NEW GENERATION OF LITHOGRAPHY. Cheng-Sheng Huang & Alvin Chang ABSTRACT NANOFABRICATION, THE NEW GENERATION OF LITHOGRAPHY Cheng-Sheng Huang & Alvin Chang ABSTRACT Fabrication on the micro- and nano-structure has opened the new horizons in science and engineering. The success

More information

Refractive Power of a Surface. Exposure Sources. Thin Lenses. Thick Lenses. High Pressure Hg Arc Lamp Spectrum

Refractive Power of a Surface. Exposure Sources. Thin Lenses. Thick Lenses. High Pressure Hg Arc Lamp Spectrum eractive Power o a Surace The reractive power P is measured in diopters when the radius is expressed in meters. n and n are the reractive indices o the two media. EE-57: icrofabrication n n P n n Exposure

More information

All-Glass Gray Scale PhotoMasks Enable New Technologies. Che-Kuang (Chuck) Wu Canyon Materials, Inc.

All-Glass Gray Scale PhotoMasks Enable New Technologies. Che-Kuang (Chuck) Wu Canyon Materials, Inc. All-Glass Gray Scale PhotoMasks Enable New Technologies Che-Kuang (Chuck) Wu Canyon Materials, Inc. 1 Overview All-Glass Gray Scale Photomask technologies include: HEBS-glasses and LDW-glasses HEBS-glass

More information

Results of Proof-of-Concept 50keV electron multi-beam Mask Exposure Tool (emet POC)

Results of Proof-of-Concept 50keV electron multi-beam Mask Exposure Tool (emet POC) Results of Proof-of-Concept 50keV electron multi-beam Mask Exposure Tool (emet POC) Elmar Platzgummer *, Christof Klein, and Hans Loeschner IMS Nanofabrication AG Schreygasse 3, A-1020 Vienna, Austria

More information

Diffractive Axicon application note

Diffractive Axicon application note Diffractive Axicon application note. Introduction 2. General definition 3. General specifications of Diffractive Axicons 4. Typical applications 5. Advantages of the Diffractive Axicon 6. Principle of

More information

Optical Requirements

Optical Requirements Optical Requirements Transmission vs. Film Thickness A pellicle needs a good light transmission and long term transmission stability. Transmission depends on the film thickness, film material and any anti-reflective

More information

Wavelength Stabilization of HPDL Array Fast-Axis Collimation Optic with integrated VHG

Wavelength Stabilization of HPDL Array Fast-Axis Collimation Optic with integrated VHG Wavelength Stabilization of HPDL Array Fast-Axis Collimation Optic with integrated VHG C. Schnitzler a, S. Hambuecker a, O. Ruebenach a, V. Sinhoff a, G. Steckman b, L. West b, C. Wessling c, D. Hoffmann

More information

Option G 4:Diffraction

Option G 4:Diffraction Name: Date: Option G 4:Diffraction 1. This question is about optical resolution. The two point sources shown in the diagram below (not to scale) emit light of the same frequency. The light is incident

More information

PICO MASTER 200. UV direct laser writer for maskless lithography

PICO MASTER 200. UV direct laser writer for maskless lithography PICO MASTER 200 UV direct laser writer for maskless lithography 4PICO B.V. Jan Tinbergenstraat 4b 5491 DC Sint-Oedenrode The Netherlands Tel: +31 413 490708 WWW.4PICO.NL 1. Introduction The PicoMaster

More information

plasmonic nanoblock pair

plasmonic nanoblock pair Nanostructured potential of optical trapping using a plasmonic nanoblock pair Yoshito Tanaka, Shogo Kaneda and Keiji Sasaki* Research Institute for Electronic Science, Hokkaido University, Sapporo 1-2,

More information

Fabrication of micro structures on curve surface by X-ray lithography

Fabrication of micro structures on curve surface by X-ray lithography Fabrication of micro structures on curve surface by X-ray lithography Yigui Li 1, Susumu Sugiyama 2 Abstract We demonstrate experimentally the x-ray lithography techniques to fabricate micro structures

More information

Tutorial Zemax 9: Physical optical modelling I

Tutorial Zemax 9: Physical optical modelling I Tutorial Zemax 9: Physical optical modelling I 2012-11-04 9 Physical optical modelling I 1 9.1 Gaussian Beams... 1 9.2 Physical Beam Propagation... 3 9.3 Polarization... 7 9.4 Polarization II... 11 9 Physical

More information

Chapter 36: diffraction

Chapter 36: diffraction Chapter 36: diffraction Fresnel and Fraunhofer diffraction Diffraction from a single slit Intensity in the single slit pattern Multiple slits The Diffraction grating X-ray diffraction Circular apertures

More information

BEAM SHAPING OPTICS TO IMPROVE HOLOGRAPHIC AND INTERFEROMETRIC NANOMANUFACTURING TECHNIQUES Paper N405 ABSTRACT

BEAM SHAPING OPTICS TO IMPROVE HOLOGRAPHIC AND INTERFEROMETRIC NANOMANUFACTURING TECHNIQUES Paper N405 ABSTRACT BEAM SHAPING OPTICS TO IMPROVE HOLOGRAPHIC AND INTERFEROMETRIC NANOMANUFACTURING TECHNIQUES Paper N5 Alexander Laskin, Vadim Laskin AdlOptica GmbH, Rudower Chaussee 9, 89 Berlin, Germany ABSTRACT Abstract

More information

Two step process for the fabrication of diffraction limited concave microlens arrays

Two step process for the fabrication of diffraction limited concave microlens arrays Two step process for the fabrication of diffraction limited concave microlens arrays Patrick Ruffieux 1*, Toralf Scharf 1, Irène Philipoussis 1, Hans Peter Herzig 1, Reinhard Voelkel 2, and Kenneth J.

More information

Design Rules for Silicon Photonics Prototyping

Design Rules for Silicon Photonics Prototyping Design Rules for licon Photonics Prototyping Version 1 (released February 2008) Introduction IME s Photonics Prototyping Service offers 248nm lithography based fabrication technology for passive licon-on-insulator

More information

Electron Beam Lithography. Adam Ramm

Electron Beam Lithography. Adam Ramm Electron Beam Lithography Adam Ramm Why use electrons? Negligible diffraction limitations: R = k λ NA With current optical technology, this equates to about 45nm resolution. For an electron, wavelength

More information

X-ray generation by femtosecond laser pulses and its application to soft X-ray imaging microscope

X-ray generation by femtosecond laser pulses and its application to soft X-ray imaging microscope X-ray generation by femtosecond laser pulses and its application to soft X-ray imaging microscope Kenichi Ikeda 1, Hideyuki Kotaki 1 ' 2 and Kazuhisa Nakajima 1 ' 2 ' 3 1 Graduate University for Advanced

More information

Synthesis of projection lithography for low k1 via interferometry

Synthesis of projection lithography for low k1 via interferometry Synthesis of projection lithography for low k1 via interferometry Frank Cropanese *, Anatoly Bourov, Yongfa Fan, Andrew Estroff, Lena Zavyalova, Bruce W. Smith Center for Nanolithography Research, Rochester

More information

Photolithography. References: Introduction to Microlithography Thompson, Willson & Bowder, 1994

Photolithography. References: Introduction to Microlithography Thompson, Willson & Bowder, 1994 Photolithography References: Introduction to Microlithography Thompson, Willson & Bowder, 1994 Microlithography, Science and Technology Sheats & Smith, 1998 Any other Microlithography or Photolithography

More information

PHGN/CHEN/MLGN 435/535: Interdisciplinary Silicon Processing Laboratory. Simple Si solar Cell!

PHGN/CHEN/MLGN 435/535: Interdisciplinary Silicon Processing Laboratory. Simple Si solar Cell! Where were we? Simple Si solar Cell! Two Levels of Masks - photoresist, alignment Etch and oxidation to isolate thermal oxide, deposited oxide, wet etching, dry etching, isolation schemes Doping - diffusion/ion

More information

Laser Speckle Reducer LSR-3000 Series

Laser Speckle Reducer LSR-3000 Series Datasheet: LSR-3000 Series Update: 06.08.2012 Copyright 2012 Optotune Laser Speckle Reducer LSR-3000 Series Speckle noise from a laser-based system is reduced by dynamically diffusing the laser beam. A

More information

Collimation Tester Instructions

Collimation Tester Instructions Description Use shear-plate collimation testers to examine and adjust the collimation of laser light, or to measure the wavefront curvature and divergence/convergence magnitude of large-radius optical

More information

Optical Lithography. Here Is Why. Burn J. Lin SPIE PRESS. Bellingham, Washington USA

Optical Lithography. Here Is Why. Burn J. Lin SPIE PRESS. Bellingham, Washington USA Optical Lithography Here Is Why Burn J. Lin SPIE PRESS Bellingham, Washington USA Contents Preface xiii Chapter 1 Introducing Optical Lithography /1 1.1 The Role of Lithography in Integrated Circuit Fabrication

More information

Optical Components for Laser Applications. Günter Toesko - Laserseminar BLZ im Dezember

Optical Components for Laser Applications. Günter Toesko - Laserseminar BLZ im Dezember Günter Toesko - Laserseminar BLZ im Dezember 2009 1 Aberrations An optical aberration is a distortion in the image formed by an optical system compared to the original. It can arise for a number of reasons

More information

Optical Issues in Photolithography

Optical Issues in Photolithography OpenStax-CNX module: m25448 1 Optical Issues in Photolithography Andrew R. Barron This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 note: This module

More information

Tolerancing microlenses using ZEMAX

Tolerancing microlenses using ZEMAX Tolerancing microlenses using ZEMAX Andrew Stockham, John G. Smith MEMS Optical *, Inc., 05 Import Circle, Huntsville, AL, USA 35806 ABSTRACT This paper demonstrates a new tolerancing technique that allows

More information

Photolithography I ( Part 1 )

Photolithography I ( Part 1 ) 1 Photolithography I ( Part 1 ) Chapter 13 : Semiconductor Manufacturing Technology by M. Quirk & J. Serda Bjørn-Ove Fimland, Department of Electronics and Telecommunication, Norwegian University of Science

More information

Optics for the 90 GHz GBT array

Optics for the 90 GHz GBT array Optics for the 90 GHz GBT array Introduction The 90 GHz array will have 64 TES bolometers arranged in an 8 8 square, read out using 8 SQUID multiplexers. It is designed as a facility instrument for the

More information

CHAPTER 5 FINE-TUNING OF AN ECDL WITH AN INTRACAVITY LIQUID CRYSTAL ELEMENT

CHAPTER 5 FINE-TUNING OF AN ECDL WITH AN INTRACAVITY LIQUID CRYSTAL ELEMENT CHAPTER 5 FINE-TUNING OF AN ECDL WITH AN INTRACAVITY LIQUID CRYSTAL ELEMENT In this chapter, the experimental results for fine-tuning of the laser wavelength with an intracavity liquid crystal element

More information

3.0 Alignment Equipment and Diagnostic Tools:

3.0 Alignment Equipment and Diagnostic Tools: 3.0 Alignment Equipment and Diagnostic Tools: Alignment equipment The alignment telescope and its use The laser autostigmatic cube (LACI) interferometer A pin -- and how to find the center of curvature

More information

Diffraction Single-slit Double-slit Diffraction grating Limit on resolution X-ray diffraction. Phys 2435: Chap. 36, Pg 1

Diffraction Single-slit Double-slit Diffraction grating Limit on resolution X-ray diffraction. Phys 2435: Chap. 36, Pg 1 Diffraction Single-slit Double-slit Diffraction grating Limit on resolution X-ray diffraction Phys 2435: Chap. 36, Pg 1 Single Slit New Topic Phys 2435: Chap. 36, Pg 2 Diffraction: bending of light around

More information

Microlens array-based exit pupil expander for full color display applications

Microlens array-based exit pupil expander for full color display applications Proc. SPIE, Vol. 5456, in Photon Management, Strasbourg, France, April 2004 Microlens array-based exit pupil expander for full color display applications Hakan Urey a, Karlton D. Powell b a Optical Microsystems

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Announcements Homework #3 is due today No class Monday, Feb 26 Pre-record

More information

VISUAL PHYSICS ONLINE DEPTH STUDY: ELECTRON MICROSCOPES

VISUAL PHYSICS ONLINE DEPTH STUDY: ELECTRON MICROSCOPES VISUAL PHYSICS ONLINE DEPTH STUDY: ELECTRON MICROSCOPES Shortly after the experimental confirmation of the wave properties of the electron, it was suggested that the electron could be used to examine objects

More information

Silicon Light Machines Patents

Silicon Light Machines Patents 820 Kifer Road, Sunnyvale, CA 94086 Tel. 408-240-4700 Fax 408-456-0708 www.siliconlight.com Silicon Light Machines Patents USPTO No. US 5,808,797 US 5,841,579 US 5,798,743 US 5,661,592 US 5,629,801 US

More information

membrane sample EUV characterization

membrane sample EUV characterization membrane sample EUV characterization Christian Laubis, PTB Outline PTB's synchrotron radiation lab Scatter from structures Scatter from random rough surfaces Measurement geometries SAXS Lifetime testing

More information

Lecture 8. Microlithography

Lecture 8. Microlithography Lecture 8 Microlithography Lithography Introduction Process Flow Wafer Exposure Systems Masks Resists State of the Art Lithography Next Generation Lithography (NGL) Recommended videos: http://www.youtube.com/user/asmlcompany#p/search/1/jh6urfqt_d4

More information

EE119 Introduction to Optical Engineering Spring 2002 Final Exam. Name:

EE119 Introduction to Optical Engineering Spring 2002 Final Exam. Name: EE119 Introduction to Optical Engineering Spring 2002 Final Exam Name: SID: CLOSED BOOK. FOUR 8 1/2 X 11 SHEETS OF NOTES, AND SCIENTIFIC POCKET CALCULATOR PERMITTED. TIME ALLOTTED: 180 MINUTES Fundamental

More information

Observational Astronomy

Observational Astronomy Observational Astronomy Instruments The telescope- instruments combination forms a tightly coupled system: Telescope = collecting photons and forming an image Instruments = registering and analyzing the

More information

Grating-waveguide structures and their applications in high-power laser systems

Grating-waveguide structures and their applications in high-power laser systems Grating-waveguide structures and their applications in high-power laser systems Marwan Abdou Ahmed*, Martin Rumpel, Tom Dietrich, Stefan Piehler, Benjamin Dannecker, Michael Eckerle, and Thomas Graf Institut

More information

Module 11: Photolithography. Lecture 14: Photolithography 4 (Continued)

Module 11: Photolithography. Lecture 14: Photolithography 4 (Continued) Module 11: Photolithography Lecture 14: Photolithography 4 (Continued) 1 In the previous lecture, we have discussed the utility of the three printing modes, and their relative advantages and disadvantages.

More information

Optical Microlithography XXVIII

Optical Microlithography XXVIII PROCEEDINGS OF SPIE Optical Microlithography XXVIII Kafai Lai Andreas Erdmann Editors 24-26 February 2015 San Jose, California, United States Sponsored by SPIE Cosponsored by Cymer, an ASML company (United

More information

Planar micro-optic solar concentration. Jason H. Karp

Planar micro-optic solar concentration. Jason H. Karp Planar micro-optic solar concentration Jason H. Karp Eric J. Tremblay, Katherine A. Baker and Joseph E. Ford Photonics Systems Integration Lab University of California San Diego Jacobs School of Engineering

More information

Opto-Mechanical Equipment of KBTEM: Present Day and the Future

Opto-Mechanical Equipment of KBTEM: Present Day and the Future KBTEM JSC, Minsk, Belarus Opto-Mechanical Equipment of KBTEM: Present Day and the Future Quality Management System Certificate ISO-9001 since 2001 SPIE Member since 2003 www.kb-omo.by Dr. S.Avakaw SEMI

More information

Supplementary Information for. Surface Waves. Angelo Angelini, Elsie Barakat, Peter Munzert, Luca Boarino, Natascia De Leo,

Supplementary Information for. Surface Waves. Angelo Angelini, Elsie Barakat, Peter Munzert, Luca Boarino, Natascia De Leo, Supplementary Information for Focusing and Extraction of Light mediated by Bloch Surface Waves Angelo Angelini, Elsie Barakat, Peter Munzert, Luca Boarino, Natascia De Leo, Emanuele Enrico, Fabrizio Giorgis,

More information

Copyright 2000 by the Society of Photo-Optical Instrumentation Engineers.

Copyright 2000 by the Society of Photo-Optical Instrumentation Engineers. Copyright 2000 by the Society of Photo-Optical Instrumentation Engineers. This paper was published in the proceedings of the 20 th Annual BACUS Symposium on Photomask Technology SPIE Vol. 4186, pp. 503-507.

More information