Digital Circuits Introduction

Size: px
Start display at page:

Download "Digital Circuits Introduction"

Transcription

1 Lecture #6 OUTLINE Logic inary representations Combinatorial logic circuits Chap Reading EE4 Summer 25: Lecture 6 Instructor: Octavian lorescu Digital Circuits Introduction nalog: signal amplitude is continuous with time. Digital: signal amplitude is represented by a restricted set of discrete numbers. inary: only two values are allowed to represent the signal: High or low (i.e. logic or ). Digital word: Each binary digit is called a bit series of bits form a word yte is a word consisting of 8-bits dvantages of digital signal Digital signal is more resilient to noise can more easily differentiate high () and low () Transmission Parallel transmission over a bus containing n wires. aster but short distance (internal to a computer or chip) Serial transmission (transmit bits sequentially) Longer distance EE4 Summer 25: Lecture 6 Instructor: Octavian lorescu 2

2 inary Representation N bit can represent 2 N values: typically from to 2 N - 3-bit word can represent 8 values: e.g.,, 2, 3, 4, 5, 6, 7 Conversion Integer to binary raction to binary (3.5 =. 2 and.392 =. 2 ) Octal and hexadecimal EE4 Summer 25: Lecture 6 Instructor: Octavian lorescu 3 Logic Gates and Memories Logic gates Combine several logic variable inputs to produce a logic variable output Memory Memoryless: output at a given instant depends the input values of that instant. Momory: output depends on previous and present input values. EE4 Summer 25: Lecture 6 Instructor: Octavian lorescu 4 2

3 oolean algebras are algebraic structures which "capture the essence" of the logical operations ND, OR and NOT as well as the corresponding set theoretic operations intersection, union and complement. They are named after George oole, an English mathematician at University College Cork, who first defined them as part of a system of logic in the mid 9th century. Specifically, oolean algebra was an attempt to use algebraic techniques to deal with expressions in the propositional calculus. Today, oolean algebras find many applications in electronic design. They were first applied to switching by Claude Shannon in the 2th century. EE4 Summer 25: Lecture 6 Instructor: Octavian lorescu 5 oolean algebras The operators of oolean algebra may be represented in various ways. Often they are simply written as ND, OR and NOT. In describing circuits, NND (NOT ND), NOR (NOT OR) and XOR (exclusive OR) may also be used. Mathematicians often use for OR and for ND (since in some ways those operations are analogous to addition and multiplication in other algebraic structures) and represent NOT by a line drawn above the expression being negated. EE4 Summer 25: Lecture 6 Instructor: Octavian lorescu 6 3

4 oolean lgebra NOT operation (inverter) g = = ND operation g = g = g= g = g ( g) gc = g( gc) OR operation = = = = ( ) C = ( C) EE4 Summer 25: Lecture 6 Instructor: Octavian lorescu 7 Graphic Representation g = = ull square = complete set = Yellow part = NOT() = White circle = EE4 Summer 25: Lecture 6 Instructor: Octavian lorescu 8 4

5 Graphic Representation = = ( ) g( ) = g Exclusive OR=yellow and blue part intersection/overlap part =exactly when only one of the input is true EE4 Summer 25: Lecture 6 Instructor: Octavian lorescu 9 oolean lgebra Distributive Property g( C) = g gc ( ) gc = ( ) g( C) De Morgan s laws = g g = n excellent web site to visit EE4 Summer 25: Lecture 6 Instructor: Octavian lorescu 5

6 Examples = C C (CD) (DE) = C (DE) D E EE4 Summer 25: Lecture 6 Instructor: Octavian lorescu Logic unctions, Symbols, & Notation TRUTH NME SYMOL NOTTION TLE NOT = OR = ND = EE4 Summer 25: Lecture 6 Instructor: Octavian lorescu 2 6

7 7 EE4 Summer 25: Lecture 6 Instructor: Octavian lorescu 3 Logic unctions, Symbols, & Notation 2 NOR = NND = XOR (exclusive OR) = EE4 Summer 25: Lecture 6 Instructor: Octavian lorescu 4 Circuit Realization ( ) ( ) = = = g g

8 an in/an out Complex digital operations are formed with a variety of gates interconnected to yield the desired logic function. Sometimes a number of inputs are connected to one gate input and output of a gate may be connected to a number of gates. an-in: the maximum number of logic gates that can be connected at the input of a gate without altering its performance. an-out: the maximum number of logic gates that can be connected to the output of a gate without altering its performance. Typical fan-in and fan-out numbers are 3. EE4 Summer 25: Lecture 6 Instructor: Octavian lorescu 5 Inverter = NOT Gate V in V out Ideal Transfer Characteristics V out V/2 V V in EE4 Summer 25: Lecture 6 Instructor: Octavian lorescu 6 8

9 NMOS Resistor Pull-Up Circuit: Voltage-Transfer Characteristic v OUT R D i D v IN i D v DS = v OUT v IN = V T v IN /R D v GS = v in V T increasing v GS = v IN > V T v DS EE4 Summer 25: Lecture 6 Instructor: Octavian lorescu 7 Disadvantages of NMOS Logic Gates Large values of R D are required in order to achieve a low value of V OL keep power consumption low Large resistors are needed, but these take up a lot of space. One solution is to replace the resistor with an NMOSET that is always on. EE4 Summer 25: Lecture 6 Instructor: Octavian lorescu 8 9

10 The CMOS Inverter: Intuitive Perspective CIRCUIT SWITCH MODELS G S D R p D V OL = V V OH = G S R n Low static power consumption, since one MOSET is always off in steady state = = V EE4 Summer 25: Lecture 6 Instructor: Octavian lorescu 9 CMOS Inverter Voltage Transfer Characteristic N: sat P: sat N: off P: lin C G S D N: sat P: lin D E G D S N: lin P: sat N: lin P: off EE4 Summer 25: Lecture 6 Instructor: Octavian lorescu 2

11 CMOS Inverter Load-Line nalysis = V GSp V GSp = - I Dn =-I Dp = V DSp increasing = V = V DSp = - I Dn =-I Dp increasing V DSp = - V DSp = =V DSn EE4 Summer 25: Lecture 6 Instructor: Octavian lorescu 2 CMOS Inverter Load-Line nalysis: Region V Tn I Dn =-I Dp V GSp = - V DSp = - I Dn =-I Dp =V DSn EE4 Summer 25: Lecture 6 Instructor: Octavian lorescu 22

12 CMOS Inverter Load-Line nalysis: Region V DD /2 > > V Tn V GSp = - I Dn =-I Dp V DSp = - I Dn =-I Dp =V DSn EE4 Summer 25: Lecture 6 Instructor: Octavian lorescu 23 CMOS Inverter Load-Line nalysis: Region D V DD V Tp > > /2 V GSp = - I Dn =-I Dp V DSp = - I Dn =-I Dp =V DSn EE4 Summer 25: Lecture 6 Instructor: Octavian lorescu 24 2

13 CMOS Inverter Load-Line nalysis: Region E V IN > V Tp V GSp = - I Dn =-I Dp V DSp = - I Dn =-I Dp =V DSn EE4 Summer 25: Lecture 6 Instructor: Octavian lorescu 25 eatures of CMOS Digital Circuits The output is always connected to or GND in steady state ull logic swing; large noise margins Logic levels are not dependent upon the relative sizes of the devices ( ratioless ) There is no direct path between and GND in steady state no static power dissipation EE4 Summer 25: Lecture 6 Instructor: Octavian lorescu 26 3

14 The CMOS Inverter: Current low during Switching N: sat P: sat i N: off P: lin C G i S D D N: sat P: lin D E G S N: lin P: sat N: lin P: off EE4 Summer 25: Lecture 6 Instructor: Octavian lorescu 27 Power Dissipation due to Direct-Path Current G S v IN : -V T v IN i D v OUT V T D I peak G S i: t sc time Energy consumed per switching period: E = t dp sc V DD I peak EE4 Summer 25: Lecture 6 Instructor: Octavian lorescu 28 4

15 NMOS NND Gate Output is low only if both inputs are high R D Truth Table EE4 Summer 25: Lecture 6 Instructor: Octavian lorescu 29 NMOS NOR Gate Output is low if either input is high R D Truth Table EE4 Summer 25: Lecture 6 Instructor: Octavian lorescu 3 5

16 N-Channel MOSET Operation n NMOSET is a closed switch when the input is high X Y X Y Y = X if and Y = X if or NMOSETs pass a strong but a weak EE4 Summer 25: Lecture 6 Instructor: Octavian lorescu 3 P-Channel MOSET Operation PMOSET is a closed switch when the input is low X Y X Y Y = X if and = ( ) Y = X if or = () PMOSETs pass a strong but a weak EE4 Summer 25: Lecture 6 Instructor: Octavian lorescu 32 6

17 Pull-Down and Pull-Up Devices In CMOS logic gates, NMOSETs are used to connect the output to GND, whereas PMOSETs are used to connect the output to. n NMOSET functions as a pull-down device when it is turned on (gate voltage = ) PMOSET functions as a pull-up device when it is turned on (gate voltage = GND) input signals 2 N 2 N Pull-up network Pull-down network PMOSETs only (, 2,, N ) NMOSETs only EE4 Summer 25: Lecture 6 Instructor: Octavian lorescu 33 CMOS NND Gate EE4 Summer 25: Lecture 6 Instructor: Octavian lorescu 34 7

18 CMOS NOR Gate EE4 Summer 25: Lecture 6 Instructor: Octavian lorescu 35 CMOS Pass Gate X Y Y = X if EE4 Summer 25: Lecture 6 Instructor: Octavian lorescu 36 8

19 Combinational Logic Circuits Logic gates combine several logic-variable inputs to produce a logic-variable output. Combinational logic circuits are memoryless because their output value at a given instant depends only on the input values at that instant. Next time, we will study sequential logic circuits that possess memory because their present output value depends on previous as well as present input values. EE4 Summer 25: Lecture 6 Instructor: Octavian lorescu 37 Logical Sufficiency of NND Gates If the inputs to a NND gate are tied together, an inverter results rom De Morgan s laws, the OR operation can be realized by inverting the input variables and combining the results in a NND gate. Since the basic logic functions (ND, OR, and NOT) can be realized by using only NND gates, NND gates are sufficient to realize any combinational logic function. EE4 Summer 25: Lecture 6 Instructor: Octavian lorescu 38 9

20 Logical Sufficiency of NOR Gates Show how to realize the ND, OR, and NOT functions using only NOR gates Since the basic logic functions (ND, OR, and NOT) can be realized by using only NOR gates, NOR gates are sufficient to realize any combinational logic function. EE4 Summer 25: Lecture 6 Instructor: Octavian lorescu 39 Synthesis of Logic Circuits Suppose we are given a truth table for a logic function. Is there a method to implement the logic function using basic logic gates? nswer: There are lots of ways, but one simple way is the sum of products implementation method: ) Write the sum of products expression based on the truth table for the logic function 2) Implement this expression using standard logic gates. We may not get the most efficient implementation this way, but we can simplify the circuit afterwards EE4 Summer 25: Lecture 6 Instructor: Octavian lorescu 4 2

21 Logic Synthesis Example: dder Input C Output S S S using sum-of-products: ) ind where S is 2) Write down each product of inputs which create a C C C C 3) Sum all of the products C C C C 4) Draw the logic circuit EE4 Summer 25: Lecture 6 Instructor: Octavian lorescu 4 NND Gate Implementation De Morgan s law tells us that is the same as y definition, is the same as ll sum-of-products expressions can be implemented with only NND gates. EE4 Summer 25: Lecture 6 Instructor: Octavian lorescu 42 2

22 Creating a etter Circuit What makes a digital circuit better? ewer number of gates ewer inputs on each gate multi-input gates are slower Let s see how we can simplify the sum-ofproducts expression for S, to make a better circuit Use the oolean algebra relations EE4 Summer 25: Lecture 6 Instructor: Octavian lorescu 43 Karnaugh Maps Graphical approach to minimizing the number of terms in a logic expression:. Map the truth table into a Karnaugh map (see below) 2. or each, circle the biggest block that includes that 3. Write the product that corresponds to that block. 4. Sum all of the products 2-variable Karnaugh Map 3-variable Karnaugh Map C 4-variable Karnaugh Map CD EE4 Summer 25: Lecture 6 Instructor: Octavian lorescu 44 22

23 Karnaugh Map Example Input C Output S S Simplification of expression for S : EE4 Summer 25: Lecture 6 Instructor: Octavian lorescu 45 C C C C S = C C urther Comments on Karnaugh Maps The algebraic manipulations needed to simplify a given expression are not always obvious. Karnaugh maps make it easier to minimize the number of terms in a logic expression. Terminology: 2-cube: 2 squares that have a common edge (-> product of 3 variables) 4-cube: 4 squares with common edges (-> product of 2 variables) In locating cubes on a Karnaugh map, the map should be considered to fold around from top to bottom, and from left to right. Squares on the right-hand side are considered to be adjacent to those on the left-hand side. Squares on the top of the map are considered to be adjacent to those on the bottom. Example: The four squares in the map corners form a 4-cube CD EE4 Summer 25: Lecture 6 Instructor: Octavian lorescu 46 23

EE40 Lecture 35. Prof. Chang-Hasnain. 12/5/07 Reading: Ch 7, Supplementary Reader

EE40 Lecture 35. Prof. Chang-Hasnain. 12/5/07 Reading: Ch 7, Supplementary Reader EE4 Lecture 35 2/5/7 Reading: Ch 7, Supplementary Reader EE4 all 26 Slide Week 5 OUTLINE Need for Input Controlled Pull-Up CMOS Inverter nalysis CMOS Voltage Transfer Characteristic Combinatorial logic

More information

EE100Su08 Lecture #16 (August 1 st 2008)

EE100Su08 Lecture #16 (August 1 st 2008) EESu8 Lecture #6 (ugust st 28) OUTLINE Project next week: Pick up kits in your first lab section, work on the project in your first lab section, at home etc. and wrap up in the second lab section. USE

More information

Asst. Prof. Thavatchai Tayjasanant, PhD. Power System Research Lab 12 th Floor, Building 4 Tel: (02)

Asst. Prof. Thavatchai Tayjasanant, PhD. Power System Research Lab 12 th Floor, Building 4 Tel: (02) 2145230 Aircraft Electricity and Electronics Asst. Prof. Thavatchai Tayjasanant, PhD Email: taytaycu@gmail.com aycu@g a co Power System Research Lab 12 th Floor, Building 4 Tel: (02) 218-6527 1 Chapter

More information

EE 330 Lecture 5. Basic Logic Circuits Complete Logic Family Other Logic Styles. Improved Device Models. complex logic gates pass transistor logic

EE 330 Lecture 5. Basic Logic Circuits Complete Logic Family Other Logic Styles. Improved Device Models. complex logic gates pass transistor logic EE 330 Lecture 5 asic Logic Circuits Complete Logic Family Other Logic Styles complex logic gates pass transistor logic Improved Device Models Review from Last Time The key patents that revolutionized

More information

Combinational Logic Gates in CMOS

Combinational Logic Gates in CMOS Combinational Logic Gates in CMOS References: dapted from: Digital Integrated Circuits: Design Perspective, J. Rabaey UC Principles of CMOS VLSI Design: Systems Perspective, 2nd Ed., N. H. E. Weste and

More information

EE 330 Lecture 5. Basic Logic Circuits Complete Logic Family Other Logic Styles. complex logic gates

EE 330 Lecture 5. Basic Logic Circuits Complete Logic Family Other Logic Styles. complex logic gates EE 330 Lecture 5 asic Logic Circuits Complete Logic Family Other Logic Styles complex logic gates Review from Last Time The key patents that revolutionized the electronics field: Jack Kilby (34 years old

More information

EEC 118 Lecture #11: CMOS Design Guidelines Alternative Static Logic Families

EEC 118 Lecture #11: CMOS Design Guidelines Alternative Static Logic Families EEC 118 Lecture #11: CMOS Design Guidelines Alternative Static Logic Families Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation Announcements Homework 5 this week Lab

More information

I. Digital Integrated Circuits - Logic Concepts

I. Digital Integrated Circuits - Logic Concepts I. Digital Integrated Circuits - Logic Concepts. Logic Fundamentals: binary mathematics: only operate on and (oolean algebra) simplest function -- inversion = symbol for the inverter INPUT OUTPUT EECS

More information

CPE/EE 427, CPE 527 VLSI Design I CMOS Inverter. CMOS Inverter: A First Look

CPE/EE 427, CPE 527 VLSI Design I CMOS Inverter. CMOS Inverter: A First Look CPE/EE 427, CPE 527 VLSI Design I CMOS Inverter Department of Electrical and Computer Engineering University of Alabama in Huntsville Aleksandar Milenkovic CMOS Inverter: A First Look C L 9/11/26 VLSI

More information

Chapter # 1: Introduction

Chapter # 1: Introduction Chapter # : Randy H. Katz University of California, erkeley May 993 ฉ R.H. Katz Transparency No. - The Elements of Modern Design Representations, Circuit Technologies, Rapid Prototyping ehaviors locks

More information

Name: Class: Date: 1. As more electronic systems have been designed using digital technology, devices have become smaller and less powerful.

Name: Class: Date: 1. As more electronic systems have been designed using digital technology, devices have become smaller and less powerful. Name: Class: Date: DE Midterm Review 2 True/False Indicate whether the statement is true or false. 1. As more electronic systems have been designed using digital technology, devices have become smaller

More information

EE241 - Spring 2002 Advanced Digital Integrated Circuits

EE241 - Spring 2002 Advanced Digital Integrated Circuits EE241 - Spring 2002 dvanced Digital Integrated Circuits Lecture 7 MOS Logic Styles nnouncements Homework #1 due 2/19 1 Reading Chapter 7 in the text by K. ernstein ackground material from Rabaey References»

More information

De Morgan s second theorem: The complement of a product is equal to the sum of the complements.

De Morgan s second theorem: The complement of a product is equal to the sum of the complements. Q. What is Gate? State and prove De Morgan s theorems. nswer: digital circuit having one or more input signals but only one output signal is called a gate. De Morgan s first theorem: The complement of

More information

Digital Integrated Circuits Designing Combinational Logic Circuits. Fuyuzhuo

Digital Integrated Circuits Designing Combinational Logic Circuits. Fuyuzhuo Digital Integrated Circuits Designing Combinational Logic Circuits Fuyuzhuo Introduction Digital IC Ratioed Logic Introduction Digital IC EE141 2 Ratioed Logic design Basic concept Resistive load Depletion

More information

Chapter 1: Digital logic

Chapter 1: Digital logic Chapter 1: Digital logic I. Overview In PHYS 252, you learned the essentials of circuit analysis, including the concepts of impedance, amplification, feedback and frequency analysis. Most of the circuits

More information

ELEC 350L Electronics I Laboratory Fall 2012

ELEC 350L Electronics I Laboratory Fall 2012 ELEC 350L Electronics I Laboratory Fall 2012 Lab #9: NMOS and CMOS Inverter Circuits Introduction The inverter, or NOT gate, is the fundamental building block of most digital devices. The circuits used

More information

Digital Microelectronic Circuits ( ) CMOS Digital Logic. Lecture 6: Presented by: Adam Teman

Digital Microelectronic Circuits ( ) CMOS Digital Logic. Lecture 6: Presented by: Adam Teman Digital Microelectronic Circuits (361-1-3021 ) Presented by: Adam Teman Lecture 6: CMOS Digital Logic 1 Last Lectures The CMOS Inverter CMOS Capacitance Driving a Load 2 This Lecture Now that we know all

More information

EE292: Fundamentals of ECE

EE292: Fundamentals of ECE EE292: Fundamentals of ECE Fall 2012 TTh 10:00-11:15 SEB 1242 Lecture 21 121113 http://www.ee.unlv.edu/~b1morris/ee292/ 2 Outline Chapter 7 - Logic Circuits Binary Number Representation Binary Arithmetic

More information

Lecture 02: Logic Families. R.J. Harris & D.G. Bailey

Lecture 02: Logic Families. R.J. Harris & D.G. Bailey Lecture 02: Logic Families R.J. Harris & D.G. Bailey Objectives Show how diodes can be used to form logic gates (Diode logic). Explain the need for introducing transistors in the output (DTL and TTL).

More information

In this lecture: Lecture 8: ROM & Programmable Logic Devices

In this lecture: Lecture 8: ROM & Programmable Logic Devices In this lecture: Lecture 8: ROM Programmable Logic Devices Dr Pete Sedcole Department of EE Engineering Imperial College London http://caseeicacuk/~nps/ (Floyd, 3 5, 3) (Tocci 2, 24, 25, 27, 28, 3 34)

More information

Logic Symbols with Truth Tables INVERTER A B NAND A B C NOR C A B A B C XNOR A B C A B Digital Logic 1

Logic Symbols with Truth Tables INVERTER A B NAND A B C NOR C A B A B C XNOR A B C A B Digital Logic 1 Slide Logic Symbols with Truth Tables UFFER INVERTER ND NND OR NOR XOR XNOR 6.7 Digital Logic Digital logic can be described in terms of standard logic symbols and their corresponding truth tables. The

More information

Chapter 6 DIFFERENT TYPES OF LOGIC GATES

Chapter 6 DIFFERENT TYPES OF LOGIC GATES Chapter 6 DIFFERENT TYPES OF LOGIC GATES Lesson 9 CMOS gates Ch06L9-"Digital Principles and Design", Raj Kamal, Pearson Education, 2006 2 Outline CMOS (n-channel based MOSFETs based circuit) CMOS Features

More information

ECE/CoE 0132: FETs and Gates

ECE/CoE 0132: FETs and Gates ECE/CoE 0132: FETs and Gates Kartik Mohanram September 6, 2017 1 Physical properties of gates Over the next 2 lectures, we will discuss some of the physical characteristics of integrated circuits. We will

More information

Introduction to Digital Logic Missouri S&T University CPE 2210 Exam 1 Logistics

Introduction to Digital Logic Missouri S&T University CPE 2210 Exam 1 Logistics Introduction to Digital Logic Missouri S&T University CPE 2210 Exam 1 Logistics Egemen K. Çetinkaya Egemen K. Çetinkaya Department of Electrical & Computer Engineering Missouri University of Science and

More information

Synthesis of Combinational Logic

Synthesis of Combinational Logic Synthesis of ombinational Logic 6.4 Gates F = xor Handouts: Lecture Slides, PS3, Lab2 6.4 - Spring 2 2/2/ L5 Logic Synthesis Review: K-map Minimization ) opy truth table into K-Map 2) Identify subcubes,

More information

Digital Logic Circuits

Digital Logic Circuits Digital Logic Circuits Let s look at the essential features of digital logic circuits, which are at the heart of digital computers. Learning Objectives Understand the concepts of analog and digital signals

More information

Reading. Lecture 17: MOS transistors digital. Context. Digital techniques:

Reading. Lecture 17: MOS transistors digital. Context. Digital techniques: Reading Lecture 17: MOS transistors digital Today we are going to look at the analog characteristics of simple digital devices, 5. 5.4 And following the midterm, we will cover PN diodes again in forward

More information

Lecture 11 Digital Circuits (I) THE INVERTER

Lecture 11 Digital Circuits (I) THE INVERTER Lecture 11 Digital Circuits (I) THE INVERTER Outline Introduction to digital circuits The inverter NMOS inverter with resistor pull-up Reading Assignment: Howe and Sodini; Chapter 5, Sections 5.1-5.3 6.12

More information

Number system: the system used to count discrete units is called number. Decimal system: the number system that contains 10 distinguished

Number system: the system used to count discrete units is called number. Decimal system: the number system that contains 10 distinguished Number system: the system used to count discrete units is called number system Decimal system: the number system that contains 10 distinguished symbols that is 0-9 or digits is called decimal system. As

More information

Digital Integrated CircuitDesign

Digital Integrated CircuitDesign Digital Integrated CircuitDesign Lecture 11 BiCMOS PMOS rray Q1 NMOS rray Y NMOS rray Q2 dib brishamifar EE Department IUST Contents Introduction BiCMOS Devices BiCMOS Inverters BiCMOS Gates BiCMOS Drivers

More information

University of Technology

University of Technology University of Technology Lecturer: Dr. Sinan Majid Course Title: microprocessors 4 th year Lecture 7 & 8 NAND and XOR Implementations Combinational Design Procedure NAND-NAND & NOR-NOR Networks DeMorgan

More information

EE 330 Lecture 5. Other Logic Styles Improved Device Models Stick Diagrams

EE 330 Lecture 5. Other Logic Styles Improved Device Models Stick Diagrams EE 330 Lecture 5 Other Logic Styles Improved evice Models Stick iagrams Review from Last Time MOS Transistor Qualitative iscussion of n-channel Operation ulk Source Gate rain rain Gate n-channel MOSFET

More information

Designing Information Devices and Systems II Fall 2017 Note 1

Designing Information Devices and Systems II Fall 2017 Note 1 EECS 16B Designing Information Devices and Systems II Fall 2017 Note 1 1 Digital Information Processing Electrical circuits manipulate voltages (V ) and currents (I) in order to: 1. Process information

More information

Computer Organization and Components

Computer Organization and Components Computer Organization and Components I5, fall 25 Lecture 7: Combinational Logic ssociate Professor, KTH Royal Institute of Technology ssistant Research ngineer, University of California, erkeley lides

More information

Digital Fundamentals

Digital Fundamentals Digital Fundamentals Tenth Edition Floyd hapter 5 Floyd, Digital Fundamentals, th ed 28 Pearson Education 29 Pearson Education, Upper Saddle River, NJ 7458. ll Rights Reserved ombinational Logic ircuits

More information

DIGITAL ELECTRONICS: LOGIC AND CLOCKS

DIGITAL ELECTRONICS: LOGIC AND CLOCKS DIGITL ELECTRONICS: LOGIC ND CLOCKS L 9 INTRO: INTRODUCTION TO DISCRETE DIGITL LOGIC, MEMORY, ND CLOCKS GOLS In this experiment, we will learn about the most basic elements of digital electronics, from

More information

Lecture 11 Circuits numériques (I) L'inverseur

Lecture 11 Circuits numériques (I) L'inverseur Lecture 11 Circuits numériques (I) L'inverseur Outline Introduction to digital circuits The inverter NMOS inverter with resistor pull-up 6.12 Spring 24 Lecture 11 1 1. Introduction to digital circuits:

More information

Lecture 16. Complementary metal oxide semiconductor (CMOS) CMOS 1-1

Lecture 16. Complementary metal oxide semiconductor (CMOS) CMOS 1-1 Lecture 16 Complementary metal oxide semiconductor (CMOS) CMOS 1-1 Outline Complementary metal oxide semiconductor (CMOS) Inverting circuit Properties Operating points Propagation delay Power dissipation

More information

EE 330 Lecture 5. Other Logic Styles. Improved Device Models. complex logic gates pass transistor logic

EE 330 Lecture 5. Other Logic Styles. Improved Device Models. complex logic gates pass transistor logic EE 330 Lecture 5 Other Logic Styles complex logic gates pass transistor logic Improved evice Models Review from Last Time MOS Transistor Qualitative iscussion of n-channel Operation Source Gate rain rain

More information

Computer Hardware Engineering (IS1200) Computer Organization and Components (IS1500) Fall 2017 Lecture 7: Combinational Logic

Computer Hardware Engineering (IS1200) Computer Organization and Components (IS1500) Fall 2017 Lecture 7: Combinational Logic Computer Hardware ngineering (I2) Computer Organization and Components (I5) Fall 27 Lecture 7: Combinational Logic Optional for I2, compulsory for I5 Fredrik Lundevall lides by David roman and Fredrik

More information

In this lecture: Lecture 3: Basic Logic Gates & Boolean Expressions

In this lecture: Lecture 3: Basic Logic Gates & Boolean Expressions In this lecture: Lecture 3: Basic Logic Gates & Boolean Expressions Dr Pete Sedcole Department of E&E Engineering Imperial College London http://cas.ee.ic.ac.uk/~nps/ (Floyd 3.1 3.6, 4.1) (Tocci 3.1 3.9)

More information

Digital Fundamentals

Digital Fundamentals Digital Fundamentals Tenth Edition Floyd Chapter 3 28 Pearson Education 29 Pearson Education, Upper Saddle River, NJ 7458. ll Rights Reserved The Inverter The inverter performs the oolean NOT operation.

More information

ECE 471/571 Combinatorial Circuits Lecture-7. Gurjeet Singh

ECE 471/571 Combinatorial Circuits Lecture-7. Gurjeet Singh ECE 471/571 Combinatorial Circuits Lecture-7 Gurjeet Singh Propagation Delay of CMOS Gates Propagation delay of Four input NAND Gate Disadvantages of Complementary CMOS Design Increase in complexity Larger

More information

SYNTHESIS OF COMBINATIONAL CIRCUITS

SYNTHESIS OF COMBINATIONAL CIRCUITS HPTER 6 SYNTHESIS O OMINTIONL IRUITS 6.1 Introduction oolean functions can be expressed in the forms of sum-of-products and productof-sums. These expressions can also be minimized using algebraic manipulations

More information

2-Bit Magnitude Comparator Design Using Different Logic Styles

2-Bit Magnitude Comparator Design Using Different Logic Styles International Journal of Engineering Science Invention ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 Volume 2 Issue 1 ǁ January. 2013 ǁ PP.13-24 2-Bit Magnitude Comparator Design Using Different Logic

More information

Chapter 6 DIFFERENT TYPES OF LOGIC GATES

Chapter 6 DIFFERENT TYPES OF LOGIC GATES Chapter 6 DIFFERENT TYPES OF LOGIC GATES Lesson 8 NMOS gates Ch06L8-"Digital Principles and Design", Raj Kamal, Pearson Education, 2006 2 Outline NMOS (n-channel based MOSFETs based circuit) NMOS Features

More information

Session 10: Solid State Physics MOSFET

Session 10: Solid State Physics MOSFET Session 10: Solid State Physics MOSFET 1 Outline A B C D E F G H I J 2 MOSCap MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor: Al (metal) SiO2 (oxide) High k ~0.1 ~5 A SiO2 A n+ n+ p-type Si (bulk)

More information

General Structure of MOS Inverter

General Structure of MOS Inverter General Structure of MOS Inverter Load V i Drive Department of Microelectronics and omputer Science, TUL Digital MOS ircuits Families Digital MOS ircuits PMOS NMOS MOS BiMOS Depletion mode load Enhancement

More information

Gates and Circuits 1

Gates and Circuits 1 1 Gates and Circuits Chapter Goals Identify the basic gates and describe the behavior of each Describe how gates are implemented using transistors Combine basic gates into circuits Describe the behavior

More information

Lecture 13 - Digital Circuits (II) MOS Inverter Circuits. October 25, 2005

Lecture 13 - Digital Circuits (II) MOS Inverter Circuits. October 25, 2005 6.12 - Microelectronic Devices and Circuits - Fall 25 Lecture 13-1 Lecture 13 - Digital Circuits (II) MOS Inverter Circuits October 25, 25 Contents: 1. NMOS inverter with resistor pull-up (cont.) 2. NMOS

More information

Digital Fundamentals 9/4/2017. Summary. Summary. Floyd. Chapter 3. The Inverter

Digital Fundamentals 9/4/2017. Summary. Summary. Floyd. Chapter 3. The Inverter Digital Fundamentals Tenth Edition Floyd Chapter 3 29 Pearson Education, Upper 28 Pearson Saddle River, Education NJ 7458. ll Rights Reserved The Inverter The inverter performs the oolean NOT operation.

More information

First Optional Homework Problem Set for Engineering 1630, Fall 2014

First Optional Homework Problem Set for Engineering 1630, Fall 2014 First Optional Homework Problem Set for Engineering 1630, Fall 014 1. Using a K-map, minimize the expression: OUT CD CD CD CD CD CD How many non-essential primes are there in the K-map? How many included

More information

Propagation Delay, Circuit Timing & Adder Design. ECE 152A Winter 2012

Propagation Delay, Circuit Timing & Adder Design. ECE 152A Winter 2012 Propagation Delay, Circuit Timing & Adder Design ECE 152A Winter 2012 Reading Assignment Brown and Vranesic 2 Introduction to Logic Circuits 2.9 Introduction to CAD Tools 2.9.1 Design Entry 2.9.2 Synthesis

More information

Propagation Delay, Circuit Timing & Adder Design

Propagation Delay, Circuit Timing & Adder Design Propagation Delay, Circuit Timing & Adder Design ECE 152A Winter 2012 Reading Assignment Brown and Vranesic 2 Introduction to Logic Circuits 2.9 Introduction to CAD Tools 2.9.1 Design Entry 2.9.2 Synthesis

More information

Analysis procedure. To obtain the output Boolean functions from a logic diagram, proceed as follows:

Analysis procedure. To obtain the output Boolean functions from a logic diagram, proceed as follows: Combinational Logic Logic circuits for digital systems may be combinational or sequential. combinational circuit consists of input variables, logic gates, and output variables. 1 nalysis procedure To obtain

More information

Lecture #1. Course Overview

Lecture #1. Course Overview Lecture #1 OUTLINE Course overview Introduction: integrated circuits Analog vs. digital signals Lecture 1, Slide 1 Course Overview EECS 40: One of five EECS core courses (with 20, 61A, 61B, and 61C) introduces

More information

EXPERIMENT 4 CMOS Inverter and Logic Gates

EXPERIMENT 4 CMOS Inverter and Logic Gates İzmir University of Economics EEE 332 Digital Electronics Lab A. Background EXPERIMENT 4 CMOS Inverter and Logic Gates CMOS (Complementary MOS) technology uses tarnsistors together with transistors to

More information

Topic 6. CMOS Static & Dynamic Logic Gates. Static CMOS Circuit. NMOS Transistors in Series/Parallel Connection

Topic 6. CMOS Static & Dynamic Logic Gates. Static CMOS Circuit. NMOS Transistors in Series/Parallel Connection NMOS Transistors in Series/Parallel Connection Topic 6 CMOS Static & Dynamic Logic Gates Peter Cheung Department of Electrical & Electronic Engineering Imperial College London Transistors can be thought

More information

Digital Fundamentals 8/29/2016. Summary. Summary. Floyd. Chapter 3 A X. The Inverter

Digital Fundamentals 8/29/2016. Summary. Summary. Floyd. Chapter 3 A X. The Inverter Digital Fundamentals Tenth Edition Floyd Chapter 3 The Inverter The inverter performs the oolean NOT operation. When the input is LOW, the output is HIGH; when the input is HIGH, the output is LOW. Input

More information

Satish Chandra, Assistant Professor, P P N College, Kanpur 1

Satish Chandra, Assistant Professor, P P N College, Kanpur 1 8/7/4 LOGIC GTES CE NPN Transistor Circuit COMINTIONL LOGIC Satish Chandra ssistant Professor Department of Physics P PN College, Kanpur www.satish4.weebly.com circuit with an output signal that is logical

More information

CS302 Digital Logic Design Solved Objective Midterm Papers For Preparation of Midterm Exam

CS302 Digital Logic Design Solved Objective Midterm Papers For Preparation of Midterm Exam CS302 Digital Logic Design Solved Objective Midterm Papers For Preparation of Midterm Exam MIDTERM EXAMINATION 2011 (October-November) Q-21 Draw function table of a half adder circuit? (2) Answer: - Page

More information

Combinational Circuits DC-IV (Part I) Notes

Combinational Circuits DC-IV (Part I) Notes Combinational Circuits DC-IV (Part I) Notes Digital Circuits have been classified as: (a) Combinational Circuits: In these circuits output at any instant of time depends on inputs present at that instant

More information

Chapter 3 Digital Logic Structures

Chapter 3 Digital Logic Structures Chapter 3 Digital Logic Structures Transistor: Building Block of Computers Microprocessors contain millions of transistors Intel Pentium 4 (2): 48 million IBM PowerPC 75FX (22): 38 million IBM/Apple PowerPC

More information

Introduction to Computer Engineering EECS 203 dickrp/eecs203/ Grading scheme. Review.

Introduction to Computer Engineering EECS 203  dickrp/eecs203/ Grading scheme. Review. Introduction to Computer Engineering EECS 203 http://ziyang.eecs.northwestern.edu/ dickrp/eecs203/ Grading scheme Instructor: Robert Dick Office: 77 Tech Email: dickrp@northwestern.edu Phone: 847 467 2298

More information

Chapter # 1: Introduction

Chapter # 1: Introduction Chapter # : Introduction Contemporary Logic Design Randy H. Katz University of California, erkeley May 994 No. - The Process Of Design Design Implementation Debug Design Initial concept: what is the function

More information

Digital Microelectronic Circuits ( ) Pass Transistor Logic. Lecture 9: Presented by: Adam Teman

Digital Microelectronic Circuits ( ) Pass Transistor Logic. Lecture 9: Presented by: Adam Teman Digital Microelectronic Circuits (361-1-3021 ) Presented by: Adam Teman Lecture 9: Pass Transistor Logic 1 Motivation In the previous lectures, we learned about Standard CMOS Digital Logic design. CMOS

More information

Lecture Summary Module 1 Switching Algebra and CMOS Logic Gates

Lecture Summary Module 1 Switching Algebra and CMOS Logic Gates Lecture Summary Module 1 Switching Algebra and CMOS Logic Gates Learning Outcome: an ability to analyze and design CMOS logic gates Learning Objectives: 1-1. convert numbers from one base (radix) to another:

More information

Combinational Circuits: Multiplexers, Decoders, Programmable Logic Devices

Combinational Circuits: Multiplexers, Decoders, Programmable Logic Devices Combinational Circuits: Multiplexers, Decoders, Programmable Logic Devices Lecture 5 Doru Todinca Textbook This chapter is based on the book [RothKinney]: Charles H. Roth, Larry L. Kinney, Fundamentals

More information

Chapter 8. Chapter 9. Chapter 6. Chapter 10. Chapter 11. Chapter 7

Chapter 8. Chapter 9. Chapter 6. Chapter 10. Chapter 11. Chapter 7 5.5 Series and Parallel Combinations of 246 Complex Impedances 5.6 Steady-State AC Node-Voltage 247 Analysis 5.7 AC Power Calculations 256 5.8 Using Power Triangles 258 5.9 Power-Factor Correction 261

More information

EE241 - Spring 2006 Advanced Digital Integrated Circuits. Notes. Lecture 7: Logic Families for Performance

EE241 - Spring 2006 Advanced Digital Integrated Circuits. Notes. Lecture 7: Logic Families for Performance EE241 - Spring 2006 dvanced Digital Integrated Circuits Lecture 7: Logic Families for Performance Notes Hw 1 due tomorrow Feedback on projects will be sent out by the end of the weekend Some thoughts on

More information

EEE 301 Digital Electronics

EEE 301 Digital Electronics EEE 301 Digital Electronics Lecture 1 Course Contents Introduction to number systems and codes. Analysis and synthesis of digital logic circuits: Basic logic functions, Boolean algebra,combinational logic

More information

Lecture 12 - Digital Circuits (I) The inverter. October 20, 2005

Lecture 12 - Digital Circuits (I) The inverter. October 20, 2005 6.12 - Microelectronic Devices and Circuits - Fall 25 Lecture 12-1 Lecture 12 - Digital Circuits (I) The inverter October 2, 25 Contents: 1. Introduction to digital electronics: the inverter 2. NMOS inverter

More information

Gates and and Circuits

Gates and and Circuits Chapter 4 Gates and Circuits Chapter Goals Identify the basic gates and describe the behavior of each Describe how gates are implemented using transistors Combine basic gates into circuits Describe the

More information

DIGITAL ELECTRONICS QUESTION BANK

DIGITAL ELECTRONICS QUESTION BANK DIGITAL ELECTRONICS QUESTION BANK Section A: 1. Which of the following are analog quantities, and which are digital? (a) Number of atoms in a simple of material (b) Altitude of an aircraft (c) Pressure

More information

Integrated Circuits & Systems

Integrated Circuits & Systems Federal University of Santa atarina enter for Technology omputer Science & Electronics Engineering Integrated ircuits & Systems INE 5442 Lecture 16 MOS ombinational ircuits - 2 guntzel@inf.ufsc.br Pass

More information

Unit level 4 Credit value 15. Introduction. Learning Outcomes

Unit level 4 Credit value 15. Introduction. Learning Outcomes Unit 20: Unit code Digital Principles T/615/1494 Unit level 4 Credit value 15 Introduction While the broad field of electronics covers many aspects, it is digital electronics which now has the greatest

More information

VLSI Logic Structures

VLSI Logic Structures VLSI Logic Structures Ratioed Logic Pass-Transistor Logic Dynamic CMOS Domino Logic Zipper CMOS Spring 25 John. Chandy inary Multiplication + x Multiplicand Multiplier Partial products Result Spring 25

More information

Integrated Circuits -- Timing Behavior of Gates

Integrated Circuits -- Timing Behavior of Gates Integrated Circuits -- Timing ehavior of Gates Page 1 Gates Have Non-Linear Input/Output ehavior V cc V out 0V V in V cc Plotting Vout vs. Vin shows non-linear voltage behavior Page 2 Gates lso Don t React

More information

Digital Integrated Circuits Designing Combinational Logic Circuits. Fuyuzhuo

Digital Integrated Circuits Designing Combinational Logic Circuits. Fuyuzhuo Digital Integrated Circuits Designing Combinational Logic Circuits Fuyuzhuo Introduction Digital IC Combinational vs. Sequential Logic In Combinational Logic Circuit Out In Combinational Logic Circuit

More information

Logic diagram: a graphical representation of a circuit

Logic diagram: a graphical representation of a circuit LOGIC AND GATES Introduction to Logic (1) Logic diagram: a graphical representation of a circuit Each type of gate is represented by a specific graphical symbol Truth table: defines the function of a gate

More information

Lecture 13. Biasing and Loading Single Stage FET Amplifiers. The Building Blocks of Analog Circuits - III

Lecture 13. Biasing and Loading Single Stage FET Amplifiers. The Building Blocks of Analog Circuits - III Lecture 3 Biasing and Loading Single Stage FET Amplifiers The Building Blocks of Analog Circuits III In this lecture you will learn: Current biasing of circuits Current sources and sinks for CS, CG, and

More information

Logic Design I (17.341) Fall Lecture Outline

Logic Design I (17.341) Fall Lecture Outline Logic Design I (17.341) Fall 2011 Lecture Outline Class # 07 October 31, 2011 / November 07, 2011 Dohn Bowden 1 Today s Lecture Administrative Main Logic Topic Homework 2 Course Admin 3 Administrative

More information

LECTURE 7. OPERATIONAL AMPLIFIERS (PART 2)

LECTURE 7. OPERATIONAL AMPLIFIERS (PART 2) CIRCUITS by Ulaby & Maharbiz All rights reserved. Do not reproduce or distribute. LECTURE 7. OPERATIONAL AMPLIFIERS (PART 2) 07/16/2013 ECE225 CIRCUIT ANALYSIS All rights reserved. Do not copy or distribute.

More information

Digital Applications (CETT 1415) Credit: 4 semester credit hours (3 hours lecture, 4 hours lab) Prerequisite: CETT 1403 & CETT 1405

Digital Applications (CETT 1415) Credit: 4 semester credit hours (3 hours lecture, 4 hours lab) Prerequisite: CETT 1403 & CETT 1405 Digital Applications () Credit: 4 semester credit hours (3 hours lecture, 4 hours lab) Prerequisite: CETT 1403 & CETT 1405 Course Description This course covers digital techniques and numbering systems,

More information

VLSI Design. Static CMOS Logic

VLSI Design. Static CMOS Logic VLSI esign Static MOS Logic [dapted from Rabaey s igital Integrated ircuits, 2002, J. Rabaey et al.] EE4121 Static MOS Logic.1 ZLM Review: MOS Process at a Glance efine active areas Etch and fill trenches

More information

EE 330 Lecture 43. Digital Circuits. Other Logic Styles Dynamic Logic Circuits

EE 330 Lecture 43. Digital Circuits. Other Logic Styles Dynamic Logic Circuits EE 330 Lecture 43 Digital Circuits Other Logic Styles Dynamic Logic Circuits Review from Last Time Elmore Delay Calculations W M 5 V OUT x 20C RE V IN 0 L R L 1 L R R 6 W 1 C C 3 D R t 1 R R t 2 R R t

More information

2 Logic Gates THE INVERTER. A logic gate is an electronic circuit which makes logic decisions. It has one output and one or more inputs.

2 Logic Gates THE INVERTER. A logic gate is an electronic circuit which makes logic decisions. It has one output and one or more inputs. 2 Logic Gates A logic gate is an electronic circuit which makes logic decisions. It has one output and one or more inputs. THE INVERTER The inverter (NOT circuit) performs the operation called inversion

More information

CMOS VLSI Design (A3425)

CMOS VLSI Design (A3425) CMOS VLSI Design (A3425) Unit III Static Logic Gates Introduction A static logic gate is one that has a well defined output once the inputs are stabilized and the switching transients have decayed away.

More information

ENG2410 Digital Design CMOS Technology. Fall 2017 S. Areibi School of Engineering University of Guelph

ENG2410 Digital Design CMOS Technology. Fall 2017 S. Areibi School of Engineering University of Guelph ENG2410 Digital Design CMOS Technology Fall 2017 S. reibi School of Engineering University of Guelph The Transistor Revolution First transistor Bell Labs, 1948 Bipolar logic 1960 s Intel 4004 processor

More information

Digital Integrated Circuits Designing Combinational Logic Circuits. Fuyuzhuo

Digital Integrated Circuits Designing Combinational Logic Circuits. Fuyuzhuo Digital Integrated Circuits Designing Combinational Logic Circuits Fuyuzhuo Introduction Digital IC Combinational vs. Sequential Logic In Combinational Logic Circuit Out In Combinational Logic Circuit

More information

Lecture 02: Digital Logic Review

Lecture 02: Digital Logic Review CENG 3420 Lecture 02: Digital Logic Review Bei Yu byu@cse.cuhk.edu.hk CENG3420 L02 Digital Logic. 1 Spring 2017 Review: Major Components of a Computer CENG3420 L02 Digital Logic. 2 Spring 2017 Review:

More information

The CMOS Inverter. Lecture 3a Static properties (VTC and noise margins)

The CMOS Inverter. Lecture 3a Static properties (VTC and noise margins) The CMOS Inverter Lecture 3a Static properties (VTC and noise margins) Why so much about inverters? The current that any CMOS logic gate can deliver or sink can be calculated from equivalent inverter!

More information

PREVIEW COPY. Digital Logic Systems. Table of Contents. Digital Logic Fundamentals...3. Logic Building Blocks Medium- and Large-Scale ICs...

PREVIEW COPY. Digital Logic Systems. Table of Contents. Digital Logic Fundamentals...3. Logic Building Blocks Medium- and Large-Scale ICs... Digital Logic Systems Table of Contents Lesson One Lesson Two Lesson Three Digital Logic Fundamentals...3 Logic uilding locks...9 Medium- and Large-Scale ICs...35 Lesson Four Functional Logic Systems...5

More information

Improved Inverter: Current-Source Pull-Up. MOS Inverter with Current-Source Pull-Up. What else could be connected between the drain and V DD?

Improved Inverter: Current-Source Pull-Up. MOS Inverter with Current-Source Pull-Up. What else could be connected between the drain and V DD? Improved Inverter: Current-Source Pull-Up MOS Inverter with Current-Source Pull-Up What else could be connected between the drain and? Replace resistor with current source I SUP roc i D v IN v OUT Find

More information

Digital Electronics Course Objectives

Digital Electronics Course Objectives Digital Electronics Course Objectives In this course, we learning is reported using Standards Referenced Reporting (SRR). SRR seeks to provide students with grades that are consistent, are accurate, and

More information

Chapter 4 Logic Functions and Gates

Chapter 4 Logic Functions and Gates Chapter 4 Logic Functions and Gates CHPTER OJECTIVES Upon successful completion of this chapter, you will be able to: Describe the basic logic functions: ND, OR, and NOT. Draw simple switch circuits to

More information

Lecture 15 Analysis of Combinational Circuits

Lecture 15 Analysis of Combinational Circuits Lecture 15 Analysis of Combinational Circuits Designing Combinational Logic Circuits A logic circuit having 3 inputs, A, B, C will have its output HIGH only when a majority of the inputs are HIGH. Step

More information

CS302 - Digital Logic Design Glossary By

CS302 - Digital Logic Design Glossary By CS302 - Digital Logic Design Glossary By ABEL : Advanced Boolean Expression Language; a software compiler language for SPLD programming; a type of hardware description language (HDL) Adder : A digital

More information

A-data new-a. Data here. B-data new-b. Digital Circuits V CC. ECGR2181 Chapter 3 Notes 3-1. Logic System Design I

A-data new-a. Data here. B-data new-b. Digital Circuits V CC. ECGR2181 Chapter 3 Notes 3-1. Logic System Design I Data here -data new- -data new- Digital Circuits V CC ECGR28 Chapter 3 Notes S ogic System Design I 3- What is a digital system? It is a organized collecti of digital elements which is designed to perform

More information

COMBINATIONAL and SEQUENTIAL LOGIC CIRCUITS Hardware implementation and software design

COMBINATIONAL and SEQUENTIAL LOGIC CIRCUITS Hardware implementation and software design PH-315 COMINATIONAL and SEUENTIAL LOGIC CIRCUITS Hardware implementation and software design A La Rosa I PURPOSE: To familiarize with combinational and sequential logic circuits Combinational circuits

More information