Barrier Engineering. Flash Memory. Rich Liu Macronix International Co., Ltd. Hsinchu, Taiwan, R.O.C. 1/ A*STAR/SRC/NSF Memory Forum

Size: px
Start display at page:

Download "Barrier Engineering. Flash Memory. Rich Liu Macronix International Co., Ltd. Hsinchu, Taiwan, R.O.C. 1/ A*STAR/SRC/NSF Memory Forum"

Transcription

1 Barrier Engineering g Scaling Limitations of Flash Memory Rich Liu Macronix International Co., Ltd. Hsinchu, Taiwan, R.O.C. 1/

2 Source Floating Gate NAND Device 1 Control gate ONO Floating gate Oxide Drain Program by channel FN tunneling Source Control gate ONO Oxide Erase by FN Drain STI Control Gate (Word Line) X Floating Floating Gate ONO Gate SiN Tunnel oxide Tunnel oxide STI Gate Coupling Ratio (GCR) = C(CG to FG) / C(FG total) Must be > 0.60 V(FG) = (GCR). Vg STI (Want most of the gate voltage drop across the tunnel oxide, not across the ONO.) 1. Program by FN electron tunneling 2/

3 Physical Limit for Floating Gate NAND IPD (Inter Poly Dielectrics) Control Gate FG X Not a physics limit. A physical (geometrical) limit. Device doesn t work w/o GCR. STI Si Charge trapping device (planar). 1. FG must be tall enough to give good GCR. 2. At < 20nm node, there is no space (X < 0) left for control gate after IPD filling. or Planar FG, resonant tunneling, or nano-crystal device with high-k/metal-gate 3/

4 SONOS Has It s Own Problems - 18V Poly-Si Gate SONOS device: Electrons are trapped in SiN. De-trapping is very slow. Must use hole tunneling to erase (hard). SiN Hole tunneling needs very thin tunnel oxide. Source P-well Drain Thin oxide cannot stop direct tunneling poor retention. SONOS is known for many years. There is no right thickness of tunnel oxide that can satisfy both erase and retention requirements. 4/

5 One Solution: Barrier Engineering BE-SONOS BE-SONOS SONOS P-Poly Gate P-Poly gate n-poly gate N-Poly Gate IPD SiN SiN Source P-well Drain SiN trapping layer Bandgap Engineered tunnel dielectric SiN Source P-well Drain Difference between BE-SONOS and SONOS: Composite ONO tunneling barrier allows both fast hole erasing and good data retention ti P-poly gate to reduce gate injection 5/

6 Barrier Engineering of Tunnel Oxide SONOS BE-SONOS Modulated tunneling barrier Achieves both erase and retention BE-SONOS Gate O3 N2 O2 N1 O1 Source P-well Modulated Drain Ba and Energy (ev) Band Diagram at High Electric Field N2 O2 N1 O1 Si-channel Col 3 vs Col 4 Band offset Position (Angstrom) Conduction Band Valence Band Band Energy (ev) Band Diagram at Retention N2 O2 N1 O1 Si-channel Conduction Band 1.9 ev Valence Band 4.5 ev No band offset Position (Angstrom) 6/

7 1x nm Nodes: Running out of Electrons The ultimate t scaling limit it for both FG and CT is the small number of storage electrons. mber Ne: Electron Nu 00 0 Electron number of FG GCR=0.7, Tono=15 nm, Tox=9nm GCR=0.65, Tono=13 nm, Tox=8nm 0 Technology Node: F (nm) lectron mber of E Ne: Nu Electron Number (Ne) Calculation N2/O3=60/60 Angstrom N2/O3=70/70 Angstrom Assume 3V V T shift T 0 F (nm) Number of electrons Number of electrons in FG device in SONOS device (~ 15 for nm device) ( ~ for nm device) 7/

8 Ne: Number of Electron Running out of Electrons Electron Number (Ne) Calculation Retention of Sub-30 nm BE-SONOS NAND ISPP Programming gstatistics N2/O3=60/60 Angstrom N2/O3=70/70 Angstrom Assume 3V V T shift 0 F (nm) Bit Coun nt (#) 0 Retention of Sub 30 nm BE SONOS NAND Before Baking After 24 hour After 0 hour After 300 hour 200 P/E cycled C arbi. unit) Cell Counts ( ISPP steps from V to +17V (0.4V increment) V V Number of electrons Retention for sub-30nm Program 20nm device in SONOS device 150C Identical pulse (~ 50 for 25nm device) (Quite good!) gives different Vt V T (V) V T (Vt shifts) For CT devices, retention is still good even when Ne < 50. Programming shots, however, have < electrons. Statistical limit for MLC first, eventually for SLC. 8/

9 Beyond 1x nm Node 3D Arrays Surround gate device is suitable for 3D layer stacking integration. BE-SONOS TFT device shows very good performance, approaching that for bulk device. Both geometrical and physics limits still exist. But 3D layering uses large (40nm) devices. Bit Co ounts (#) 9 8 As-Programmed State after 1K Cycling After 150C 24hr Baking 7 After 150C 1-week Baking T (V) V T V, 200 usec V msec P/E Cycling 4Mb evaluation V T (V) 9/

10 Summary Floating gate NAND Flash faces physical (geometrical) limit at ~ 20nm node. Charge trapping device can go further (being planar) Number of electrons decreases rapidly with node, even CT devices face statistical limit at nm node. Only known solution o is 3D layering. 3D does not solve physics and physical limitations. 3D by-passes these limits by using relatively large devices (~ 40nm). There is no perspective of using FG device for 3D. Must be CT devices. /

Lecture #29. Moore s Law

Lecture #29. Moore s Law Lecture #29 ANNOUNCEMENTS HW#15 will be for extra credit Quiz #6 (Thursday 5/8) will include MOSFET C-V No late Projects will be accepted after Thursday 5/8 The last Coffee Hour will be held this Thursday

More information

Trends in the Development of Nonvolatile Semiconductor Memories

Trends in the Development of Nonvolatile Semiconductor Memories Trends in the Development of Nonvolatile Semiconductor Memories Torsten Müller, Nicolas Nagel, Stephan Riedel, Matthias Strasburg, Dominik Olligs, Veronika Polei, Stephano Parascandola, Hocine Boubekeur,

More information

Semiconductor Memory: DRAM and SRAM. Department of Electrical and Computer Engineering, National University of Singapore

Semiconductor Memory: DRAM and SRAM. Department of Electrical and Computer Engineering, National University of Singapore Semiconductor Memory: DRAM and SRAM Outline Introduction Random Access Memory (RAM) DRAM SRAM Non-volatile memory UV EPROM EEPROM Flash memory SONOS memory QD memory Introduction Slow memories Magnetic

More information

EE 330 Lecture 12. Devices in Semiconductor Processes. Diodes

EE 330 Lecture 12. Devices in Semiconductor Processes. Diodes EE 330 Lecture 12 Devices in Semiconductor Processes Diodes Guest Lecture: Joshua Abbott Non Volatile Product Engineer Micron Technology NAND Memory: Operation, Testing and Challenges Intro to Flash Memory

More information

BACK SIDE CHARGE TRAPPING NANO-SCALE SILICON NON-VOLATILE MEMORIES

BACK SIDE CHARGE TRAPPING NANO-SCALE SILICON NON-VOLATILE MEMORIES BACK SIDE CHARGE TRAPPING NANO-SCALE SILICON NON-VOLATILE MEMORIES A Dissertation Presented to the Faculty of the Graduate School of Cornell University In Partial Fulfillment of the Requirements for the

More information

Samsung K9HAG08U1M-PCB0 16 Gbit MLC NAND Flash Structural Analysis Report

Samsung K9HAG08U1M-PCB0 16 Gbit MLC NAND Flash Structural Analysis Report March 6, 2006 Samsung K9HAG08U1M-PCB0 16 Gbit MLC NAND Flash Structural Analysis Report For comments, questions, or more information about this report, or for any additional technical needs concerning

More information

Atomic-layer deposition of ultrathin gate dielectrics and Si new functional devices

Atomic-layer deposition of ultrathin gate dielectrics and Si new functional devices Atomic-layer deposition of ultrathin gate dielectrics and Si new functional devices Anri Nakajima Research Center for Nanodevices and Systems, Hiroshima University 1-4-2 Kagamiyama, Higashi-Hiroshima,

More information

Charge Storage Characteristics of Pi-Gate Poly-Si Nanowires TaN-Al 2 O 3 -Si 3 N 4 -SiO 2 -Si Flash Memory

Charge Storage Characteristics of Pi-Gate Poly-Si Nanowires TaN-Al 2 O 3 -Si 3 N 4 -SiO 2 -Si Flash Memory Int. J. Electrochem. Sci., 7 (2012) 8648-8658 International Journal of ELECTROCHEMICAL SCIENCE www.electrochemsci.org Charge Storage Characteristics of Pi-Gate Poly-Si Nanowires TaN-Al 2 O 3 -Si 3 N 4

More information

Toshiba TH58NVG2S3BTG00 4 Gbit NAND Flash Structural Analysis

Toshiba TH58NVG2S3BTG00 4 Gbit NAND Flash Structural Analysis July 5, 2005 Toshiba TH58NVG2S3BTG00 4 Gbit NAND Flash Structural Analysis For questions, comments, or more information about this report, or for any additional technical needs concerning semiconductor

More information

Solid State Devices- Part- II. Module- IV

Solid State Devices- Part- II. Module- IV Solid State Devices- Part- II Module- IV MOS Capacitor Two terminal MOS device MOS = Metal- Oxide- Semiconductor MOS capacitor - the heart of the MOSFET The MOS capacitor is used to induce charge at the

More information

Breaking Through Impenetrable Barriers

Breaking Through Impenetrable Barriers Breaking Through Impenetrable Barriers The Key to the Evolution of Solid State Memory A Pictorial Approach Andrew J. Walker PhD August 2018 1 The Link between α-particles, 3-D NAND and MRAM? - Quantum

More information

Advanced Structures and New Detection Methods for Future High Density Non-volatile Memory Technologies

Advanced Structures and New Detection Methods for Future High Density Non-volatile Memory Technologies Advanced Structures and New Detection Methods for Future High Density Non-volatile Memory Technologies Alvaro Padilla Electrical Engineering and Computer Sciences University of California at Berkeley Technical

More information

Application Note Model 765 Pulse Generator for Semiconductor Applications

Application Note Model 765 Pulse Generator for Semiconductor Applications Application Note Model 765 Pulse Generator for Semiconductor Applications Non-Volatile Memory Cells Characterization The trend of memory research is to develop a new memory called Non-Volatile RAM that

More information

(12) Patent Application Publication (10) Pub. No.: US 2012/ A1

(12) Patent Application Publication (10) Pub. No.: US 2012/ A1 US 2012O146126A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0146126A1 Lai et al. (43) Pub. Date: Jun. 14, 2012 (54) HIGH-KCAPPED BLOCKING DIELECTRIC Publication Classification

More information

Silicon Single-Electron Devices for Logic Applications

Silicon Single-Electron Devices for Logic Applications ESSDERC 02/9/25 Silicon Single-Electron Devices for Logic Applications NTT Basic Research Laboratories Yasuo Takahashi Collaborators: : Yukinori Ono, Akira Fujiwara, Hiroshi Inokawa, Kenji Shiraishi, Masao

More information

Semiconductor Physics and Devices

Semiconductor Physics and Devices Nonideal Effect The experimental characteristics of MOSFETs deviate to some degree from the ideal relations that have been theoretically derived. Semiconductor Physics and Devices Chapter 11. MOSFET: Additional

More information

Eigen # Hole s Wavefunctions, E-k and Equi-Energy Contours from a P-FinFET. Lecture 5

Eigen # Hole s Wavefunctions, E-k and Equi-Energy Contours from a P-FinFET. Lecture 5 Eigen # Gate Gate Hole s Wavefunctions, E-k and Equi-Energy Contours from a P-FinFET Lecture 5 Thin-Body MOSFET Carrier Transport quantum confinement effects low-field mobility: Orientation and Si Thickness

More information

Enabling Breakthroughs In Technology

Enabling Breakthroughs In Technology Enabling Breakthroughs In Technology Mike Mayberry Director of Components Research VP, Technology and Manufacturing Group Intel Corporation June 2011 Defined To be defined Enabling a Steady Technology

More information

Samsung K9G8G08U0M-PCB0 8 Gbit MLC NAND Flash Structural Analysis

Samsung K9G8G08U0M-PCB0 8 Gbit MLC NAND Flash Structural Analysis November 6, 2006 Samsung K9G8G08U0M-PCB0 Structural Analysis For comments, questions, or more information about this report, or for any additional technical needs concerning semiconductor technology, please

More information

Supplementary Figure 1 Schematic illustration of fabrication procedure of MoS2/h- BN/graphene heterostructures. a, c d Supplementary Figure 2

Supplementary Figure 1 Schematic illustration of fabrication procedure of MoS2/h- BN/graphene heterostructures. a, c d Supplementary Figure 2 Supplementary Figure 1 Schematic illustration of fabrication procedure of MoS 2 /hon a 300- BN/graphene heterostructures. a, CVD-grown b, Graphene was patterned into graphene strips by oxygen monolayer

More information

按一下以編輯母片標題樣式. Novel Small-Dimension Poly-Si TFTs with Improved Driving Current and Suppressed Short Channel Effects. Hsiao-Wen Zan and Chun-Yen Chang

按一下以編輯母片標題樣式. Novel Small-Dimension Poly-Si TFTs with Improved Driving Current and Suppressed Short Channel Effects. Hsiao-Wen Zan and Chun-Yen Chang Novel Small-Dimension Poly-Si TFTs with Improved Driving Current and Suppressed Short Channel Effects Hsiao-Wen Zan and Chun-Yen Chang Institute of Electronics, National Chiao Tung University, TAIWAN 1

More information

Semiconductor Process Reliability SVTW 2012 Esko Mikkola, Ph.D. & Andrew Levy

Semiconductor Process Reliability SVTW 2012 Esko Mikkola, Ph.D. & Andrew Levy Semiconductor Process Reliability SVTW 2012 Esko Mikkola, Ph.D. & Andrew Levy 1 IC Failure Modes Affecting Reliability Via/metallization failure mechanisms Electro migration Stress migration Transistor

More information

4: Transistors Non idealities

4: Transistors Non idealities 4: Transistors Non idealities Inversion Major cause of non-idealities/complexities: Who controls channel (and how)? Large Body(Substrate) Source Voltage V G V SB - - - - - - - - n+ n+ - - - - - - - - -

More information

Chapter 3 Basics Semiconductor Devices and Processing

Chapter 3 Basics Semiconductor Devices and Processing Chapter 3 Basics Semiconductor Devices and Processing 1 Objectives Identify at least two semiconductor materials from the periodic table of elements List n-type and p-type dopants Describe a diode and

More information

Chapter 3: Basics Semiconductor Devices and Processing 2006/9/27 1. Topics

Chapter 3: Basics Semiconductor Devices and Processing 2006/9/27 1. Topics Chapter 3: Basics Semiconductor Devices and Processing 2006/9/27 1 Topics What is semiconductor Basic semiconductor devices Basics of IC processing CMOS technologies 2006/9/27 2 1 What is Semiconductor

More information

Design and Analysis of Double Gate MOSFET Devices using High-k Dielectric

Design and Analysis of Double Gate MOSFET Devices using High-k Dielectric International Journal of Electrical Engineering. ISSN 0974-2158 Volume 7, Number 1 (2014), pp. 53-60 International Research Publication House http://www.irphouse.com Design and Analysis of Double Gate

More information

Future MOSFET Devices using high-k (TiO 2 ) dielectric

Future MOSFET Devices using high-k (TiO 2 ) dielectric Future MOSFET Devices using high-k (TiO 2 ) dielectric Prerna Guru Jambheshwar University, G.J.U.S. & T., Hisar, Haryana, India, prernaa.29@gmail.com Abstract: In this paper, an 80nm NMOS with high-k (TiO

More information

A Thesis. entitled. Titanium Oxide Material. Jorhan Rainier Ordosgoitti

A Thesis. entitled. Titanium Oxide Material. Jorhan Rainier Ordosgoitti A Thesis entitled Development of a Non-Volatile Memristor Device Based on a Manganese-Doped Titanium Oxide Material by Jorhan Rainier Ordosgoitti Submitted to the Graduate Faculty as partial fulfillment

More information

Lecture 4 - Digital Representations III + Transistors

Lecture 4 - Digital Representations III + Transistors Lecture 4 - Digital Representations III + Transistors Video: Seems like a natural extension from images no? We just have a new dimension (time) Each frame is just an image made up of pixels Display n frames

More information

Solid State Device Fundamentals

Solid State Device Fundamentals Solid State Device Fundamentals 4.4. Field Effect Transistor (MOSFET) ENS 463 Lecture Course by Alexander M. Zaitsev alexander.zaitsev@csi.cuny.edu Tel: 718 982 2812 4N101b 1 Field-effect transistor (FET)

More information

Samsung K9F2G08U0M-YCB0 2Gbit NAND Flash Device Structural Analysis

Samsung K9F2G08U0M-YCB0 2Gbit NAND Flash Device Structural Analysis April 4, 2006 Samsung K9F2G08U0M-YCB0 2Gbit NAND Flash Device Structural Analysis For comments, questions, or more information about this report, or for any additional technical needs concerning semiconductor

More information

MICROPROCESSOR TECHNOLOGY

MICROPROCESSOR TECHNOLOGY MICROPROCESSOR TECHNOLOGY Assis. Prof. Hossam El-Din Moustafa Lecture 3 Ch.1 The Evolution of The Microprocessor 17-Feb-15 1 Chapter Objectives Introduce the microprocessor evolution from transistors to

More information

Defense Technical Information Center Compilation Part Notice

Defense Technical Information Center Compilation Part Notice UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP013126 TITLE: Room Temperature Single Electron Devices by STM/AFM Nano-Oxidation Process DISTRIBUTION: Approved for public release,

More information

Architecture of Computers and Parallel Systems Part 9: Digital Circuits

Architecture of Computers and Parallel Systems Part 9: Digital Circuits Architecture of Computers and Parallel Systems Part 9: Digital Circuits Ing. Petr Olivka petr.olivka@vsb.cz Department of Computer Science FEI VSB-TUO Architecture of Computers and Parallel Systems Part

More information

Highlights in Microtechnology HiM 2014, EPFL IMT-NE, June 18 th, 2014

Highlights in Microtechnology HiM 2014, EPFL IMT-NE, June 18 th, 2014 Highlights in Microtechnology HiM 2014, EPFL IMT-NE, June 18 th, 2014 CMOS scaling down for digital, analog & mixed signals in microelectronics circuits & systems EPFL STI IMT-NE ESPLAB Pierre-André Farine

More information

This Week s Subject. DRAM & Flexible RRAM. p-channel MOSFET (PMOS) CMOS: Complementary Metal Oxide Semiconductor

This Week s Subject. DRAM & Flexible RRAM. p-channel MOSFET (PMOS) CMOS: Complementary Metal Oxide Semiconductor DRAM & Flexible RRAM This Week s Subject p-channel MOSFET (PMOS) CMOS: Complementary Metal Oxide Semiconductor CMOS Logic Inverter NAND gate NOR gate CMOS Integration & Layout GaAs MESFET (JFET) 1 Flexible

More information

5.0 V-Only Flash Memory Negative Gate Erase Technology

5.0 V-Only Flash Memory Negative Gate Erase Technology 5.0 V-Only Flash Memory Negative ate Erase Technology Application Note Advanced Micro evices Advanced Micro evices Negative ate Erase, 5.0 V- only technology is the most cost-effective and reliable approach

More information

Innovation to Advance Moore s Law Requires Core Technology Revolution

Innovation to Advance Moore s Law Requires Core Technology Revolution Innovation to Advance Moore s Law Requires Core Technology Revolution Klaus Schuegraf, Ph.D. Chief Technology Officer Silicon Systems Group Applied Materials UC Berkeley Seminar March 9 th, 2012 Innovation

More information

Single Transistor Learning Synapses

Single Transistor Learning Synapses Single Transistor Learning Synapses Paul Hasler, Chris Diorio, Bradley A. Minch, Carver Mead California Institute of Technology Pasadena, CA 91125 (818) 395-2812 paul@hobiecat.pcmp.caltech.edu Abstract

More information

(a) (d) (e) (b) (c) (f) 3D-NAND Flash and Its Manufacturing Process

(a) (d) (e) (b) (c) (f) 3D-NAND Flash and Its Manufacturing Process 3D-NAND Flash and Its Manufacturing Process 79 (d) Si Si (b) (c) (e) Si (f) +1-2 (g) (h) Figure 2.33 Top-down view in cap oxide and (b) in nitride_n-2; (c) cross-section near the top of the channel; top-down

More information

Parameter Optimization Of GAA Nano Wire FET Using Taguchi Method

Parameter Optimization Of GAA Nano Wire FET Using Taguchi Method Parameter Optimization Of GAA Nano Wire FET Using Taguchi Method S.P. Venu Madhava Rao E.V.L.N Rangacharyulu K.Lal Kishore Professor, SNIST Professor, PSMCET Registrar, JNTUH Abstract As the process technology

More information

NANOELECTRONIC TECHNOLOGY: CHALLENGES IN THE 21st CENTURY

NANOELECTRONIC TECHNOLOGY: CHALLENGES IN THE 21st CENTURY NANOELECTRONIC TECHNOLOGY: CHALLENGES IN THE 21st CENTURY S. M. SZE National Chiao Tung University Hsinchu, Taiwan And Stanford University Stanford, California ELECTRONIC AND SEMICONDUCTOR INDUSTRIES

More information

2014, IJARCSSE All Rights Reserved Page 1352

2014, IJARCSSE All Rights Reserved Page 1352 Volume 4, Issue 3, March 2014 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Double Gate N-MOSFET

More information

FOR SEMICONDUCTORS 2009 EDITION

FOR SEMICONDUCTORS 2009 EDITION INTERNATIONAL TECHNOLOGY ROADMAP FOR SEMICONDUCTORS 2009 EDITION PROCESS INTEGRATION, DEVICES, AND STRUCTURES THE ITRS IS DEVISED AND INTENDED FOR TECHNOLOGY ASSESSMENT ONLY AND IS WITHOUT REGARD TO ANY

More information

AS THE GATE-oxide thickness is scaled and the gate

AS THE GATE-oxide thickness is scaled and the gate 1174 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 46, NO. 6, JUNE 1999 A New Quasi-2-D Model for Hot-Carrier Band-to-Band Tunneling Current Kuo-Feng You, Student Member, IEEE, and Ching-Yuan Wu, Member,

More information

Intel s High-k/Metal Gate Announcement. November 4th, 2003

Intel s High-k/Metal Gate Announcement. November 4th, 2003 Intel s High-k/Metal Gate Announcement November 4th, 2003 1 What are we announcing? Intel has made significant progress in future transistor materials Two key parts of this new transistor are: The gate

More information

3: MOS Transistors. Non idealities

3: MOS Transistors. Non idealities 3: MOS Transistors Non idealities Inversion Major cause of non-idealities/complexities: Who controls channel (and how)? Large Body(Substrate) Source Voltage V G V SB - - - - - - - - n+ n+ - - - - - - -

More information

Tunneling Field Effect Transistors for Low Power ULSI

Tunneling Field Effect Transistors for Low Power ULSI Tunneling Field Effect Transistors for Low Power ULSI Byung-Gook Park Inter-university Semiconductor Research Center and School of Electrical and Computer Engineering Seoul National University Outline

More information

INTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 1, No 3, 2010

INTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 1, No 3, 2010 Low Power CMOS Inverter design at different Technologies Vijay Kumar Sharma 1, Surender Soni 2 1 Department of Electronics & Communication, College of Engineering, Teerthanker Mahaveer University, Moradabad

More information

Silicon Storage Technology SST39VF800A 8 Mbit Multi-Purpose Flash Memory Structural Analysis

Silicon Storage Technology SST39VF800A 8 Mbit Multi-Purpose Flash Memory Structural Analysis February 23, 2005 Silicon Storage Technology SST39VF800A 8 Mbit Multi-Purpose Flash Memory Structural Analysis For questions, comments, or more information about this report, or for any additional technical

More information

Sensing Circuits for Resistive Memory

Sensing Circuits for Resistive Memory Sensing Circuits for Resistive Memory R. Jacob, Ph.D., P.E. Department of Electrical Engineering Boise State University 1910 University Dr., ET 201 Boise, ID 83725 jbaker@ieee.org Abstract A nascent class

More information

Semiconductor TCAD Tools

Semiconductor TCAD Tools Device Design Consideration for Nanoscale MOSFET Using Semiconductor TCAD Tools Teoh Chin Hong and Razali Ismail Department of Microelectronics and Computer Engineering, Universiti Teknologi Malaysia,

More information

Flash Memory Cells An Overview

Flash Memory Cells An Overview Flash Memory Cells An Overview PAOLO PAVAN, MEMBER, IEEE, ROBERTO BEZ, PIERO OLIVO, AND ENRICO ZANONI, SENIOR MEMBER, IEEE The aim of this paper is to give a thorough overview of Flash memory cells. Basic

More information

Lecture 12 Memory Circuits. Memory Architecture: Decoders. Semiconductor Memory Classification. Array-Structured Memory Architecture RWM NVRWM ROM

Lecture 12 Memory Circuits. Memory Architecture: Decoders. Semiconductor Memory Classification. Array-Structured Memory Architecture RWM NVRWM ROM Semiconductor Memory Classification Lecture 12 Memory Circuits RWM NVRWM ROM Peter Cheung Department of Electrical & Electronic Engineering Imperial College London Reading: Weste Ch 8.3.1-8.3.2, Rabaey

More information

What s after NAND? Report No. FI-NFL-3DM-0111

What s after NAND? Report No. FI-NFL-3DM-0111 Report No. FI-NFL-3DM-0111 January 2011 2011 Forward Insights. All Rights Reserved. Reproduction and distribution of this publication in any form in whole or in part without prior written permission is

More information

Performance Evaluation of MISISFET- TCAD Simulation

Performance Evaluation of MISISFET- TCAD Simulation Performance Evaluation of MISISFET- TCAD Simulation Tarun Chaudhary Gargi Khanna Rajeevan Chandel ABSTRACT A novel device n-misisfet with a dielectric stack instead of the single insulator of n-mosfet

More information

Performance Comparison of CMOS and Finfet Based Circuits At 45nm Technology Using SPICE

Performance Comparison of CMOS and Finfet Based Circuits At 45nm Technology Using SPICE RESEARCH ARTICLE OPEN ACCESS Performance Comparison of CMOS and Finfet Based Circuits At 45nm Technology Using SPICE Mugdha Sathe*, Dr. Nisha Sarwade** *(Department of Electrical Engineering, VJTI, Mumbai-19)

More information

ITRS MOSFET Scaling Trends, Challenges, and Key Technology Innovations

ITRS MOSFET Scaling Trends, Challenges, and Key Technology Innovations Workshop on Frontiers of Extreme Computing Santa Cruz, CA October 24, 2005 ITRS MOSFET Scaling Trends, Challenges, and Key Technology Innovations Peter M. Zeitzoff Outline Introduction MOSFET scaling and

More information

PhE102-VASE. PHE102 Variable Angle Spectroscopic Ellipsometer. Angstrom Advanced Inc. Angstrom Advanced. Angstrom Advanced

PhE102-VASE. PHE102 Variable Angle Spectroscopic Ellipsometer. Angstrom Advanced Inc. Angstrom Advanced. Angstrom Advanced Angstrom Advanced PhE102-VASE PHE102 Variable Angle Spectroscopic Ellipsometer Angstrom Advanced Instruments for Thin Film and Semiconductor Applications sales@angstromadvanced.com www.angstromadvanced.com

More information

Partially-insulated MOSFET (PiFET) and Its Application to DRAM Cell Transistor

Partially-insulated MOSFET (PiFET) and Its Application to DRAM Cell Transistor 30 CHANG WOO OH et al : PARTIALLY-INSULATED MOSFET (PIFET) AND ITS APPLICATION TO DRAM CELL TRANSISTOR Partially-insulated MOSFET (PiFET) and Its Application to DRAM Cell Transistor Chang Woo Oh, Sung

More information

Record I on (0.50 ma/μm at V DD = 0.5 V and I off = 100 na/μm) 25 nm-gate-length ZrO 2 /InAs/InAlAs MOSFETs

Record I on (0.50 ma/μm at V DD = 0.5 V and I off = 100 na/μm) 25 nm-gate-length ZrO 2 /InAs/InAlAs MOSFETs Record I on (0.50 ma/μm at V DD = 0.5 V and I off = 100 na/μm) 25 nm-gate-length ZrO 2 /InAs/InAlAs MOSFETs Sanghoon Lee 1*, V. Chobpattana 2,C.-Y. Huang 1, B. J. Thibeault 1, W. Mitchell 1, S. Stemmer

More information

Davinci. Semiconductor Device Simulaion in 3D SYSTEMS PRODUCTS LOGICAL PRODUCTS PHYSICAL IMPLEMENTATION SIMULATION AND ANALYSIS LIBRARIES TCAD

Davinci. Semiconductor Device Simulaion in 3D SYSTEMS PRODUCTS LOGICAL PRODUCTS PHYSICAL IMPLEMENTATION SIMULATION AND ANALYSIS LIBRARIES TCAD SYSTEMS PRODUCTS LOGICAL PRODUCTS PHYSICAL IMPLEMENTATION SIMULATION AND ANALYSIS LIBRARIES TCAD Aurora DFM WorkBench Davinci Medici Raphael Raphael-NES Silicon Early Access TSUPREM-4 Taurus-Device Taurus-Lithography

More information

Homework 10 posted just for practice. Office hours next week, schedule TBD. HKN review today. Your feedback is important!

Homework 10 posted just for practice. Office hours next week, schedule TBD. HKN review today. Your feedback is important! EE141 Fall 2005 Lecture 26 Memory (Cont.) Perspectives Administrative Stuff Homework 10 posted just for practice No need to turn in Office hours next week, schedule TBD. HKN review today. Your feedback

More information

Nanocrystal embedded MOS non volatile memory devices

Nanocrystal embedded MOS non volatile memory devices Nanocrystal embedded MOS non volatile memory devices Prof. C. K. Sarkar, Senior Member, IEEE IEEE EDS Distinguished Lecturer Professor Dept. of Electronics & Telecommunication Engineering Jadavpur University

More information

III-V CMOS: Quo Vadis?

III-V CMOS: Quo Vadis? III-V CMOS: Quo Vadis? J. A. del Alamo, X. Cai, W. Lu, A. Vardi, and X. Zhao Microsystems Technology Laboratories Massachusetts Institute of Technology Compound Semiconductor Week 2018 Cambridge, MA, May

More information

Non-Volatile Memory Based on Solid Electrolytes

Non-Volatile Memory Based on Solid Electrolytes Non-Volatile Memory Based on Solid Electrolytes Michael Kozicki Chakku Gopalan Murali Balakrishnan Mira Park Maria Mitkova Center for Solid State Electronics Research Introduction The electrochemical redistribution

More information

Jack Keil Wolf Lecture. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Lecture Outline. MOSFET N-Type, P-Type.

Jack Keil Wolf Lecture. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Lecture Outline. MOSFET N-Type, P-Type. ESE 570: Digital Integrated Circuits and VLSI Fundamentals Jack Keil Wolf Lecture Lec 3: January 24, 2019 MOS Fabrication pt. 2: Design Rules and Layout http://www.ese.upenn.edu/about-ese/events/wolf.php

More information

Session 10: Solid State Physics MOSFET

Session 10: Solid State Physics MOSFET Session 10: Solid State Physics MOSFET 1 Outline A B C D E F G H I J 2 MOSCap MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor: Al (metal) SiO2 (oxide) High k ~0.1 ~5 A SiO2 A n+ n+ p-type Si (bulk)

More information

EECS130 Integrated Circuit Devices

EECS130 Integrated Circuit Devices EECS130 Integrated Circuit Devices Professor Ali Javey 11/01/2007 MOSFETs Lecture 5 Announcements HW7 set is due now HW8 is assigned, but will not be collected/graded. MOSFET Technology Scaling Technology

More information

Nano-crystalline Oxide Semiconductor Materials for Semiconductor and Display Technology Sanghun Jeon Ph.D. Associate Professor

Nano-crystalline Oxide Semiconductor Materials for Semiconductor and Display Technology Sanghun Jeon Ph.D. Associate Professor Nano-crystalline Oxide Semiconductor Materials for Semiconductor and Display Technology Sanghun Jeon Ph.D. Associate Professor Department of Applied Physics Korea University Personnel Profile (Affiliation

More information

MANY RECENT efforts on the high-κ dielectric development

MANY RECENT efforts on the high-κ dielectric development IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 53, NO. 12, DECEMBER 2006 3103 Design Optimization of Metal Nanocrystal Memory Part II: Gate-Stack Engineering Tuo-Hung Hou, Chungho Lee, Venkat Narayanan, Udayan

More information

MODELING AND SIMULATION OF ADVANCED FLOATING BODY Z-RAM MEMORY CELLS

MODELING AND SIMULATION OF ADVANCED FLOATING BODY Z-RAM MEMORY CELLS MODELING AND SIMULATION OF ADVANCED FLOATING BODY Z-RAM MEMORY CELLS Viktor Sverdlov and Siegfried Selberherr Institute for Microelectronics Technische Universität Wien Gusshausstrasse 27 29 1040 Vienna,

More information

Fabrication and electrical characterization of MONOS memory with novel high-κ gate stack

Fabrication and electrical characterization of MONOS memory with novel high-κ gate stack Title Fabrication and electrical characterization of MONOS memory with novel high-κ gate stack Author(s) Liu, L; Xu, JP; Chan, CL; Lai, PT Citation The IEEE International Conference on Electron Devices

More information

FinFET vs. FD-SOI Key Advantages & Disadvantages

FinFET vs. FD-SOI Key Advantages & Disadvantages FinFET vs. FD-SOI Key Advantages & Disadvantages Amiad Conley Technical Marketing Manager Process Diagnostics & Control, Applied Materials ChipEx-2014, Apr 2014 1 Moore s Law The number of transistors

More information

Spansion S29GL512N11TAI Mbit MirrorBit TM Flash Memory Structural Analysis

Spansion S29GL512N11TAI Mbit MirrorBit TM Flash Memory Structural Analysis March 5, 2007 Spansion S29GL512N11TAI02 512 Mbit MirrorBit TM Flash Memory Structural Analysis For comments, questions, or more information about this report, or for any additional technical needs concerning

More information

Journal of Electron Devices, Vol. 20, 2014, pp

Journal of Electron Devices, Vol. 20, 2014, pp Journal of Electron Devices, Vol. 20, 2014, pp. 1786-1791 JED [ISSN: 1682-3427 ] ANALYSIS OF GIDL AND IMPACT IONIZATION WRITING METHODS IN 100nm SOI Z-DRAM Bhuwan Chandra Joshi, S. Intekhab Amin and R.

More information

A new Vertical JFET Technology for Harsh Radiation Applications

A new Vertical JFET Technology for Harsh Radiation Applications A New Vertical JFET Technology for Harsh Radiation Applications ISPS 2016 1 A new Vertical JFET Technology for Harsh Radiation Applications A Rad-Hard switch for the ATLAS Inner Tracker P. Fernández-Martínez,

More information

MTLE-6120: Advanced Electronic Properties of Materials. Semiconductor transistors for logic and memory. Reading: Kasap

MTLE-6120: Advanced Electronic Properties of Materials. Semiconductor transistors for logic and memory. Reading: Kasap MTLE-6120: Advanced Electronic Properties of Materials 1 Semiconductor transistors for logic and memory Reading: Kasap 6.6-6.8 Vacuum tube diodes 2 Thermionic emission from cathode Electrons collected

More information

NAME: Last First Signature

NAME: Last First Signature UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences EE 130: IC Devices Spring 2003 FINAL EXAMINATION NAME: Last First Signature STUDENT

More information

EFM Ec. a) Sketch the electrostatic potential inside the semiconductor as a function of position.

EFM Ec. a) Sketch the electrostatic potential inside the semiconductor as a function of position. 1.The energy band diagram for an ideal x o =.2um MOS-C operated at T=300K is shown below. Note that the applied gate voltage causes band bending in the semiconductor such that E F =E i at the Si-SiO2 interface.

More information

Chapter 2 : Semiconductor Materials & Devices (II) Feb

Chapter 2 : Semiconductor Materials & Devices (II) Feb Chapter 2 : Semiconductor Materials & Devices (II) 1 Reference 1. SemiconductorManufacturing Technology: Michael Quirk and Julian Serda (2001) 3. Microelectronic Circuits (5/e): Sedra & Smith (2004) 4.

More information

I DDQ Current Testing

I DDQ Current Testing I DDQ Current Testing Motivation Early 99 s Fabrication Line had 5 to defects per million (dpm) chips IBM wanted to get 3.4 defects per million (dpm) chips Conventional way to reduce defects: Increasing

More information

Samsung K3PE7E700B-XXC1 3x nm 4 Gbit Mobile DRAM. DRAM Process Report with Custom BEOL and Dopant Analysis

Samsung K3PE7E700B-XXC1 3x nm 4 Gbit Mobile DRAM. DRAM Process Report with Custom BEOL and Dopant Analysis Samsung K3PE7E700B-XXC1 3x nm 4 Gbit Mobile DRAM DRAM Process Report with Custom BEOL and Dopant Analysis Samsung K3PE7E700B-XXC1 3x nm 4 Gbit Mobile DRAM 2 Some of the information in this report may be

More information

Value Creation of AI in the Manufacturing Industry

Value Creation of AI in the Manufacturing Industry Value Creation of AI in the Manufacturing Industry Janet George Fellow/Chief Data Scientist Western Digital Corporation September 28 th, 2016 2016 Western Digital Corporation or its affiliates. All rights

More information

HW#3 Solution. Dr. Parker. Fall 2015

HW#3 Solution. Dr. Parker. Fall 2015 HW#3 Solution Dr. Parker Fall 2015 Assume for the problems below that V dd = 1.8 V, V tp0 is -.7 V. and V tn0 is.7 V. V tpbodyeffect is -.9 V. and V tnbodyeffect is.9 V. Assume ß n (k n )= 219.4 W/L µ

More information

Design of Low power and Area Efficient 8-bit ALU using GDI Full Adder and Multiplexer

Design of Low power and Area Efficient 8-bit ALU using GDI Full Adder and Multiplexer Design of Low power and Area Efficient 8-bit ALU using GDI Full Adder and Multiplexer Mr. Y.Satish Kumar M.tech Student, Siddhartha Institute of Technology & Sciences. Mr. G.Srinivas, M.Tech Associate

More information

Fin-Shaped Field Effect Transistor (FinFET) Min Ku Kim 03/07/2018

Fin-Shaped Field Effect Transistor (FinFET) Min Ku Kim 03/07/2018 Fin-Shaped Field Effect Transistor (FinFET) Min Ku Kim 03/07/2018 ECE 658 Sp 2018 Semiconductor Materials and Device Characterizations OUTLINE Background FinFET Future Roadmap Keeping up w/ Moore s Law

More information

Low Power Analog Multiplier Using Mifgmos

Low Power Analog Multiplier Using Mifgmos Journal of Computer Science, 9 (4): 514-520, 2013 ISSN 1549-3636 2013 doi:10.3844/jcssp.2013.514.520 Published Online 9 (4) 2013 (http://www.thescipub.com/jcs.toc) Low Power Analog Multiplier Using Mifgmos

More information

Samsung K4B1G0846F-HCF8 1 Gbit DDR3 SDRAM 48 nm CMOS DRAM Process

Samsung K4B1G0846F-HCF8 1 Gbit DDR3 SDRAM 48 nm CMOS DRAM Process Samsung K4B1G0846F-HCF8 48 nm CMOS DRAM Process Structural Analysis For comments, questions, or more information about this report, or for any additional technical needs concerning semiconductor and electronics

More information

MOSFET Parasitic Elements

MOSFET Parasitic Elements MOSFET Parasitic Elements Three MITs of the ay Components of the source resistance and their influence on g m and R d Gate-induced drain leakage (GIL) and its effect on lowest possible leakage current

More information

(12) Patent Application Publication (10) Pub. No.: US 2006/ A1. Luo et al. (43) Pub. Date: Jun. 8, 2006

(12) Patent Application Publication (10) Pub. No.: US 2006/ A1. Luo et al. (43) Pub. Date: Jun. 8, 2006 (19) United States US 200601 19753A1 (12) Patent Application Publication (10) Pub. No.: US 2006/01 19753 A1 Luo et al. (43) Pub. Date: Jun. 8, 2006 (54) STACKED STORAGE CAPACITOR STRUCTURE FOR A THIN FILM

More information

Multiple Patterning for Immersion Extension and EUV Insertion. Chris Bencher Distinguished Member of Technical Staff Applied Materials CTO group

Multiple Patterning for Immersion Extension and EUV Insertion. Chris Bencher Distinguished Member of Technical Staff Applied Materials CTO group Multiple Patterning for Immersion Extension and EUV Insertion Chris Bencher Distinguished Member of Technical Staff Applied Materials CTO group Abstract Multiple Patterning for Immersion Extension and

More information

Power FINFET, a Novel Superjunction Power MOSFET

Power FINFET, a Novel Superjunction Power MOSFET Power FINFET, a Novel Superjunction Power MOSFET Wai Tung Ng Smart Power Integration & Semiconductor Devices Research Group Department of Electrical and Computer Engineering Toronto, Ontario Canada, M5S

More information

FinFET-based Design for Robust Nanoscale SRAM

FinFET-based Design for Robust Nanoscale SRAM FinFET-based Design for Robust Nanoscale SRAM Prof. Tsu-Jae King Liu Dept. of Electrical Engineering and Computer Sciences University of California at Berkeley Acknowledgements Prof. Bora Nikoli Zheng

More information

Static Random Access Memory - SRAM Dr. Lynn Fuller Webpage:

Static Random Access Memory - SRAM Dr. Lynn Fuller Webpage: ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Static Random Access Memory - SRAM Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 14623-5604 Email:

More information

EEC 216 Lecture #8: Leakage. Rajeevan Amirtharajah University of California, Davis

EEC 216 Lecture #8: Leakage. Rajeevan Amirtharajah University of California, Davis EEC 216 Lecture #8: Leakage Rajeevan Amirtharajah University of California, Davis Outline Announcements Review: Low Power Interconnect Finish Lecture 7 Leakage Mechanisms Circuit Styles for Low Leakage

More information

Lecture 4. MOS transistor theory

Lecture 4. MOS transistor theory Lecture 4 MOS transistor theory 1.7 Introduction: A MOS transistor is a majority-carrier device, in which the current in a conducting channel between the source and the drain is modulated by a voltage

More information

Lecture 0: Introduction

Lecture 0: Introduction Lecture 0: Introduction Introduction Integrated circuits: many transistors on one chip. Very Large Scale Integration (VLSI): bucketloads! Complementary Metal Oxide Semiconductor Fast, cheap, low power

More information

Analog Synaptic Behavior of a Silicon Nitride Memristor

Analog Synaptic Behavior of a Silicon Nitride Memristor Supporting Information Analog Synaptic Behavior of a Silicon Nitride Memristor Sungjun Kim, *, Hyungjin Kim, Sungmin Hwang, Min-Hwi Kim, Yao-Feng Chang,, and Byung-Gook Park *, Inter-university Semiconductor

More information

Active Pixel Sensors Fabricated in a Standard 0.18 um CMOS Technology

Active Pixel Sensors Fabricated in a Standard 0.18 um CMOS Technology Active Pixel Sensors Fabricated in a Standard.18 um CMOS Technology Hui Tian, Xinqiao Liu, SukHwan Lim, Stuart Kleinfelder, and Abbas El Gamal Information Systems Laboratory, Stanford University Stanford,

More information