LSO PET/CT Pico Performance Improvements with Ultra Hi-Rez Option

Size: px
Start display at page:

Download "LSO PET/CT Pico Performance Improvements with Ultra Hi-Rez Option"

Transcription

1 LSO PET/CT Pico Performance Improvements with Ultra Hi-Rez Option Y. Bercier, Member, IEEE, M. Casey, Member, IEEE, J. Young, Member, IEEE, T. Wheelock, Member, IEEE, T. Gremillion Abstract-- Factors which may improve image quality in PET systems include spatial resolution and scatter fraction. By reducing the energy window, the size of the crystal elements and thickness, the spatial resolution and scatter fraction can be improved. The LSO PET/CT Pico system, which consists of an 8x8 crystal array per detector block, operates on an energy window of 400 to 650 kev. The new LSO PET/CT Hi-Rez system includes a 13x13 crystal array per detector block, a decrease of 20% in crystal thickness and a narrower energy window of 425 to 650 kev. Improvements in spatial resolution and in scatter fraction are therefore expected. Although a reduction in sensitivity may result, the image quality of the system should not be affected. In order to evaluate the overall performance of the new system, tests from the NEMA NU protocol were conducted on LSO PET/CT Pico and Hi-Rez systems, and their results were compared. The Hi-Rez system presented an improvement in spatial resolution of 27% at 1cm and 28% at 10 cm. The scatter fraction on the Pico and Hi-Rez systems indicate average values of 41% and 34% respectively, equivalent to a decrease of 17% for the Hi-Rez system. The sensitivity of the Hi- Rez system diminished by 22% and changes of less than 4% were observed for the peak NEC rate. The improvements in spatial resolution and scatter fraction obtained in our measurements may create significant advances in the physician s ability to detect small lesions in PET/CT images. T I. INTRODUCTION he introduction of a new PET system requires a performance evaluation in order to compare the new system s capabilities to those of its predecessors [1]. Documents, such as the NEMA NU [2], have been developed by experienced research groups with the purpose of providing measurement protocols for comparative performance evaluation of different systems. In order to consider recent advancements in PET instrumentation, the National Electrical Manufacturers Association (NEMA) committee has released a revised document. The NEMA NU [3] protocol suggests testing methods to evaluate the following system characteristics: 1) spatial resolution, 2) sensitivity, 3) scatter fraction, count losses and randoms measurement, 4) accuracy of corrections for count losses and randoms and 5) image quality. For each testing method, the document presents All authors are with CPS Innovations, Knoxville, TN USA (telephone: ). details concerning the data acquisition and processing procedures, data reporting, as well as source distribution and activity levels required at the start of data acquisition. With the advent of the ultra Hi-Rez option, NEMA NU tests were conducted and the results are discussed in the following sections. II. METHODS AND MATERIALS The systems which were tested are the LSO PET/CT Pico 3D [4] and the LSO PET/CT Pico 3D Hi-Rez [5],[6] (CPS Innovations, Knoxville, TN, USA). Both systems have LSO crystals, Pico electronics and 3D functionality (no septa). They differ primarily in crystal size, crystal thickness and lower level energy discriminator (LLD). TABLE I SCANNER SPECIFICATIONS Scanner Detector material LSO LSO Transaxial field of view (mm) Axial field of view (mm) Coincidence time window (nsec) Upper level energy discriminator (kev) Lower level energy discriminator (kev) Image planes Crystal dimensions (mm 3 ) 6.45x6.45x25 4x4x20 Crystal array 8x8 13x13 Plane spacing (mm) Due to the increased LLD and reduced crystal width and depth of the Hi-Rez system, resolution and scatter fraction are expected to improve, however, the overall system sensitivity is expected to decrease. In order to quantify the difference in performance between the two systems, NEMA tests were conducted and the results are given in the following section. A. Spatial resolution The purpose of this test is to measure the full width half maximum (FWHM) of the point spread function (PSF) of a reconstructed point source. The point source assembly

2 consists of F18 absorbing resin of size 1x1x1 mm 3 is inserted in a glass capillary of 1.1 mm inner diameter, 0.20 mm wall thickness and 75 mm length (Fig. 1). A high-density polyethylene (HDPT) material is located within the tube, in front and behind the resin, in order to keep the resin from moving. The 7.4 MBq point source is then prepared by pulling F18 solution through the assembly. A fixture (Fig. 1), specifically designed for point source positioning, is secured to the patient handling system (PHS). The fixture enables the source assembly to be positioned laterally or vertically every 1 cm within the field of view (FOV). As x and y define the transaxial plane and z defines the axial direction, the NEMA protocol requires data to be acquired at the following 6 (x,y,z) cm locations: (0,1,½FOV z ), (0,1,¾FOV z ), (10,0,½FOV z ), (10,0,¾FOV z ), (0,10, ½FOV z ), (0,10, ¾FOV z ). For each location, 2E6 nettrues were acquired. several activity levels, by providing information concerning peak true countrate and peak noise equivalent countrate. A polyethylene solid right circular cylinder is required for this test (Fig. 3). This phantom has 1) a 203 mm diameter, 2) a 700 mm length and 3) a 700 mm long hole parallel to the central axis of the cylinder, located 45 mm below the center of the phantom. With the phantom centered on the PHS, a 700 mm F18 line source of 1.04 GBq, calibrated for the beginning of the test, is positioned within the hole. Data is acquired over 35 frames with a 600 second acquisition time and a 900 second delay time. Fig. 2. NEMA NU sensitivity sleeves and fixtures. The sensitivity sleeves are suspended by the fixtures within the view. Fig. 1. Point source assembly and fixture. The point source assembly is suspended by the fixture within the view. B. Sensitivity The sensitivity test quantifies the system s ability to detect positron annihilations at two positions within the transaxial field of view: 1) at the center and 2) at a radial offset of 10 cm. A 700 mm line source of low activity, calibrated for 3.7 MBq of F18 at the beginning of the test, was used. Five 700 mm aluminum sleeves, used as attenuating material surrounding the line source, are suspended in the field of view (Fig. 2). The sleeves are of the following inner and outer diameter sizes in mm: 1) 3.9 and 6.4, 2) 7.0 and 9.5, 3) 10.2 and 12.7, 4) 13.4 and 15.9 and 5) 16.6 and Data was acquired for 400 seconds for each attenuation thickness in order to measure, by extrapolation, the system s sensitivity without interfering attenuation. C. Scatter fraction, count losses and randoms measurement This test measures 1) the system s sensitivity to scattered radiation by providing a scatter fraction, and 2) the effect of system dead-time and the generation of random events at Fig. 3. NEMA NU scatter phantom. The phantom is positioned on the PHS and centered using the lasers.

3 D. Image quality, accuracy of attenuation and scatter corrections The purpose of this test is to produce images simulating those obtained from patient total body imaging examinations. Two phantoms are required for this test: 1) the image quality phantom and 2) the scatter phantom. The scatter phantom simulates scatter originating from the human body during an examination. The inside of the image quality phantom includes 6 spheres of different sizes and a cylinder containing lung equivalent material. The sphere internal diameters are the following: 1) 10 mm, 2) 13 mm, 3) 17 mm, 4) 22 mm, 5) 28 mm and 6) 37 mm (Fig. 4). At the beginning of the scan, the background region must contain an activity concentration of 5.3 kbq/cc of F18. The 4 smallest spheres must contain an activity concentration of N times that of the background, where N=8 and N=4. The 2 largest diameter spheres shall be cold. The line source in the scatter phantom must have an activity of 116 MBq at the start of the scan. The data acquisition time was set to 432 seconds in order to simulate total body imaging: 100 cm total axial imaging distance in 60 minutes. After image reconstruction, regions of interest (ROIs) of diameters equal to those of the spheres are drawn on the spheres. An additional 12 ROIs are drawn on the background region. The percent contrast and percent background variability are reported for each sphere. TABLE II NEMA NU SPATIAL RESOLUTION Radial position and 1 cm offset Transverse [mm] Axial [mm] cm offset Transverse tangential [mm] Transverse radial [mm] Axial [mm] B. Sensitivity The results of the sensitivity test are given in Table III. The overall system sensitivity of the Hi-Rez system is 22 % lower than that of the Pico, due to the decrease in crystal depth and increase in LLD. TABLE III NEMA NU SENSITIVITY Radial position 0 cm offset [cps/mbq] cm offset [cps/mbq] C. Scatter fraction, count losses and randoms measurement The scatter fraction on the Pico and Hi-Rez systems indicate average values of 41% and 34% respectively, equivalent to a decrease of 17%. These results are shown in Fig. 5. Changes of less than 4% were observed for the peak NEC rate, as shown in Fig. 6. TABLE IV NEMA NU SCATTER Fig. 4. NEMA NU image quality phantom. Within the phantom are six different size spheres and a cylinder containing lung equivalent material. Scatter fraction [%] Peak NEC rate [cps] 9.74E E+04 III. RESULTS NEMA tests were performed on three different scanners of each system in order to obtain an average performance. On each Pico and Hi-Rez scanners, one and two datasets were acquired respectively. A. Spatial resolution The images were reconstructed 336x336 using a DIFT algorithm. An average of the obtained results is given in Table II. The Hi-Rez system presents an improvement in spatial resolution of 27% at 1cm and 28% at 10 cm. Fig. 5. NEMA NU scatter fraction graphs of a Pico scanner (a) and a Hi-Rez scanner (b).

4 TABLE V NEMA NU IMAGE QUALITY (a) Fig. 6. NEMA NU noise equivalent countrate graphs of a Pico scanner (a) and Hi-Rez scanner (b). D. Image quality, accuracy of attenuation and scatter corrections As common for clinical studies, images were reconstructed 128x128 by attenuation-weighted FORE OSEM, with 4 iterations, 8 subsets, and a Gaussian filter with FWHM of 5 mm. Images are given in Fig. 7 for the N=8 and N=4 activity concentration ratios. The average contrast and background variability between the N=8 and N=4 ratios are presented in Table V. The results in the table show an improved average contrast and background variability on the Hi-Rez system. (a) (b) (b) Object Average contrast between N=8 and N=4 ratios [%] 10 mm sphere mm sphere mm sphere mm sphere mm sphere mm sphere Average background variability between N=8 and N=4 ratios [%] 10 mm sphere mm sphere mm sphere mm sphere mm sphere mm sphere 3 3 The spatial resolution was evaluated at 6 different locations within the field of view. Compared to the Pico, the Hi-Rez system has an improved and more constant spatial resolution across the field of view. An average 28% improvement in resolution was reported, which may have considerable advantages in clinical environments. The narrower energy window and shallower crystals have decreased the overall system sensitivity and scatter fraction by 22% and 17% respectively. The improved resolution and scatter fraction may result in an increase in image contrast, which allows a more accurate localization and delineation of lesions. The results obtained from the image quality test have shown an improvement in the reproduction of hot and cold spots, ranging from 10 to 37 mm diameter. (c) Fig. 7. NEMA NU image quality images. The N=8 and N=4 Pico images are given in (a) and (b) respectively and the N=8 and N=4 Hi-Rez images are given in (c) and (d) respectively. IV. DISCUSSION In order to allow a comparable evaluation of different systems, measurements protocols have been developed by experienced research groups. The NEMA NU protocol has been released in order to consider recent advances in PET instrumentation. Due to the advent of the Hi-Rez system, NEMA tests have been conducted in order to evaluate its performance and to compare it to previously released systems such as the Pico system. This paper has presented the results obtained from the testing methods suggested by the NEMA committee. (d) V. ACKNOWLEDGMENT We would like to thank Tim Mulnix and Curtis Howe, from CPS Innovations, Knoxville, TN, USA, for providing software to process the NEMA data. We would also like to thank Lutz Tellmann, from the Institute of Medicine, Juelich, Germany, as well as Maria-Jose Martinez, from the Technische Universitaet, Munich, Germany, for their help with the acquisition of the image quality data for the Pico system. VI. REFERENCES [1] H. Herzog, L. Tellmann, C. Hocke, U. Pietrzyk, M.E. Casey and T. Kuwert, NEMA NU Guided Performance Evaluation of Four Siemens ECAT PET Scanners, IEEE Transactions on Nuclear Science, vol. 51, no. 5, pp , October [2] National Electrical Manufacturers Association. NEMA Standards Publication NU Performance Measurements of Positron Emission Tomographs,. Washington, DC, National Electrical Manufacturers Association, [3] National Electrical Manufacturers Association. NEMA Standards Publication NU Performance Measurements of Positron Emission Tomographs,. Rosslin, VA, National Electrical Manufacturers Association, [4] M.S. Musrock, J.W. Young, J.C. Moyers, J.E. Breeding, M.E. Casey, J.M. Rochelle et al., Performance Characteristics of a New Generation

5 of Processing Circuits for PET Applications, IEEE Transactions on Nuclear Science, vol. 50, no. 4, pp , August [5] M. E. Casey, J. Young, T. Wheelock, M. Schmand, B. Bendriem, R. Nutt, Physical Performance of a High Resolution PET/CT Scanner, presented at the 51 st annual meeting of the SNM in Philadelphia. June 20-23, [6] D. W. Townsend, J. P. Carney, J. T. Yap, M. Long, N. C. Hall, J. Young et al., Clinical Performance of a High Resolution 16-Slice LSO PET/CT Scanner, presented at the 51 st annual meeting of the SNM in Philadelphia. June 20-23, 2004.

Chiara Secco. PET Performance measurements of the new LSO-Based Whole Body PET/CT. Scanner biograph 16 HI-REZ using the NEMA NU Standard.

Chiara Secco. PET Performance measurements of the new LSO-Based Whole Body PET/CT. Scanner biograph 16 HI-REZ using the NEMA NU Standard. Chiara Secco PET Performance measurements of the new LSO-Based Whole Body PET/CT Scanner biograph 16 HI-REZ using the NEMA NU 2-2001 Standard. INTRODUCTION Since its introduction, CT has become a fundamental

More information

PET Performance Measurements for an LSO- Based Combined PET/CT Scanner Using the National Electrical Manufacturers Association NU Standard

PET Performance Measurements for an LSO- Based Combined PET/CT Scanner Using the National Electrical Manufacturers Association NU Standard PET Performance Measurements for an LSO- Based Combined PET/CT Scanner Using the National Electrical Manufacturers Association NU 2-2001 Standard Yusuf E. Erdi, DSc 1 ; Sadek A. Nehmeh, PhD 1 ; Tim Mulnix,

More information

Combined micropet /MR System: Performance Assessment of the Full PET Ring with Split Gradients 4.8

Combined micropet /MR System: Performance Assessment of the Full PET Ring with Split Gradients 4.8 Combined micropet /MR System: Performance Assessment of the Full PET Ring with Split Gradients 4.8 UNIVERSITY OF CAMBRIDGE 1.2 Rob C. Hawkes 1, Tim D. Fryer 1, Alun J. Lucas 1,2, Stefan B. Siegel 3, Richard

More information

Initial evaluation of the Indiana small animal PET scanner

Initial evaluation of the Indiana small animal PET scanner Initial evaluation of the Indiana small animal PET scanner Ned C. Rouze, Member, IEEE, Victor C. Soon, John W. Young, Member, IEEE, Stefan Siegel, Member, IEEE, and Gary D. Hutchins, Member, IEEE Abstract

More information

Simulation and evaluation of a cost-effective high-performance brain PET scanner.

Simulation and evaluation of a cost-effective high-performance brain PET scanner. Research Article http://www.alliedacademies.org/biomedical-imaging-and-bioengineering/ Simulation and evaluation of a cost-effective high-performance brain PET scanner. Musa S Musa *, Dilber U Ozsahin,

More information

PET Performance Evaluation of MADPET4: A Small Animal PET Insert for a 7-T MRI Scanner

PET Performance Evaluation of MADPET4: A Small Animal PET Insert for a 7-T MRI Scanner PET Performance Evaluation of MADPET4: A Small Animal PET Insert for a 7-T MRI Scanner September, 2017 Results submitted to Physics in Medicine & Biology Negar Omidvari 1, Jorge Cabello 1, Geoffrey Topping

More information

Noise Characteristics of the FORE+OSEM(DB) Reconstruction Method for the MiCES PET Scanner

Noise Characteristics of the FORE+OSEM(DB) Reconstruction Method for the MiCES PET Scanner Noise Characteristics of the FORE+OSEM(DB) Reconstruction Method for the MiCES PET Scanner Kisung Lee, Member, IEEE, Paul E. Kinahan, Senior Member, Robert S. Miyaoka, Member, IEEE, Jeffrey A. Fessler,

More information

Performance evaluation of a new highsensitivity time-of-flight clinical PET/CT system

Performance evaluation of a new highsensitivity time-of-flight clinical PET/CT system Huo et al. EJNMMI Physics (2018) 5:29 https://doi.org/10.1186/s40658-018-0229-4 EJNMMI Physics ORIGINAL RESEARCH Open Access Performance evaluation of a new highsensitivity time-of-flight clinical PET/CT

More information

Celesteion Time-of-Flight Technology

Celesteion Time-of-Flight Technology Celesteion Time-of-Flight Technology Bing Bai, PhD Clinical Sciences Manager, PET/CT Canon Medical Systems USA Introduction Improving the care for every patient while providing a high standard care to

More information

CHAPTER 8 GENERIC PERFORMANCE MEASURES

CHAPTER 8 GENERIC PERFORMANCE MEASURES GENERIC PERFORMANCE MEASURES M.E. DAUBE-WITHERSPOON Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America 8.1. INTRINSIC AND EXTRINSIC MEASURES 8.1.1.

More information

PET: New Technologies & Applications, Including Oncology

PET: New Technologies & Applications, Including Oncology PET: New Technologies & Applications, Including Oncology, PhD, FIEEE Imaging Research Laboratory Department of Radiology University of Washington, Seattle, WA Disclosures Research Contract, GE Healthcare

More information

Fundamentals of Positron Emission Tomography (PET)

Fundamentals of Positron Emission Tomography (PET) Fundamentals of Positron Emission Tomography (PET) NPRE 435, Principles of Imaging with Ionizing Radiation, Fall 2017 Content Fundamentals of PET Camera & Detector Design Real World Considerations Performance

More information

Performance evaluation of the Biograph mct Flow PET/CT system according to the NEMA NU standard

Performance evaluation of the Biograph mct Flow PET/CT system according to the NEMA NU standard Rausch et al. EJNMMI Physics (2015) 2:26 DOI 10.1186/s40658-015-0132-1 ORIGINAL RESEARCH Open Access Performance evaluation of the Biograph mct Flow PET/CT system according to the NEMA NU2-2012 standard

More information

Positron Emission Tomography - PET

Positron Emission Tomography - PET Positron Emission Tomography - PET Positron Emission Tomography Positron Emission Tomography (PET): Coincidence detection of annihilation radiation from positron-emitting isotopes followed by tomographic

More information

First Applications of the YAPPET Small Animal Scanner

First Applications of the YAPPET Small Animal Scanner First Applications of the YAPPET Small Animal Scanner Guido Zavattini Università di Ferrara CALOR2 Congress, Annecy - FRANCE YAP-PET scanner Scintillator: YAP:Ce Size: matrix of 2x2 match like crystals

More information

Performance Assessment of Pixelated LaBr 3 Detector Modules for TOF PET

Performance Assessment of Pixelated LaBr 3 Detector Modules for TOF PET Performance Assessment of Pixelated LaBr 3 Detector Modules for TOF PET A. Kuhn, S. Surti, Member, IEEE, J. S. Karp, Senior Member, IEEE, G. Muehllehner, Fellow, IEEE, F.M. Newcomer, R. VanBerg Abstract--

More information

Focusing on high performance

Focusing on high performance Advanced Molecular Imaging Vereos PET/CT Focusing on high performance Michael A. Miller, PhD, Philips, Advanced Molecular Imaging Physics This white paper presents a description of the Vereos digital PET/CT

More information

PET Detectors. William W. Moses Lawrence Berkeley National Laboratory March 26, 2002

PET Detectors. William W. Moses Lawrence Berkeley National Laboratory March 26, 2002 PET Detectors William W. Moses Lawrence Berkeley National Laboratory March 26, 2002 Step 1: Inject Patient with Radioactive Drug Drug is labeled with positron (β + ) emitting radionuclide. Drug localizes

More information

New Technology in Nuclear Medicine

New Technology in Nuclear Medicine New Technology in Nuclear Medicine Reed G. Selwyn, PhD, DABR Vice Chair of Research & Imaging Sciences Associate Professor and Chief, Medical Physics Dept. of Radiology, University of New Mexico Objectives

More information

CHAPTER 15 DEVICES FOR EVALUATING IMAGING SYSTEMS

CHAPTER 15 DEVICES FOR EVALUATING IMAGING SYSTEMS DEVICES FOR EVALUATING IMAGING SYSTEMS O. DEMIRKAYA, R. AL-MAZROU Department of Biomedical Physics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia 15.1. DEVELOPING A QUALITY

More information

PET/CT Instrumentation Basics

PET/CT Instrumentation Basics / Instrumentation Basics 1. Motivations for / imaging 2. What is a / Scanner 3. Typical Protocols 4. Attenuation Correction 5. Problems and Challenges with / 6. Examples Motivations for / Imaging Desire

More information

Performance Characteristics of a State of the Art Preclinical PET/SPECT/CT Scanner

Performance Characteristics of a State of the Art Preclinical PET/SPECT/CT Scanner Performance Characteristics of a State of the Art Preclinical PET/SPECT/CT Scanner Nya Mehnwolo Boayue 1 Samuel Kuttner 1 1 Center for Diagnostic Physics University Hospital of North-Norway Medfys, 2016

More information

Discovery ST. An Oncology System Designed For PET/CT. Revision: B Date: 30 Jan Page 1 of 47

Discovery ST. An Oncology System Designed For PET/CT. Revision: B Date: 30 Jan Page 1 of 47 Discovery ST An Oncology System Designed For PET/CT Revision: B Date: 30 Jan 2003 Page 1 of 47 TABLE OF CONTENTS 1 Introduction...3 2 Design Requirements...4 2.1 The Design Objective...4 2.2 Design Philosophy...5

More information

Monte Carlo Simulation Study of a Dual-Plate PET Camera Dedicated to Breast Cancer Imaging

Monte Carlo Simulation Study of a Dual-Plate PET Camera Dedicated to Breast Cancer Imaging IEEE Nuclear Science Symposium Conference Record M-9 Monte Carlo Simulation Study of a Dual-Plate PET Camera Dedicated to Breast Cancer Imaging Jin Zhang, Member, IEEE, Peter D. Olcott, Member, IEEE, Angela

More information

Nuclear Associates , , CT Head and Body Dose Phantom

Nuclear Associates , , CT Head and Body Dose Phantom Nuclear Associates 76-414,76-414-4150,76-415 CT Head and Body Dose Phantom Users Manual March 2005 Manual No. 76-414-1 Rev. 2 2004, 2005 Fluke Corporation, All rights reserved. Printed in U.S.A. All product

More information

arxiv: v1 [physics.med-ph] 29 Nov 2018

arxiv: v1 [physics.med-ph] 29 Nov 2018 Expected performance of the TT-PET scanner E. Ripiccini, a,b,1 D. Hayakawa, a,b G. Iacobucci, a M. Nessi, a,c E. Nowak, c L. Paolozzi, a O. Ratib, b P. Valerio a and D. Vitturini a a University of Geneva,

More information

How Gamma Camera s Head-Tilts Affect Image Quality of a Nuclear Scintigram?

How Gamma Camera s Head-Tilts Affect Image Quality of a Nuclear Scintigram? November 2014, Volume 1, Number 4 How Gamma Camera s Head-Tilts Affect Image Quality of a Nuclear Scintigram? Hojjat Mahani 1,2, Alireza Kamali-Asl 3, *, Mohammad Reza Ay 2, 4 1. Radiation Application

More information

Inside Biograph mct.

Inside Biograph mct. Inside Biograph mct The technologies behind the world s first molecular CT. www.siemens.com/mi Large 78 cm bore helps reduce claustrophobia and provides more room for RTP positioning devices. 227 kg (500

More information

PET is a noninvasive, diagnostic imaging technique that

PET is a noninvasive, diagnostic imaging technique that Performance Measurement of the micropet Focus 120 Scanner Jin Su Kim 1,2, Jae Sung Lee 1,2, Ki Chun Im 3, Su Jin Kim 1,2, Seog-Young Kim 3, Dong Soo Lee 1,2, and Dae Hyuk Moon 3 1 Department of Nuclear

More information

Nuclear Associates , &

Nuclear Associates , & Nuclear Associates 76-823, 76-824 & 76-825 PET/SPECT Phantom Source Tank, Phantom Inserts and Cardiac Insert Users Manual March 2005 Manual No. 76-823-1 Rev. 2 2004, 2005 Fluke Corporation, All rights

More information

Development of the LBNL Positron Emission Mammography Camera

Development of the LBNL Positron Emission Mammography Camera Development of the LBNL Positron Emission Mammography Camera J.S. Huber, Member, IEEE, W.S. Choong, Member, IEEE, J. Wang, Member, IEEE, J.S. Maltz, Member, IEEE, J. Qi, Member, IEEE, E. Mandelli, Member,

More information

Research Article Improved Image Fusion in PET/CT Using Hybrid Image Reconstruction and Super-Resolution

Research Article Improved Image Fusion in PET/CT Using Hybrid Image Reconstruction and Super-Resolution Biomedical Imaging Volume 2007, Article ID 46846, 10 pages doi:10.1155/2007/46846 Research Article Improved Image Fusion in PET/CT Using Hybrid Image Reconstruction and Super-Resolution John A. Kennedy,

More information

Radionuclide Imaging MII Single Photon Emission Computed Tomography (SPECT)

Radionuclide Imaging MII Single Photon Emission Computed Tomography (SPECT) Radionuclide Imaging MII 3073 Single Photon Emission Computed Tomography (SPECT) Single Photon Emission Computed Tomography (SPECT) The successful application of computer algorithms to x-ray imaging in

More information

William Hallet - PRIMA IV 1

William Hallet - PRIMA IV 1 Quantitative and application specific imaging PET: the measurement process,reconstruction, calibration, quantification Dr William Hallett Centre for Imaging Sciences Imperial College Hammersmith Hospital

More information

Photomultiplier Tube

Photomultiplier Tube Nuclear Medicine Uses a device known as a Gamma Camera. Also known as a Scintillation or Anger Camera. Detects the release of gamma rays from Radionuclide. The radionuclide can be injected, inhaled or

More information

A new operative gamma camera for Sentinel Lymph Node procedure

A new operative gamma camera for Sentinel Lymph Node procedure A new operative gamma camera for Sentinel Lymph Node procedure A physicist device for physicians Samuel Salvador, Virgile Bekaert, Carole Mathelin and Jean-Louis Guyonnet 12/06/2007 e-mail: samuel.salvador@ires.in2p3.fr

More information

Recovery and normalization of triple coincidences in PET

Recovery and normalization of triple coincidences in PET Universidad Carlos III de Madrid Repositorio institucional e-archivo Área de Imagen e Instrumentación (BiiG) http://e-archivo.uc3m.es DBIAB - BIIG - Journal Articles 2015-03 Recovery and normalization

More information

Image Quality Assessment of Pixellated Systems

Image Quality Assessment of Pixellated Systems Image Quality Assessment of Pixellated Systems Andreas Goedicke, Herfried Wieczorek, Henrik Botterweck, Wolfgang Eckenbach, Ling Shao, Member, IEEE, Micheal Petrillo, Member, IEEE, Jinghan Ye, and John

More information

Development of PET using 4 4 Array of Large Size Geiger-mode Avalanche Photodiode

Development of PET using 4 4 Array of Large Size Geiger-mode Avalanche Photodiode 2009 IEEE Nuclear Science Symposium Conference Record M09-8 Development of PET using 4 4 Array of Large Size Geiger-mode Avalanche Photodiode K. J. Hong, Y. Choi, J. H. Kang, W. Hu, J. H. Jung, B. J. Min,

More information

T h e P h a n t o m L a b o r a t o r y

T h e P h a n t o m L a b o r a t o r y T h e P h a n t o m L a b o r a t o r y 1 ECTphan Phantom SMR330 M a n u a l Copyright 2015 WARNING The use of this phantom requires radioactive fill solutions. Only people trained in the safe handling

More information

Factors Affecting the resolution of SPECT Imaging. h.

Factors Affecting the resolution of SPECT Imaging. h. Factors Affecting the resolution of SPECT Imaging H. E. Mostafa *1, H. A. Ayoub 2 and Sh.Magraby 1 1 Kasr El-Ini Center for Oncology, Cairo University, 2 Faculty of Science, Suez Canal University hayamayoub@yahoo.com

More information

Evaluation of Scatter Fraction and Count Rate Performance of Two Smallanimal PET scanners using dedicated phantoms

Evaluation of Scatter Fraction and Count Rate Performance of Two Smallanimal PET scanners using dedicated phantoms 2011 IEEE Nuclear Science Symposium Conference Record MIC18.M-36 Evaluation of Scatter Fraction and Count Rate Performance of Two Smallanimal PET scanners using dedicated phantoms Rameshwar Prasad, Student

More information

The PennPET Explorer Scanner for Total Body Applications

The PennPET Explorer Scanner for Total Body Applications The PennPET Explorer Scanner for Total Body Applications JS Karp, MJ Geagan, G Muehllehner, ME Werner, T McDermott, JP Schmall, V Viswanath, University of Pennsylvania, Philadelphia, PA AE Perkins, C-H

More information

COMPUTED TOMOGRAPHY 1

COMPUTED TOMOGRAPHY 1 COMPUTED TOMOGRAPHY 1 Why CT? Conventional X ray picture of a chest 2 Introduction Why CT? In a normal X-ray picture, most soft tissue doesn't show up clearly. To focus in on organs, or to examine the

More information

ACR Update in Nuclear Medicine Accreditation

ACR Update in Nuclear Medicine Accreditation Disclaimer ACR Update in Nuclear Medicine Accreditation Beth A. Harkness, MS, DABR, FACR Henry Ford Health System Detroit, MI ACR physics subcommittee for nuclear medicine accreditation. My facility is

More information

Data. microcat +SPECT

Data. microcat +SPECT Data microcat +SPECT microcat at a Glance Designed to meet the throughput, resolution and image quality requirements of academic and pharmaceutical research, the Siemens microcat sets the standard for

More information

SPECT Reconstruction & Filtering

SPECT Reconstruction & Filtering SPECT Reconstruction & Filtering Goals Understand the basics of SPECT Reconstruction Filtered Backprojection Iterative Reconstruction Make informed choices on filter selection and settings Pre vs. Post

More information

HISTORY. CT Physics with an Emphasis on Application in Thoracic and Cardiac Imaging SUNDAY. Shawn D. Teague, MD

HISTORY. CT Physics with an Emphasis on Application in Thoracic and Cardiac Imaging SUNDAY. Shawn D. Teague, MD CT Physics with an Emphasis on Application in Thoracic and Cardiac Imaging Shawn D. Teague, MD DISCLOSURES 3DR- advisory committee CT PHYSICS WITH AN EMPHASIS ON APPLICATION IN THORACIC AND CARDIAC IMAGING

More information

Master of Science Thesis. SIMIND Based Pinhole Imaging

Master of Science Thesis. SIMIND Based Pinhole Imaging Master of Science Thesis SIMIND Based Pinhole Imaging * Development and Validation Kurt Sundin Supervisor: Michael Ljungberg, PhD Medical Radiation Physics Clinical Sciences, Lund Lund University, 2006

More information

Attenuation Correction in Hybrid MR-BrainPET Imaging

Attenuation Correction in Hybrid MR-BrainPET Imaging Mitglied der Helmholtz-Gemeinschaft Attenuation Correction in Hybrid MR-BrainPET Imaging Elena Rota Kops Institute of Neuroscience and Biophysics Medicine Brain Imaging Physics Interactions of 511 kev

More information

VISTA-CT USER MANUAL. GE Healthcare 3000 N. Grandview Blvd Waukesha, WI USA

VISTA-CT USER MANUAL. GE Healthcare 3000 N. Grandview Blvd Waukesha, WI USA VISTA-CT USER MANUAL GE Healthcare 3000 N. Grandview Blvd Waukesha, WI 53188 USA 2 VISTA-CT User s Manual Version 3.3.4 January, 2007 Copyright 2007 By Trident Imaging, Inc. All rights reserved Note: Information

More information

Performance characterization of a novel thin position-sensitive avalanche photodiode-based detector for high resolution PET

Performance characterization of a novel thin position-sensitive avalanche photodiode-based detector for high resolution PET 2005 IEEE Nuclear Science Symposium Conference Record M11-126 Performance characterization of a novel thin position-sensitive avalanche photodiode-based detector for high resolution PET Jin Zhang, Member,

More information

Lightburst Digital Detector

Lightburst Digital Detector GE Healthcare Lightburst Digital Detector INTRODUCTION In clinical practice, PET/CT imaging helps clinicians visualize disease at an early stage, before it metastasizes and involves other organs, tissues

More information

Assessment of Image Quality of a PET/CT scanner for a Standarized Image situation Using a NEMA Body Phantom

Assessment of Image Quality of a PET/CT scanner for a Standarized Image situation Using a NEMA Body Phantom Assessment of Image Quality of a PET/CT scanner for a Standarized Image situation Using a NEMA Body Phantom The impact of Different Image Reconstruction Parameters on Image quality by QUAYE MICHAEL This

More information

Primer on molecular imaging technology

Primer on molecular imaging technology Primer on molecular imaging technology Craig S. Levin Division of Nuclear Medicine, Department of Radiology and Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, 300

More information

Currently, the spatial resolution of most dedicated smallanimal

Currently, the spatial resolution of most dedicated smallanimal A Prototype High-Resolution Small-Animal PET Scanner Dedicated to Mouse Brain Imaging Yongfeng Yang 1,2, Julien Bec 1, Jian Zhou 1, Mengxi Zhang 1, Martin S. Judenhofer 1, Xiaowei Bai 1, Kun Di 1, Yibao

More information

NEMA and clinical evaluation of a novel brain PET-CT scanner

NEMA and clinical evaluation of a novel brain PET-CT scanner Journal of Nuclear Medicine, published on December 23, 2015 as doi:10.2967/jnumed.115.159723 NEMA and clinical evaluation of a novel brain PET-CT scanner Kira S. Grogg 1, Terrence Toole 2, Jinsong Ouyang

More information

Test Equipment for Radiology and CT Quality Control Contents

Test Equipment for Radiology and CT Quality Control Contents Test Equipment for Radiology and CT Quality Control Contents Quality Control Testing...2 Photometers for Digital Clinical Display QC...3 Primary Workstations...3 Secondary Workstations...3 Testing of workstations...3

More information

Detector technology challenges for nuclear medicine and PET

Detector technology challenges for nuclear medicine and PET Nuclear Instruments and Methods in Physics Research A 513 (2003) 1 7 Detector technology challenges for nuclear medicine and PET Paul K. Marsden Guy s and St. Thomas Clinical PET Centre, King s College

More information

16 Instrumentation and Data Acquisition

16 Instrumentation and Data Acquisition Instrumentation and Data Acquisition 275 16 Instrumentation and Data Acquisition Sibylle I. Ziegler and Magnus Dahlbom CONTENTS 16.1 Detectors and Imaging Systems 275 16.1.1 Principles of Scintillation

More information

Initial Certification

Initial Certification Initial Certification Nuclear Medical Physics (NMP) Study Guide Part 2 Content Guide and Sample Questions The content of all ABR exams is determined by a panel of experts who select the items based on

More information

Study of a Prototype VP-PET Imaging System Based on highly. Pixelated CdZnTe Detectors

Study of a Prototype VP-PET Imaging System Based on highly. Pixelated CdZnTe Detectors Study of a Prototype VP-PET Imaging System Based on highly Pixelated CdZnTe Detectors Zheng-Qian Ye 1, Ying-Guo Li 1, Tian-Quan Wang 1, Ya-Ming Fan 1, Yong-Zhi Yin 1,*, Xi-Meng Chen 1 Affiliations: 1 School

More information

/02/$ IEEE 1109

/02/$ IEEE 1109 Performance Measurements for the GSO-based Brain PET Camera (G-PET) S. Surtil Student Member, IEEE) J.S. Karpl Muchllchncr Senior Member, IEEE) L.-E. Adam1 * Senior Member. IEEE AbstractPerformance measurements

More information

Quality control of Gamma Camera. By Dr/ Ibrahim Elsayed Saad 242 NMT

Quality control of Gamma Camera. By Dr/ Ibrahim Elsayed Saad 242 NMT Quality control of Gamma Camera By Dr/ Ibrahim Elsayed Saad 242 NMT WHAT IS QUALITY? The quality of a practice is to fulfill the expectations and demands from: Patient Clinicain Your self Quality assurance

More information

A Skew-Slit Collimator for Small-Animal SPECT

A Skew-Slit Collimator for Small-Animal SPECT A Skew-Slit Collimator for Small-Animal SPECT Gengsheng L. Zeng Department of Radiology, Utah Center for Advanced Imaging Research (UCAIR), University of Utah, Salt Lake City, Utah The main objective of

More information

QC Testing for Computed Tomography (CT) Scanner

QC Testing for Computed Tomography (CT) Scanner QC Testing for Computed Tomography (CT) Scanner QA - Quality Assurance All planned and systematic actions needed to provide confidence on a structure, system or component. all-encompassing program, including

More information

NIH Public Access Author Manuscript Nucl Instrum Methods Phys Res A. Author manuscript; available in PMC 2007 December 14.

NIH Public Access Author Manuscript Nucl Instrum Methods Phys Res A. Author manuscript; available in PMC 2007 December 14. NIH Public Access Author Manuscript Published in final edited form as: Nucl Instrum Methods Phys Res A. 2007 January 21; 570(3): 543 555. A prototype of very high resolution small animal PET scanner using

More information

Conceptual Study of Brain Dedicated PET Improving Sensitivity

Conceptual Study of Brain Dedicated PET Improving Sensitivity Original Article PROGRESS in MEDICAL PHYSICS 27(4), Dec. 2016 https://doi.org/10.14316/pmp.2016.27.4.236 pissn 2508-4445, eissn 2508-4453 Conceptual Study of Brain Dedicated PET Improving Sensitivity Han-Back

More information

The image reconstruction influence in relative measurement in SPECT / CT animal

The image reconstruction influence in relative measurement in SPECT / CT animal BJRS BRAZILIAN JOURNAL OF RADIATION SCIENCES 0-01 (201) 01-09 The image reconstruction influence in relative measurement in SPECT / CT animal S.C.S. Soriano a ; S.A.L. Souza b ; T.Barboza b ; L.V. De Sá

More information

1. Patient size AEC. Large Patient High ma. Small Patient Low ma

1. Patient size AEC. Large Patient High ma. Small Patient Low ma Comparison of the function and performance of CT AEC systems CTUG meeting by Emily Field Trainee clinical scientist 14 th th Breakdown CT Automatic Exposure Control (AEC) Background Project Description

More information

High-resolution PET scanners dedicated to small-animal

High-resolution PET scanners dedicated to small-animal Micro Insert: A Prototype Full-Ring PET Device for Improving the Image Resolution of a Small- Animal PET Scanner Heyu Wu 1,2, Debashish Pal 3, Tae Yong Song 1, Joseph A. O Sullivan 4, and Yuan-Chuan Tai

More information

Design Studies of A High-Performance Onboard Positron Emission Tomography For Integrated Small Animal PET/CT/RT Radiation Research Systems

Design Studies of A High-Performance Onboard Positron Emission Tomography For Integrated Small Animal PET/CT/RT Radiation Research Systems Proceedings of the International MultiConference of Engineers and Computer Scientists 2018 Vol II Design Studies of A High-Performance Onboard Positron Emission Tomography For Integrated Small Animal PET/CT/RT

More information

DISCRETE crystal detector modules have traditionally been

DISCRETE crystal detector modules have traditionally been IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 53, NO. 5, OCTOBER 2006 2513 Performance Comparisons of Continuous Miniature Crystal Element (cmice) Detectors Tao Ling, Student Member, IEEE, Kisung Lee, and

More information

Slide 1. Slide 2. Slide 3 ACR CT Accreditation. Multi-Slice CT Artifacts and Quality Control. What are the rules or recommendations for CT QC?

Slide 1. Slide 2. Slide 3 ACR CT Accreditation. Multi-Slice CT Artifacts and Quality Control. What are the rules or recommendations for CT QC? Slide 1 Multi-Slice CT Artifacts and Quality Control Dianna Cody, Ph.D. Chief, Radiologic Physics UT MD Anderson Cancer Center Houston, TX Slide 2 What are the rules or recommendations for CT QC? AAPM

More information

MC SIMULATION OF SCATTER INTENSITIES IN A CONE-BEAM CT SYSTEM EMPLOYING A 450 kv X-RAY TUBE

MC SIMULATION OF SCATTER INTENSITIES IN A CONE-BEAM CT SYSTEM EMPLOYING A 450 kv X-RAY TUBE MC SIMULATION OF SCATTER INTENSITIES IN A CONE-BEAM CT SYSTEM EMPLOYING A 450 kv X-RAY TUBE A. Miceli ab, R. Thierry a, A. Flisch a, U. Sennhauser a, F. Casali b a Empa - Swiss Federal Laboratories for

More information

A NOVEL CONCEPT FOR A POSITRON EMISSION TOMOGRAPHY SCANNER

A NOVEL CONCEPT FOR A POSITRON EMISSION TOMOGRAPHY SCANNER A NOVEL CONCEPT FOR A POSITRON EMISSION TOMOGRAPHY SCANNER An Undergraduate Research Scholars Thesis by BRIAN KELLY, MATTHEW LEE ELLIOT LEVIN and JEENA KHATRI Submitted to Honors and Undergraduate Research

More information

Pitfalls and Remedies of MDCT Scanners as Quantitative Instruments

Pitfalls and Remedies of MDCT Scanners as Quantitative Instruments intensity m(e) m (/cm) 000 00 0 0. 0 50 0 50 Pitfalls and Remedies of MDCT Scanners as Jiang Hsieh, PhD GE Healthcare Technology University of Wisconsin-Madison Root-Causes of CT Number Inaccuracies Nature

More information

LaBr 3 :Ce, the latest crystal for nuclear medicine

LaBr 3 :Ce, the latest crystal for nuclear medicine 10th Topical Seminar on Innovative Particle and Radiation Detectors 1-5 October 2006 Siena, Italy LaBr 3 :Ce, the latest crystal for nuclear medicine Roberto Pani On behalf of SCINTIRAD Collaboration INFN

More information

A High-Resolution GSO-based Brain PET Camera

A High-Resolution GSO-based Brain PET Camera A High-Resolution GSO-based Brain PET Camera J.S. Karp', Senior Member IEEE, L.E. Adam', R.Freifelder', Member IEEE, G. Muehllehner3 Senior Member IEEE, F. Liu"', Student Member IEEE, S. Surti"', Student

More information

NM Module Section 2 6 th Edition Christian, Ch. 3

NM Module Section 2 6 th Edition Christian, Ch. 3 NM 4303 Module Section 2 6 th Edition Christian, Ch. 3 Gas Filled Chamber Voltage Gas filled chamber uses Hand held detectors cutie pie Geiger counter Dose calibrators Cutie pie Chamber voltage in Ionization

More information

Investigation of Multiple Head Registration / Center of Rotation for SPECT Gamma Cameras

Investigation of Multiple Head Registration / Center of Rotation for SPECT Gamma Cameras Egyptian J. Nucl. Med., Vol 2, No. 2, Dec. 2009 82 PHYSICS, Original Artical Investigation of Multiple Head Registration / Center of Rotation for SPECT Gamma Cameras Abdelsattar, M.B. Ph.D.; BuHumaid,

More information

2/14/2019. Nuclear Medicine Artifacts. Symmetric energy windows

2/14/2019. Nuclear Medicine Artifacts. Symmetric energy windows Nuclear Medicine Artifacts SCPMG Medical Imaging Technology & Informatics Medical Physics Group Brian Helbig, MS, DABR 1 2 Symmetric energy windows 3 1 Dynamic clinical study Energy peak shift Electrical

More information

C a t p h a n. T h e P h a n t o m L a b o r a t o r y. Ordering Information

C a t p h a n. T h e P h a n t o m L a b o r a t o r y. Ordering Information Ordering Information Please contact us if you have any questions or if you would like a quote or delivery schedule regarding the Catphan phantom. phone 800-525-1190, or 518-692-1190 fax 518-692-3329 mail

More information

HIGH RESOLUTION COMPUTERIZED TOMOGRAPHY SYSTEM USING AN IMAGING PLATE

HIGH RESOLUTION COMPUTERIZED TOMOGRAPHY SYSTEM USING AN IMAGING PLATE HIGH RESOLUTION COMPUTERIZED TOMOGRAPHY SYSTEM USING AN IMAGING PLATE Takeyuki Hashimoto 1), Morio Onoe 2), Hiroshi Nakamura 3), Tamon Inouye 4), Hiromichi Jumonji 5), Iwao Takahashi 6); 1)Yokohama Soei

More information

Inveon. No Limits on Discovery.

Inveon. No Limits on Discovery. Trademarks and service marks used in this material are property of Siemens Medical Solutions USA or Siemens AG. Inveon is a trademark of Siemens AG, its subsidiaries or affiliates. All other company, brand,

More information

Designing an MR compatible Time of Flight PET Detector Floris Jansen, PhD, Chief Engineer GE Healthcare

Designing an MR compatible Time of Flight PET Detector Floris Jansen, PhD, Chief Engineer GE Healthcare GE Healthcare Designing an MR compatible Time of Flight PET Detector Floris Jansen, PhD, Chief Engineer GE Healthcare There is excitement across the industry regarding the clinical potential of a hybrid

More information

Image Quality and Dose. Image Quality and Dose. Image Quality and Dose Issues in MSCT. Scanner parameters affecting IQ and Dose

Image Quality and Dose. Image Quality and Dose. Image Quality and Dose Issues in MSCT. Scanner parameters affecting IQ and Dose Image Quality and Dose Issues in MSCT Image Quality and Dose Image quality Image noise Spatial resolution Contrast Artefacts Speckle and sharpness S. Edyvean St. George s Hospital London SW17 0QT Radiation

More information

GUIDELINE FOR RADIATION PROTECTION AND PERFORMANCE EVALUATION OF PET-CT IMAGING FORUM FOR NUCLEAR COOPERATION IN ASIA (FNCA)

GUIDELINE FOR RADIATION PROTECTION AND PERFORMANCE EVALUATION OF PET-CT IMAGING FORUM FOR NUCLEAR COOPERATION IN ASIA (FNCA) GUIDELINE FOR RADIATION PROTECTION AND PERFORMANCE EVALUATION OF PET-CT IMAGING FORUM FOR NUCLEAR COOPERATION IN ASIA (FNCA) 5 MARCH 2011 1 Contributors Dr. Noriah Jamal - Malaysia Dr. Muhd Noor Muhd Yunus

More information

The Influence of Crystal Configuration and PMT on PET Time-of-Flight Resolution

The Influence of Crystal Configuration and PMT on PET Time-of-Flight Resolution The Influence of Crystal Configuration and PMT on PET Time-of-Flight Resolution Christopher Thompson Montreal Neurological Institute and Scanwell Systems, Montreal, Canada Jason Hancock Cross Cancer Institute,

More information

First Results From the High-Resolution mousespect Annular Scintillation Camera

First Results From the High-Resolution mousespect Annular Scintillation Camera First Results From the High-Resolution mousespect Annular Scintillation Camera Andrew L. Goertzen, Douglas W. Jones, Jurgen Seidel, King Li, and Michael V. Green Abstract High resolution SPECT imaging

More information

Under-sampling in PET scanners as a source of image blurring

Under-sampling in PET scanners as a source of image blurring Nuclear Instruments and Methods in Physics Research A 545 (2005) 436 445 www.elsevier.com/locate/nima Under-sampling in PET scanners as a source of image blurring C.J. Thompson, S.St. James, N. Tomic Montreal

More information

APD Quantum Efficiency

APD Quantum Efficiency APD Quantum Efficiency Development of a 64-channel APD Detector Module with Individual Pixel Readout for Submillimeter Spatial Resolution in PET Philippe Bérard a, Mélanie Bergeron a, Catherine M. Pepin

More information

SECTION I - CHAPTER 2 DIGITAL IMAGING PROCESSING CONCEPTS

SECTION I - CHAPTER 2 DIGITAL IMAGING PROCESSING CONCEPTS RADT 3463 - COMPUTERIZED IMAGING Section I: Chapter 2 RADT 3463 Computerized Imaging 1 SECTION I - CHAPTER 2 DIGITAL IMAGING PROCESSING CONCEPTS RADT 3463 COMPUTERIZED IMAGING Section I: Chapter 2 RADT

More information

Design Evaluation of A-PET: A High Sensitivity Animal PET Camera

Design Evaluation of A-PET: A High Sensitivity Animal PET Camera IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 50, NO. 5, OCTOBER 2003 1357 Design Evaluation of A-PET: A High Sensitivity Animal PET Camera S. Surti, Member, IEEE, J. S. Karp, Senior Member, IEEE, A. E. Perkins,

More information

2015 Spin echoes and projection imaging

2015 Spin echoes and projection imaging 1. Spin Echoes 1.1 Find f0, transmit amplitudes, and shim settings In order to acquire spin echoes, we first need to find the appropriate scanner settings using the FID GUI. This was all done last week,

More information

Automated dose control in multi-slice CT. Nicholas Keat Formerly ImPACT, St George's Hospital, London

Automated dose control in multi-slice CT. Nicholas Keat Formerly ImPACT, St George's Hospital, London Automated dose control in multi-slice CT Nicholas Keat Formerly ImPACT, St George's Hospital, London Introduction to presentation CT contributes ~50+ % of all medical radiation dose Ideally all patients

More information

Focal Spot Blooming in CT: We Didn t Know We Had a Problem Until We Had a Solution

Focal Spot Blooming in CT: We Didn t Know We Had a Problem Until We Had a Solution Focal Spot Blooming in CT: We Didn t Know We Had a Problem Until We Had a Solution Cynthia H. McCollough, PhD, DABR, FAAPM, FACR Director, CT Clinical Innovation Center Professor of Medical Physics and

More information

An Investigation of Filter Choice for Filtered Back-Projection Reconstruction in PET

An Investigation of Filter Choice for Filtered Back-Projection Reconstruction in PET An nvestigation of Filter Choice for Filtered BackProjection Reconstruction in PET T. H. Farauhar, A. Chatziioannou, G. Chinn, M. Dahlbom, and E. J. Hoffman Division of Nuclear Medicine & Biophysics, Department

More information

976 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 57, NO. 3, JUNE /$ IEEE

976 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 57, NO. 3, JUNE /$ IEEE 976 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 57, NO. 3, JUNE 2010 A Four-Layer DOI Detector With a Relative Offset for Use in an Animal PET System Mikiko Ito, Jae Sung Lee, Sun Il Kwon, Geon Song Lee,

More information

Design Studies for a PET Detector Module Using a PIN Photodiode to Measure Depth of Interaction

Design Studies for a PET Detector Module Using a PIN Photodiode to Measure Depth of Interaction r.- v;» 4-5; +6 1*; LBL-3487 3 UC-406. Preprint SW 3 UNIVERSITY OF CALIFORNIA Submitted to IEEE Transactions 0n Nuclear Science Design Studies for a PET Detector Module Using a PIN Photodiode to Measure

More information