Designing an MR compatible Time of Flight PET Detector Floris Jansen, PhD, Chief Engineer GE Healthcare

Size: px
Start display at page:

Download "Designing an MR compatible Time of Flight PET Detector Floris Jansen, PhD, Chief Engineer GE Healthcare"

Transcription

1 GE Healthcare Designing an MR compatible Time of Flight PET Detector Floris Jansen, PhD, Chief Engineer GE Healthcare There is excitement across the industry regarding the clinical potential of a hybrid PET/MR system. Many clinicians and researchers believe that PET/MR, by bringing together two imaging modalities with very use in oncology and neurology. The modality could also help scientists probe the relationship between structure and function more deeply. Yet, building a high quality PET/MR is not as simple as bringing together two imaging devices. The technologies traditionally used in a PET detector are not compatible with the environment of an MR scanner, and this creates a series of engineering challenges. This article discusses these challenges together with engineering approaches that have been taken to develop a high resolution, high sensitivity scanner that permits simultaneous PET/ MR imaging without compromising image quality, on a platform designed to accommodate and advance future applications. The MR environment poses several challenges to the caused by gradient induced eddy currents, the vibrations due to forces on the gradient coil, the high power RF electromagnetic radiation, and the lack of information about attenuation (no CT data). Further, the MR receive system is extremely sensitive to any electronic noise, meaning that the PET detector must not radiate any noise at the frequencies of interest. Detector One goal of a PET/MR system is to reduce radiation fraction of the patient dose is a result of the CT radiation even when the CT is used for attenuation correction only. Thus, the elimination of the CT scanner is a good step towards dose reduction. To further reduce dose, it is necessary to reduce the amount of injected PET agent; it is possible to do this without adversely image quality by increasing the sensitivity of the PET detector. This can be done by reducing the diameter of the detector ring and by increase the solid angle of the detector as seen from the patient. At the same time, the scintillator annihilation photons. Conventionally, PET detectors have been made with photomultipliers (PMTs), which provide low noise and high gain. However, a PMT will not work correctly any attempt at shielding would cause unacceptable and reduce the patient opening in an integrated (simultaneous) system.

2 There are two alternatives to developing a highly sensitive PET detector without a photo multiplier: direct conversion radiation detectors, or solid-state photosensors. For the GE S PET/MR, the latter solution was chosen, because direct conversion materials typically used. coupled to a silicon (solid state) photomultiplier (SiPM). The scintillator can provide good stopping power, while the SiPM is very compact and can The SiPM is a relatively new technology. It is a silicon device that has been subdivided into many small cells each a Geiger-mode avalanche diode device that will break down after absorbing a single photon, and that will turn that single photon into an electrical 6 electrons. By making a large close-packed array of such devices, and summing their outputs into a single electrical signal, one can make a photosensor with consistent gain and transit time of virtually arbitrary size. For optimal performance, one needs the sensor to have the following properties: high gain: the signal from the sensor needs to subsequent stages of the electronics low noise: a low number of dark counts reduces the uncertainty in the signal, and allows one to sum signals over larger areas high speed: to get good timing resolution, rise time of the sensor output must be as short as possible probability that a incident photon is turned into an electrical signal, the higher the signal quality (high speed, low noise) linearity: in order to get good energy resolution, the number of cells must be large compared to the number of incident photons, so the probability of two photons hitting the same photo cell is small stability: performance of the sensor must be predictable over a long period of time While thinking about the above, one has to keep in mind cost, power dissipation, complexity, dead time, and other factors. Some of the optimization choices that have to be made include: Cell size: as individual cells get larger, the relative amount of dead space is reduced. This in turn time, larger cells will produce a larger signal during breakdown (good), but have a higher probability of producing cross talk (bad) and a narrower operating voltage (bad). Pixel size: individual cells can be combined into pixels. The larger the pixel, the larger the device capacitance: this makes the signal slower (bad); smaller pixels result in more dead space (bad), higher spatial decoding capability (good, if you need it) and higher electronic channel count (bad). Pixel size is further constrained by the sizes of silicon dies that can be manufactured economically and consistently. Crystal size: making a scintillator crystal smaller potentially improves spatial resolution, although radiation scatter inside the detector (over 60% of scintillator before their energy is fully absorbed) limits the usefulness of making crystals too small. Per unit volume, small crystals are also much more expensive. At the same time, keeping crystals long Based on these considerations, the GE S PET/ mm small enough for excellent spatial resolution, and long enough to have the stopping power needed for great sensitivity.

3 Block size: crystals are packed into blocks, with a certain amount of light sharing between crystals. Making the blocks small increases the probability of inter-block scatter (bad), but improves the system dead time (good). Smaller blocks also increase the power consumption and temperature of the detector. gain and noise (high temperature = high noise). Many experiments and simulations were performed and other considerations, resulting in a Time-Of- Flight PET detector with timing resolution of less than 400 ps FWHM. Electronics In order to make the most of the optimized SiPM detector, we had to develop highly specialized circuit) that provides pulse shaping, gain control, trigger validation, and temperature measurement. The integrated electronics corrects for crystal light output, temperature, dead time, and other parameters. Some of the key innovations in the integrated electronics include: A novel (patent pending) design of the input stage topology with feedback that achieves extremely speed despite the input capacitance presented by the SiPM. A dual trigger (time/validate) scheme that permits triggering at the level of two photons without creating excessive system dead time Gain control of individual pixels in the SiPM array Pulse shape compensation to optimize timing performance independent of count rate Active baseline restoration to maintain performance at high count rates Once the event position and energy have been turned into an electrical signal, it is important to convert this information to a digital form as quickly as possible. For Time of Flight PET, integrated electronics are essential to minimize noise and signal signals and making all corrections right in the bore: once the signals consist of only ones and zeros, any corrections can be applied easily; and the fully corrected signal can be transmitted over optical interference with the MR receive system. Compton Scatter Recovery scintillator are initially Compton scattered before their energy is fully absorbed. This has two very spatial resolution of the detector: as crystal size is reduced, the probability that events scatter between scatter from one block to an adjacent block. The larger the block, the smaller this probability. For photon from a coincidence pair is scattered, the coincidence can be lost. This means that the these adjacent coincidences and recombining them into valid events is one of the technology breakthroughs that allow the S PET/MR PET detector such high sensitivity.

4 S 1 S 2 by-second basis. Changes in heat impact the PET energy peak (of the PET signal) by more than 6%. Therefore it is crucial to control temperature, and to compensate for residual changes. a b c photons interact with the detector, several things can interaction: photo-electric absorption; (b) the photon is Compton scattered, but all the energy is deposited in the same block; (c) the photon is scattered to an adjacent true event, so it gets rejected. Compton Scatter Recovery restores the information about the incident photon so it can be used for event processing. In the GE S PET/MR, a sophisticated water- that are caused by gradient and RF power transients distributed throughout the PET ring. The values from these thermistors are converted to a precise map of detector temperature. This detailed map is then combined with the known behavior of the detector and electronics to compensate for the thermal variations. The result is a detector that is extremely stable, even as MR pulse sequences vary widely. Thermal challenges There are several sources of heat in a PET/MR scanner that can impact performance. While heat dissipation in the electronics and heating in the sensor should be accounted for, it is the heating caused by the gradient for - both because they substantial, and because their magnitude is variable. The pulsing of MR gradients induces eddy currents in the RF shielding that gives and time. Even a system with high thermal capacity temperature under such conditions. Since this heat load also depends on the gradients being used, it is important to know the temperature on a second-

5 Electrical interference challenges The receive circuits in an MR scanner are exquisitely sensitive, and any electrical noise in the environment is likely to show up in the image generated. The high speed electronics inside a PET detector inherently produce a lot of spurious electromagnetic energy. Since the high speed electronics are in proximity to the receive coils of the MRI, there are two options to prevent interference: shield the detector, or stop the noise during MRI receive cycle. as it is a goal of PET/MR to image the same part of the patient with both modalities at the same time. Therefore, excellent electromagnetic shielding is needed. This has to be done at multiple levels: in the electrical circuit itself, it requires careful consideration of layout to minimize the appearance of (ground) loops, and placing sensitive traces between ground planes; at the level of the enclosure, it implies a hermetic enclosure with multiple thin layers of conductors that shield the high frequency signals without providing a good conduction path for eddy currents; for the power cables, it means multiple layers of shielding; and for the connectors, a combination of mechanical locking mechanisms, RF gaskets, and additional decoupling is needed to eliminate any RF leakage path. Finally, all high speed communication to the detector is done optically to further reduce the potential for interference. hese precautions make the detector (RF and gradient) the MR system; and ensure no noise from the detector can interfere with the image formation on the MR side. Mechanical issues When the gradient coil is driven with large currents, vibrations that are perceived as loud noise. Since the PET detector is mounted in very close proximity to the gradient, it is potentially exposed to these vibrations, which may impact the reliability of the detector (in particular the optical coupling between scintillator and photo sensor). Special care has to be taken to develop a mounting mechanism for the detector that reduces the mechanical coupling, A further challenge is posed by the requirements on the patient table. For PET attenuation correction it is necessary to know where the receive coils are; for the coil underneath the patient table. In order to minimize the distance from the coil to the patient, this means the table must be very thin, yet strong enough to carry of view of the PET detector degrades the image quality (because of attenuation and scatter), it is not possible to include strong support elements at the edge of the be very precise and repeatable, so that images from single patient volume without errors in registration. All these challenges have been addressed with the design of a new Kevlar-reinforced ultra-thin table with a dual positioning drive and a novel positioning mechanism based on a pull string. PET/MR System PET Detector Modules MR RF Shield with dip in the center Gradient coils RF shield Body coil former electronics scintillator MR RF Body Coil Support Ribs Fig.1. Schematic of the prototype PET/MR system RF conductor End shield

6 Since the PET detector is on the outside of the body coil, attenuation of the body coil adds a further complication. This was overcome by creating a tube-like structure that carries the body coil on its inner surface and the RF shield on its outer surface. The PET detector is mounted on the outer surface, in an area where the tube was thinned to minimize the of the body coil (since it has a smaller diameter), and ensures good alignment of body coil and RF shield (since they are mounted on the same structure). This Conclusion Integrating a fast photosensor with a thick scintillator and fast, low-noise electronics inside a well shielded enclosure inside an MR scanner, and paying careful attention to issues of mechanical isolation, attenuation, and heating, it has been proven possible to design a Time of Flight PET/MR scanner that high quality imaging while providing simultaneous any image degradation. features shown herein, or discontinue any products described at any time without notice or obligation. Please contact your GE representative for the most current information. GE, GE Monogram and imagination at work are trademarks of General Electric Company. *Trademarks of General Electric Company. GE Healthcare, a division of General Electric Company. GE Healthcare U.S.A

The Influence of Crystal Configuration and PMT on PET Time-of-Flight Resolution

The Influence of Crystal Configuration and PMT on PET Time-of-Flight Resolution The Influence of Crystal Configuration and PMT on PET Time-of-Flight Resolution Christopher Thompson Montreal Neurological Institute and Scanwell Systems, Montreal, Canada Jason Hancock Cross Cancer Institute,

More information

PET Performance Evaluation of MADPET4: A Small Animal PET Insert for a 7-T MRI Scanner

PET Performance Evaluation of MADPET4: A Small Animal PET Insert for a 7-T MRI Scanner PET Performance Evaluation of MADPET4: A Small Animal PET Insert for a 7-T MRI Scanner September, 2017 Results submitted to Physics in Medicine & Biology Negar Omidvari 1, Jorge Cabello 1, Geoffrey Topping

More information

Highlights of Poster Session I: SiPMs

Highlights of Poster Session I: SiPMs Highlights of Poster Session I: SiPMs Yuri Musienko* FNAL(USA)/INR(Moscow) NDIP 2011, Lyon, 5.07.2011 Y. Musienko (Iouri.Musienko@cern.ch) 1 Poster Session I 21 contributions on SiPM characterization and

More information

Future directions in Nuclear Medicine Instrumentation

Future directions in Nuclear Medicine Instrumentation Future directions in Nuclear Medicine Instrumentation Where are we going - and why? First, the disclosure list My group at the University of Washington has research support from: NIH DOE General Electric

More information

PET: New Technologies & Applications, Including Oncology

PET: New Technologies & Applications, Including Oncology PET: New Technologies & Applications, Including Oncology, PhD, FIEEE Imaging Research Laboratory Department of Radiology University of Washington, Seattle, WA Disclosures Research Contract, GE Healthcare

More information

A CONTAINER FOR ELECTRICAL NOISE: ULTRAGUARD THEORY AND PRACTICE

A CONTAINER FOR ELECTRICAL NOISE: ULTRAGUARD THEORY AND PRACTICE A CONTAINER FOR ELECTRICAL NOISE: ULTRAGUARD THEORY AND PRACTICE Karl Anderson Valid Measurements 3761 W. Avenue J-14 Lancaster, CA 93536-6304 Phone: (661) 722-8255 karl@vm-usa.com Abstract - A theory

More information

PET Detectors. William W. Moses Lawrence Berkeley National Laboratory March 26, 2002

PET Detectors. William W. Moses Lawrence Berkeley National Laboratory March 26, 2002 PET Detectors William W. Moses Lawrence Berkeley National Laboratory March 26, 2002 Step 1: Inject Patient with Radioactive Drug Drug is labeled with positron (β + ) emitting radionuclide. Drug localizes

More information

Photomultiplier Tube

Photomultiplier Tube Nuclear Medicine Uses a device known as a Gamma Camera. Also known as a Scintillation or Anger Camera. Detects the release of gamma rays from Radionuclide. The radionuclide can be injected, inhaled or

More information

CZT Technology: Fundamentals and Applications

CZT Technology: Fundamentals and Applications GE Healthcare CZT Technology: Fundamentals and Applications White Paper Abstract Nuclear Medicine traces its technology roots to the 1950 s, and while it has continued to evolve since the invention of

More information

9/28/2010. Chapter , The McGraw-Hill Companies, Inc.

9/28/2010. Chapter , The McGraw-Hill Companies, Inc. Chapter 4 Sensors are are used to detect, and often to measure, the magnitude of something. They basically operate by converting mechanical, magnetic, thermal, optical, and chemical variations into electric

More information

The CMS Outer HCAL SiPM Upgrade.

The CMS Outer HCAL SiPM Upgrade. The CMS Outer HCAL SiPM Upgrade. Artur Lobanov on behalf of the CMS collaboration DESY Hamburg CALOR 2014, Gießen, 7th April 2014 Outline > CMS Hadron Outer Calorimeter > Commissioning > Cosmic data Artur

More information

Characterisation of SiPM Index :

Characterisation of SiPM Index : Characterisation of SiPM --------------------------------------------------------------------------------------------Index : 1. Basics of SiPM* 2. SiPM module 3. Working principle 4. Experimental setup

More information

Time-of-flight PET with SiPM sensors on monolithic scintillation crystals Vinke, Ruud

Time-of-flight PET with SiPM sensors on monolithic scintillation crystals Vinke, Ruud University of Groningen Time-of-flight PET with SiPM sensors on monolithic scintillation crystals Vinke, Ruud IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you

More information

Silicon Photo Multiplier SiPM. Lecture 13

Silicon Photo Multiplier SiPM. Lecture 13 Silicon Photo Multiplier SiPM Lecture 13 Photo detectors Purpose: The PMTs that are usually employed for the light detection of scintillators are large, consume high power and are sensitive to the magnetic

More information

SiPMs for solar neutrino detector? J. Kaspar, 6/10/14

SiPMs for solar neutrino detector? J. Kaspar, 6/10/14 SiPMs for solar neutrino detector? J. Kaspar, 6/0/4 SiPM is photodiode APD Geiger Mode APD V APD full depletion take a photo-diode reverse-bias it above breakdown voltage (Geiger mode avalanche photo diode)

More information

Solid-State Photomultiplier in CMOS Technology for Gamma-Ray Detection and Imaging Applications

Solid-State Photomultiplier in CMOS Technology for Gamma-Ray Detection and Imaging Applications Solid-State Photomultiplier in CMOS Technology for Gamma-Ray Detection and Imaging Applications Christopher Stapels, Member, IEEE, William G. Lawrence, James Christian, Member, IEEE, Michael R. Squillante,

More information

Scintillation Counters

Scintillation Counters PHY311/312 Detectors for Nuclear and Particle Physics Dr. C.N. Booth Scintillation Counters Unlike many other particle detectors, which exploit the ionisation produced by the passage of a charged particle,

More information

EC6011-ELECTROMAGNETICINTERFERENCEANDCOMPATIBILITY

EC6011-ELECTROMAGNETICINTERFERENCEANDCOMPATIBILITY EC6011-ELECTROMAGNETICINTERFERENCEANDCOMPATIBILITY UNIT-3 Part A 1. What is an opto-isolator? [N/D-16] An optoisolator (also known as optical coupler,optocoupler and opto-isolator) is a semiconductor device

More information

PCS-150 / PCI-200 High Speed Boxcar Modules

PCS-150 / PCI-200 High Speed Boxcar Modules Becker & Hickl GmbH Kolonnenstr. 29 10829 Berlin Tel. 030 / 787 56 32 Fax. 030 / 787 57 34 email: info@becker-hickl.de http://www.becker-hickl.de PCSAPP.DOC PCS-150 / PCI-200 High Speed Boxcar Modules

More information

High Performance ZVS Buck Regulator Removes Barriers To Increased Power Throughput In Wide Input Range Point-Of-Load Applications

High Performance ZVS Buck Regulator Removes Barriers To Increased Power Throughput In Wide Input Range Point-Of-Load Applications WHITE PAPER High Performance ZVS Buck Regulator Removes Barriers To Increased Power Throughput In Wide Input Range Point-Of-Load Applications Written by: C. R. Swartz Principal Engineer, Picor Semiconductor

More information

J-Series High PDE and Timing Resolution, TSV Package

J-Series High PDE and Timing Resolution, TSV Package High PDE and Timing Resolution SiPM Sensors in a TSV Package SensL s J-Series low-light sensors feature a high PDE (photon detection efficiency) that is achieved using a high-volume, P-on-N silicon foundry

More information

Low Jitter, Low Emission Timing Solutions For High Speed Digital Systems. A Design Methodology

Low Jitter, Low Emission Timing Solutions For High Speed Digital Systems. A Design Methodology Low Jitter, Low Emission Timing Solutions For High Speed Digital Systems A Design Methodology The Challenges of High Speed Digital Clock Design In high speed applications, the faster the signal moves through

More information

Recent Development and Study of Silicon Solid State Photomultiplier (MRS Avalanche Photodetector)

Recent Development and Study of Silicon Solid State Photomultiplier (MRS Avalanche Photodetector) Recent Development and Study of Silicon Solid State Photomultiplier (MRS Avalanche Photodetector) Valeri Saveliev University of Obninsk, Russia Vienna Conference on Instrumentation Vienna, 20 February

More information

Texas Instruments DisplayPort Design Guide

Texas Instruments DisplayPort Design Guide Texas Instruments DisplayPort Design Guide April 2009 1 High Speed Interface Applications Introduction This application note presents design guidelines, helping users of Texas Instruments DisplayPort devices

More information

Detector technology in simultaneous spectral imaging

Detector technology in simultaneous spectral imaging Computed tomography Detector technology in simultaneous spectral imaging Philips IQon Spectral CT Z. Romman, I. Uman, Y. Yagil, D. Finzi, N. Wainer, D. Milstein; Philips Healthcare While CT has become

More information

Components of Optical Instruments

Components of Optical Instruments Components of Optical Instruments General Design of Optical Instruments Sources of Radiation Wavelength Selectors (Filters, Monochromators, Interferometers) Sample Containers Radiation Transducers (Detectors)

More information

Application Notes: Discrete Amplification Photon Detector 5x5 Array Including Pre- Amplifiers Board

Application Notes: Discrete Amplification Photon Detector 5x5 Array Including Pre- Amplifiers Board Application Notes: Discrete Amplification Photon Detector 5x5 Array Including Pre- Amplifiers Board March 2015 General Description The 5x5 Discrete Amplification Photon Detector (DAPD) array is delivered

More information

Current Probes. User Manual

Current Probes. User Manual Current Probes User Manual ETS-Lindgren Inc. reserves the right to make changes to any product described herein in order to improve function, design, or for any other reason. Nothing contained herein shall

More information

High Voltage Charge Pumps Deliver Low EMI

High Voltage Charge Pumps Deliver Low EMI High Voltage Charge Pumps Deliver Low EMI By Tony Armstrong Director of Product Marketing Power Products Linear Technology Corporation (tarmstrong@linear.com) Background Switching regulators are a popular

More information

An innovative detector concept for hybrid 4D-PET/MRI Imaging

An innovative detector concept for hybrid 4D-PET/MRI Imaging Piergiorgio Cerello (INFN - Torino) on behalf of the 4D-MPET* project *4 Dimensions Magnetic compatible module for Positron Emission Tomography INFN Perugia, Pisa, Torino; Polytechnic of Bari; University

More information

arxiv: v3 [astro-ph.im] 17 Jan 2017

arxiv: v3 [astro-ph.im] 17 Jan 2017 A novel analog power supply for gain control of the Multi-Pixel Photon Counter (MPPC) Zhengwei Li a,, Congzhan Liu a, Yupeng Xu a, Bo Yan a,b, Yanguo Li a, Xuefeng Lu a, Xufang Li a, Shuo Zhang a,b, Zhi

More information

Gamma Spectrometer Initial Project Proposal

Gamma Spectrometer Initial Project Proposal Gamma Spectrometer Initial Project Proposal Group 9 Aman Kataria Johnny Klarenbeek Dean Sullivan David Valentine Introduction There are currently two main types of gamma radiation detectors used for gamma

More information

Introduction. Chapter 16 Diagnostic Radiology. Primary radiological image. Primary radiological image

Introduction. Chapter 16 Diagnostic Radiology. Primary radiological image. Primary radiological image Introduction Chapter 16 Diagnostic Radiology Radiation Dosimetry I Text: H.E Johns and J.R. Cunningham, The physics of radiology, 4 th ed. http://www.utoledo.edu/med/depts/radther In diagnostic radiology

More information

Voltage Dividers & Electronics Scintillation detectors usually employ a Voltage Divider (VD) network to operate the PMT. This sometimes called "bleeder network" defines a potential (voltage) difference

More information

Lunar Technology Advantages

Lunar Technology Advantages Lunar Technology Advantages DXA stands for Dual-Energy X-ray Absorptiometry. It is a measurement method that uses the differences in the absorption of high energy and low energy X-ray photons by different

More information

Development of an innovative LSO-SiPM detector module for high-performance Positron Emission Tomography

Development of an innovative LSO-SiPM detector module for high-performance Positron Emission Tomography Development of an innovative LSO-SiPM detector module for high-performance Positron Emission Tomography Maria Leonor Trigo Franco Frazão leonorfrazao@ist.utl.pt Instituto Superior Técnico, Lisboa, Portugal

More information

A 40 MHz Programmable Video Op Amp

A 40 MHz Programmable Video Op Amp A 40 MHz Programmable Video Op Amp Conventional high speed operational amplifiers with bandwidths in excess of 40 MHz introduce problems that are not usually encountered in slower amplifiers such as LF356

More information

SIGNA Pioneer: Ultra High Efficiency Gradient System Advancing the gradient technology curve

SIGNA Pioneer: Ultra High Efficiency Gradient System Advancing the gradient technology curve GE Healthcare SIGNA Pioneer: Ultra High Efficiency Gradient System Advancing the gradient technology curve NEW TECHNOLOGY 40W Watts spec is irrelevant. 4W LED bulb delivers same brightness as 40W incandescent

More information

Tutors Dominik Dannheim, Thibault Frisson (CERN, Geneva, Switzerland)

Tutors Dominik Dannheim, Thibault Frisson (CERN, Geneva, Switzerland) Danube School on Instrumentation in Elementary Particle & Nuclear Physics University of Novi Sad, Serbia, September 8 th 13 th, 2014 Lab Experiment: Characterization of Silicon Photomultipliers Dominik

More information

1.1 The Muon Veto Detector (MUV)

1.1 The Muon Veto Detector (MUV) 1.1 The Muon Veto Detector (MUV) 1.1 The Muon Veto Detector (MUV) 1.1.1 Introduction 1.1.1.1 Physics Requirements and General Layout In addition to the straw chambers and the RICH detector, further muon

More information

High granularity scintillating fiber trackers based on Silicon Photomultiplier

High granularity scintillating fiber trackers based on Silicon Photomultiplier High granularity scintillating fiber trackers based on Silicon Photomultiplier A. Papa Paul Scherrer Institut, Villigen, Switzerland E-mail: angela.papa@psi.ch Istituto Nazionale di Fisica Nucleare Sez.

More information

CR Basics and FAQ. Overview. Historical Perspective

CR Basics and FAQ. Overview. Historical Perspective Page: 1 of 6 CR Basics and FAQ Overview Computed Radiography is a term used to describe a system that electronically records a radiographic image. Computed Radiographic systems use unique image receptors

More information

Application of Silicon Photomultipliers to Positron Emission Tomography

Application of Silicon Photomultipliers to Positron Emission Tomography Annals of Biomedical Engineering, Vol. 39, No. 4, April 2011 (Ó 2011) pp. 1358 1377 DOI: 10.1007/s10439-011-0266-9 Application of Silicon Photomultipliers to Positron Emission Tomography EMILIE RONCALI

More information

How to Evaluate and Compare Silicon Photomultiplier Sensors. October 2015

How to Evaluate and Compare Silicon Photomultiplier Sensors. October 2015 The Silicon Photomultiplier (SiPM) is a single-photon sensitive light sensor that combines performance characteristics that exceed those of a PMT, with the practical advantages of a solid state sensor.

More information

RAPSODI RAdiation Protection with Silicon Optoelectronic Devices and Instruments

RAPSODI RAdiation Protection with Silicon Optoelectronic Devices and Instruments RAPSODI RAdiation Protection with Silicon Optoelectronic Devices and Instruments Massimo Caccia Universita dell Insubria Como (Italy) on behalf of The RAPSODI collaboration 11th Topical Seminar on Innovative

More information

The shunt capacitor is the critical element

The shunt capacitor is the critical element Accurate Feedthrough Capacitor Measurements at High Frequencies Critical for Component Evaluation and High Current Design A shielded measurement chamber allows accurate assessment and modeling of low pass

More information

Medical Imaging. X-rays, CT/CAT scans, Ultrasound, Magnetic Resonance Imaging

Medical Imaging. X-rays, CT/CAT scans, Ultrasound, Magnetic Resonance Imaging Medical Imaging X-rays, CT/CAT scans, Ultrasound, Magnetic Resonance Imaging From: Physics for the IB Diploma Coursebook 6th Edition by Tsokos, Hoeben and Headlee And Higher Level Physics 2 nd Edition

More information

CMS SLHC Tracker Upgrade: Selected Thoughts, Challenges and Strategies

CMS SLHC Tracker Upgrade: Selected Thoughts, Challenges and Strategies : Selected Thoughts, Challenges and Strategies CERN Geneva, Switzerland E-mail: marcello.mannelli@cern.ch Upgrading the CMS Tracker for the SLHC presents many challenges, of which the much harsher radiation

More information

Signal and Noise Measurement Techniques Using Magnetic Field Probes

Signal and Noise Measurement Techniques Using Magnetic Field Probes Signal and Noise Measurement Techniques Using Magnetic Field Probes Abstract: Magnetic loops have long been used by EMC personnel to sniff out sources of emissions in circuits and equipment. Additional

More information

Effects of Dark Counts on Digital Silicon Photomultipliers Performance

Effects of Dark Counts on Digital Silicon Photomultipliers Performance Effects of Dark Counts on Digital Silicon Photomultipliers Performance Radosław Marcinkowski, Samuel España, Roel Van Holen, Stefaan Vandenberghe Abstract Digital Silicon Photomultipliers (dsipm) are novel

More information

New Ultra-Fast Noise Parameter System... Opening A New Realm of Possibilities in Noise Characterization

New Ultra-Fast Noise Parameter System... Opening A New Realm of Possibilities in Noise Characterization New Ultra-Fast Noise Parameter System... Opening A New Realm of Possibilities in Noise Characterization David Ballo Application Development Engineer Agilent Technologies Gary Simpson Chief Technology Officer

More information

NEW LASER ULTRASONIC INTERFEROMETER FOR INDUSTRIAL APPLICATIONS B.Pouet and S.Breugnot Bossa Nova Technologies; Venice, CA, USA

NEW LASER ULTRASONIC INTERFEROMETER FOR INDUSTRIAL APPLICATIONS B.Pouet and S.Breugnot Bossa Nova Technologies; Venice, CA, USA NEW LASER ULTRASONIC INTERFEROMETER FOR INDUSTRIAL APPLICATIONS B.Pouet and S.Breugnot Bossa Nova Technologies; Venice, CA, USA Abstract: A novel interferometric scheme for detection of ultrasound is presented.

More information

MRI SYSTEM COMPONENTS Module One

MRI SYSTEM COMPONENTS Module One MRI SYSTEM COMPONENTS Module One 1 MAIN COMPONENTS Magnet Gradient Coils RF Coils Host Computer / Electronic Support System Operator Console and Display Systems 2 3 4 5 Magnet Components 6 The magnet The

More information

Use optocouplers for safe and reliable electrical systems

Use optocouplers for safe and reliable electrical systems 1 di 5 04/01/2013 10.15 Use optocouplers for safe and reliable electrical systems Harold Tisbe, Avago Technologies Inc. 1/2/2013 9:06 AM EST Although there are multiple technologies--capacitive, magnetic,

More information

The digital Silicon Photomultiplier A novel Sensor for the Detection of Scintillation Light

The digital Silicon Photomultiplier A novel Sensor for the Detection of Scintillation Light The digital Silicon Photomultiplier A novel Sensor for the Detection of Scintillation Light Carsten Degenhardt, Gordian Prescher, Thomas Frach, Andreas Thon, Rik de Gruyter, Anja Schmitz, Rob Ballizany

More information

Novel laser power sensor improves process control

Novel laser power sensor improves process control Novel laser power sensor improves process control A dramatic technological advancement from Coherent has yielded a completely new type of fast response power detector. The high response speed is particularly

More information

Electronic Instrumentation for Radiation Detection Systems

Electronic Instrumentation for Radiation Detection Systems Electronic Instrumentation for Radiation Detection Systems January 23, 2018 Joshua W. Cates, Ph.D. and Craig S. Levin, Ph.D. Course Outline Lecture Overview Brief Review of Radiation Detectors Detector

More information

Time-of-flight PET with SiPM sensors on monolithic scintillation crystals Vinke, Ruud

Time-of-flight PET with SiPM sensors on monolithic scintillation crystals Vinke, Ruud University of Groningen Time-of-flight PET with SiPM sensors on monolithic scintillation crystals Vinke, Ruud IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you

More information

Redefining Measurement ID101 OEM Visible Photon Counter

Redefining Measurement ID101 OEM Visible Photon Counter Redefining Measurement ID OEM Visible Photon Counter Miniature Photon Counter for OEM Applications Intended for large-volume OEM applications, the ID is the smallest, most reliable and most efficient single-photon

More information

PRELIMINARY. Specifications are at array temperature of -30 C and package ambient temperature of 23 C All values are typical

PRELIMINARY. Specifications are at array temperature of -30 C and package ambient temperature of 23 C All values are typical DAPD NIR 5x5 Array+PCB 1550 Series: Discrete Amplification Photon Detector Array Including Pre-Amplifier Board The DAPDNIR 5x5 Array 1550 series takes advantage of the breakthrough Discrete Amplification

More information

6 Electromagnetic Field Distribution Measurements using an Optically Scanning Probe System

6 Electromagnetic Field Distribution Measurements using an Optically Scanning Probe System 6 Electromagnetic Field Distribution Measurements using an Optically Scanning Probe System TAKAHASHI Masanori, OTA Hiroyasu, and ARAI Ken Ichi An optically scanning electromagnetic field probe system consisting

More information

1.6 Beam Wander vs. Image Jitter

1.6 Beam Wander vs. Image Jitter 8 Chapter 1 1.6 Beam Wander vs. Image Jitter It is common at this point to look at beam wander and image jitter and ask what differentiates them. Consider a cooperative optical communication system that

More information

Total Absorption Dual Readout Calorimetry R&D

Total Absorption Dual Readout Calorimetry R&D Available online at www.sciencedirect.com Physics Procedia 37 (2012 ) 309 316 TIPP 2011 - Technology and Instrumentation for Particle Physics 2011 Total Absorption Dual Readout Calorimetry R&D B. Bilki

More information

Laser Telemetric System (Metrology)

Laser Telemetric System (Metrology) Laser Telemetric System (Metrology) Laser telemetric system is a non-contact gauge that measures with a collimated laser beam (Refer Fig. 10.26). It measure at the rate of 150 scans per second. It basically

More information

DC Link. Charge Controller/ DC-DC Converter. Gate Driver. Battery Cells. System Controller

DC Link. Charge Controller/ DC-DC Converter. Gate Driver. Battery Cells. System Controller Integrate Protection with Isolation In Home Renewable Energy Systems Whitepaper Home energy systems based on renewable sources such as solar and wind power are becoming more popular among consumers and

More information

Performance Evaluation of SiPM Detectors for PET Imaging in the Presence of Magnetic Fields

Performance Evaluation of SiPM Detectors for PET Imaging in the Presence of Magnetic Fields 2008 IEEE Nuclear Science Symposium Conference Record M02-4 Performance Evaluation of SiPM Detectors for PET Imaging in the Presence of Magnetic Fields Samuel España, Student Member, IEEE, Gustavo Tapias,

More information

Chapter 3 OPTICAL SOURCES AND DETECTORS

Chapter 3 OPTICAL SOURCES AND DETECTORS Chapter 3 OPTICAL SOURCES AND DETECTORS 3. Optical sources and Detectors 3.1 Introduction: The success of light wave communications and optical fiber sensors is due to the result of two technological breakthroughs.

More information

SPMMicro. SPMMicro. Low Cost High Gain APD. Low Cost High Gain APD. Page 1

SPMMicro. SPMMicro. Low Cost High Gain APD. Low Cost High Gain APD. Page 1 SPMMicro Page 1 Overview Silicon Photomultiplier (SPM) Technology SensL s SPMMicro series is a High Gain APD provided in a variety of miniature, easy to use, and low cost packages. The SPMMicro detector

More information

Combined micropet /MR System: Performance Assessment of the Full PET Ring with Split Gradients 4.8

Combined micropet /MR System: Performance Assessment of the Full PET Ring with Split Gradients 4.8 Combined micropet /MR System: Performance Assessment of the Full PET Ring with Split Gradients 4.8 UNIVERSITY OF CAMBRIDGE 1.2 Rob C. Hawkes 1, Tim D. Fryer 1, Alun J. Lucas 1,2, Stefan B. Siegel 3, Richard

More information

Dual Passive Input Digital Isolator. Features. Applications

Dual Passive Input Digital Isolator. Features. Applications Dual Passive Input Digital Isolator Functional Diagram Each device in the dual channel IL611 consists of a coil, vertically isolated from a GMR Wheatstone bridge by a polymer dielectric layer. A magnetic

More information

EMC Simulation of Consumer Electronic Devices

EMC Simulation of Consumer Electronic Devices of Consumer Electronic Devices By Andreas Barchanski Describing a workflow for the EMC simulation of a wireless router, using techniques that can be applied to a wide range of consumer electronic devices.

More information

MPPC and Liquid Xenon technologies from particle physics to medical imaging

MPPC and Liquid Xenon technologies from particle physics to medical imaging CANADA S NATIONAL LABORATORY FOR PARTICLE AND NUCLEAR PHYSICS Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada

More information

Unclassified Distribution A: Unlimited Public Release

Unclassified Distribution A: Unlimited Public Release IMPACT OF INADVERTENT ELECTROMAGNETIC EMISSIONS ON ORGANIC VEHICLES THAT AFFECT THE TACTICAL COMMUNICATIONS OPERATING BANDS By Erick Ortiz and Frank A. Bohn US ARMY CERDEC Antennas & Spectrum Analysis

More information

Status of the LED calibration system

Status of the LED calibration system Status of the LED calibration system Mathias Götze, Julian Sauer, Sebastian Weber and Christian Zeitnitz 1 von 17 Short reminder Current HCAL design ~ 8 106 tiles with SiPM SiPM gain issues: spreads from

More information

Design and experimental realization of the chirped microstrip line

Design and experimental realization of the chirped microstrip line Chapter 4 Design and experimental realization of the chirped microstrip line 4.1. Introduction In chapter 2 it has been shown that by using a microstrip line, uniform insertion losses A 0 (ω) and linear

More information

PLL Synchronizer User s Manual / Version 1.0.6

PLL Synchronizer User s Manual / Version 1.0.6 PLL Synchronizer User s Manual / Version 1.0.6 AccTec B.V. Den Dolech 2 5612 AZ Eindhoven The Netherlands phone +31 (0) 40-2474321 / 4048 e-mail AccTecBV@tue.nl Contents 1 Introduction... 3 2 Technical

More information

LMC6081 Precision CMOS Single Operational Amplifier

LMC6081 Precision CMOS Single Operational Amplifier LMC6081 Precision CMOS Single Operational Amplifier General Description The LMC6081 is a precision low offset voltage operational amplifier, capable of single supply operation. Performance characteristics

More information

NM Module Section 2 6 th Edition Christian, Ch. 3

NM Module Section 2 6 th Edition Christian, Ch. 3 NM 4303 Module Section 2 6 th Edition Christian, Ch. 3 Gas Filled Chamber Voltage Gas filled chamber uses Hand held detectors cutie pie Geiger counter Dose calibrators Cutie pie Chamber voltage in Ionization

More information

LSI and Circuit Technologies for the SX-8 Supercomputer

LSI and Circuit Technologies for the SX-8 Supercomputer LSI and Circuit Technologies for the SX-8 Supercomputer By Jun INASAKA,* Toshio TANAHASHI,* Hideaki KOBAYASHI,* Toshihiro KATOH,* Mikihiro KAJITA* and Naoya NAKAYAMA This paper describes the LSI and circuit

More information

Microcircuit Electrical Issues

Microcircuit Electrical Issues Microcircuit Electrical Issues Distortion The frequency at which transmitted power has dropped to 50 percent of the injected power is called the "3 db" point and is used to define the bandwidth of the

More information

Gamma Ray Spectroscopy with NaI(Tl) and HPGe Detectors

Gamma Ray Spectroscopy with NaI(Tl) and HPGe Detectors Nuclear Physics #1 Gamma Ray Spectroscopy with NaI(Tl) and HPGe Detectors Introduction: In this experiment you will use both scintillation and semiconductor detectors to study γ- ray energy spectra. The

More information

Vibrating Wire Instrumentation

Vibrating Wire Instrumentation Vibrating Wire Instrumentation Design, Operations & Lines Test Results System Diagram - Fig 1 Sensor Excitation Circuit Differential Amplifier + + Sensor Coil - - High Pass 100 Hz Digital Filter Low Pass

More information

CMOS 0.18 m SPAD. TowerJazz February, 2018 Dr. Amos Fenigstein

CMOS 0.18 m SPAD. TowerJazz February, 2018 Dr. Amos Fenigstein CMOS 0.18 m SPAD TowerJazz February, 2018 Dr. Amos Fenigstein Outline CMOS SPAD motivation Two ended vs. Single Ended SPAD (bulk isolated) P+/N two ended SPAD and its optimization Application of P+/N two

More information

Attenuation length in strip scintillators. Jonathan Button, William McGrew, Y.-W. Lui, D. H. Youngblood

Attenuation length in strip scintillators. Jonathan Button, William McGrew, Y.-W. Lui, D. H. Youngblood Attenuation length in strip scintillators Jonathan Button, William McGrew, Y.-W. Lui, D. H. Youngblood I. Introduction The ΔE-ΔE-E decay detector as described in [1] is composed of thin strip scintillators,

More information

Semiconductor Detector Systems

Semiconductor Detector Systems Semiconductor Detector Systems Helmuth Spieler Physics Division, Lawrence Berkeley National Laboratory OXFORD UNIVERSITY PRESS ix CONTENTS 1 Detector systems overview 1 1.1 Sensor 2 1.2 Preamplifier 3

More information

Pressure Transducer Handbook

Pressure Transducer Handbook 123 Pressure Transducer Handbook Date: February 2004 TABLE OF CONTENTS SECTION 1 - Introduction 1.1 Introduction 1.2 Product Overview SECTION 2 - Kulite Sensing Technology 2.1 Pressure Transducers 2.2

More information

Radiology Physics Lectures: Digital Radiography. Digital Radiography. D. J. Hall, Ph.D. x20893

Radiology Physics Lectures: Digital Radiography. Digital Radiography. D. J. Hall, Ph.D. x20893 Digital Radiography D. J. Hall, Ph.D. x20893 djhall@ucsd.edu Background Common Digital Modalities Digital Chest Radiograph - 4096 x 4096 x 12 bit CT - 512 x 512 x 12 bit SPECT - 128 x 128 x 8 bit MRI -

More information

COMPUTED TOMOGRAPHY 1

COMPUTED TOMOGRAPHY 1 COMPUTED TOMOGRAPHY 1 Why CT? Conventional X ray picture of a chest 2 Introduction Why CT? In a normal X-ray picture, most soft tissue doesn't show up clearly. To focus in on organs, or to examine the

More information

Introduction to silicon photomultipliers (SiPMs) White paper

Introduction to silicon photomultipliers (SiPMs) White paper Introduction to silicon photomultipliers (SiPMs) White paper Basic structure and operation The silicon photomultiplier (SiPM) is a radiation detector with extremely high sensitivity, high efficiency, and

More information

AND9770/D. Introduction to the Silicon Photomultiplier (SiPM) APPLICATION NOTE

AND9770/D. Introduction to the Silicon Photomultiplier (SiPM) APPLICATION NOTE Introduction to the Silicon Photomultiplier (SiPM) The Silicon Photomultiplier (SiPM) is a sensor that addresses the challenge of sensing, timing and quantifying low-light signals down to the single-photon

More information

White Paper. Zecotek MAPD (Multi- pixel Avalanche Photo Diode) Enabling the future of imaging and detection

White Paper. Zecotek MAPD (Multi- pixel Avalanche Photo Diode) Enabling the future of imaging and detection White Paper Zecotek MAPD (Multi- pixel Avalanche Photo Diode) Enabling the future of imaging and detection Zecotek Photonics Inc. (TSX- V: ZMS; Frankfurt: W1I) www.zecotek.com is a Canadian photonics technology

More information

Direct Measurement of Optical Cross-talk in Silicon Photomultipliers Using Light Emission Microscopy

Direct Measurement of Optical Cross-talk in Silicon Photomultipliers Using Light Emission Microscopy Direct Measurement of Optical Cross-talk in Silicon Photomultipliers Using Light Emission Microscopy Derek Strom, Razmik Mirzoyan, Jürgen Besenrieder Max-Planck-Institute for Physics, Munich, Germany 14

More information

Design of a High-Resolution and High-Sensitivity Scintillation Crystal Array for PET With Nearly Complete Light Collection

Design of a High-Resolution and High-Sensitivity Scintillation Crystal Array for PET With Nearly Complete Light Collection 2236 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 49, NO. 5, OCTOBER 2002 Design of a High-Resolution and High-Sensitivity Scintillation Crystal Array for PET With Nearly Complete Light Collection Craig

More information

Vixar High Power Array Technology

Vixar High Power Array Technology Vixar High Power Array Technology I. Introduction VCSELs arrays emitting power ranging from 50mW to 10W have emerged as an important technology for applications within the consumer, industrial, automotive

More information

Antenna Measurements using Modulated Signals

Antenna Measurements using Modulated Signals Antenna Measurements using Modulated Signals Roger Dygert MI Technologies, 1125 Satellite Boulevard, Suite 100 Suwanee, GA 30024-4629 Abstract Antenna test engineers are faced with testing increasingly

More information

R & D for Aerogel RICH

R & D for Aerogel RICH 1 R & D for Aerogel RICH Ichiro Adachi KEK Proto-Collaboration Meeting March 20, 2008 2 1 st Cherenkov Image detected by 3 hybrid avalanche photon detectors from a beam test About 3:00 AM TODAY Clear image

More information

Quantum frequency standard Priority: Filing: Grant: Publication: Description

Quantum frequency standard Priority: Filing: Grant: Publication: Description C Quantum frequency standard Inventors: A.K.Dmitriev, M.G.Gurov, S.M.Kobtsev, A.V.Ivanenko. Priority: 2010-01-11 Filing: 2010-01-11 Grant: 2011-08-10 Publication: 2011-08-10 Description The present invention

More information

Silicon Photomultiplier Evaluation Kit. Quick Start Guide. Eval Kit SiPM. KETEK GmbH. Hofer Str Munich Germany.

Silicon Photomultiplier Evaluation Kit. Quick Start Guide. Eval Kit SiPM. KETEK GmbH. Hofer Str Munich Germany. KETEK GmbH Hofer Str. 3 81737 Munich Germany www.ketek.net info@ketek.net phone +49 89 673 467 70 fax +49 89 673 467 77 Silicon Photomultiplier Evaluation Kit Quick Start Guide Eval Kit Table of Contents

More information

AD8232 EVALUATION BOARD DOCUMENTATION

AD8232 EVALUATION BOARD DOCUMENTATION One Technology Way P.O. Box 9106 Norwood, MA 02062-9106 Tel: 781.329.4700 Fax: 781.461.3113 www.analog.com AD8232 EVALUATION BOARD DOCUMENTATION FEATURES Ready to use Heart Rate Monitor (HRM) Front end

More information

3.7 Grounding Design for EAST Superconducting Tokamak

3.7 Grounding Design for EAST Superconducting Tokamak 3.7 Design for EAST Superconducting Tokamak LIU Zhengzhi 3.7.1 Introduction system is a relevant part of the layout of Tokamak. It is important and indispensable for the system reliability and safety on

More information