IMPROVEMENT OF PRODUCTIVITY IN AUTOMOTIVE PAINT SHOP USING ROBOTIC ARM: A CASE STUDY

Size: px
Start display at page:

Download "IMPROVEMENT OF PRODUCTIVITY IN AUTOMOTIVE PAINT SHOP USING ROBOTIC ARM: A CASE STUDY"

Transcription

1 IMPROVEMENT OF PRODUCTIVITY IN AUTOMOTIVE PAINT SHOP USING ROBOTIC ARM: A CASE STUDY Baldev Singh Rana 1,Nisha Rana 2 Department of Mechanical Engineering, A.G.U Shimla Himachal Pradesh Department of Applied Sciences, A.G.U. Shimla Himachal Pradesh ABSTRACT Many applications of autonomous robotics involve robot motion. For these applications (e.g. exploration, performing tasks in hard conditions, like in a very cold/hot environment, search for survivors in a cataclysm, objects delivery) having good path-finding abilities is of primary importance. In particular, an emphasis should be put on crawling. It is to navigate in normal manner i.e. through walking or driving on wheel. A natural approach may be to make robots will navigate and avoid obstacles using reactive behaviour. This is fast, but not always sufficient to find its path. Deliberative planners are more efficient to find solutions, and can use a prior knowledge, but they are more sensitive to uncertain sensing. More specifically our study is based on the production rate of company A where painting on Automobile bodies is done manually and in another company B where Robots or Robotic Arms were used for painting the bodies of Automobile. Paint Shop Environment in Vehicle manufacturing unit having toxic chemicals that causes health problems. So to avoid the health hazards from companies preferred robotic arm over manual paint shop. Keywords: Robots, Robotic Arm, Path finding abilities, Production rate. INTRODUCTION Use of Robots in place of conventional manufacturing system facilitates precise control of manufacturing process and result in significant savings. The most effective way, which can pay big dividends in the long run through uninterrupted trouble-free running, is the use of Robots. It requires a conscious effort on the part of Production Engineers to identify areas where use of Robots can result in better deployment/utilization of resources and savings in man-hours, down time. Robots need not be high ended and too sophisticated; it is the planned and systematic approach to increase production, reduce downtime and eliminate failures employing easy to understand, smart proof logic tailored to the requirements of Production Department. Robotics field includes the following streams to form Robot as shown in figure 1 below 34

2 Figure 1.1 Various fields in Robotics [2] 1.1 Robot A robot is a mechanical or virtual artificial agent, usually an electro-mechanical machine that is guided by a computer program or electronic circuitry. Robots can be autonomous or semi-autonomous and range from humanoids such as Honda's Advanced Step in Innovative Mobility (ASIMO) and TOSY's TOSY Ping Pong Playing Robot (TOPIO) to industrial robots, collectively programmed swarm robots, and even microscopic nano robots. By mimicking a lifelike appearance or automating movements, a robot may convey a sense of intelligence or thought of its own. The branch of technology that deals with the design, construction, operation, and application of robots as well as computer systems for their control, sensory feedback, and information processing is robotics. These technologies deal with automated machines that can take the place of humans in dangerous environments or manufacturing processes, or resemble humans in appearance, behavior, and/or recognition. 35

3 Figure 1.2 Shows Popular human Robot developed by Honda.[6] Many of today's robots are inspired by nature contributing to the field of bio-inspired robotics. These robots have also created a newer branch of robotics: From the time of ancient civilization there have been many accounts of user configurable automated devices and even automata resembling animals and humans, designed primarily as entertainment. As mechanical techniques developed through the Industrial age, there appeared more practical applications such as automated machines remote-control and wireless remote-control. Electronics evolved into the driving force of development with the advent of the first electronic autonomous robots created by William Grey Walter in Bristol, England in The first digital and programmable robot was invented by George Devol in 1954 and was named the Unimate. It was sold to General Motors in 1961 where it was used to lift pieces of hot metal from die casting machines at the Inland Fisher Guide Plant in the West Trenton section of Ewing Township, New Jersey. Robots have replaced humans in the assistance of performing those repetitive and dangerous tasks which humans prefer not to do, or are unable to do due to size limitations, or even those such as in outer space or at the bottom of the sea where humans could not survive the extreme environments. There are concerns about the increasing use of robots and their role in society. Robots are blamed for rising unemployment as they replace workers in increasing numbers of functions. The use of robots in military combat raises ethical concerns. The possibilities of robot autonomy and potential repercussions have been addressed in fiction and may be a realistic concern in the future. 36

4 Types of robots Pick and place Moves items between points Moves items from one point to another Does not need to follow a specific path between points Uses include loading and unloading machines, placing components on circuit boards, and moving parts off conveyor belts. Figure 1.5 A SCARA robot (Selective Compliant Articulated Robot Arm): A pick-andplace robot with angular x-y-z positioning (Adept Technology) Continuous path control Moves along a programmable path Moves along a specific path Uses include welding, cutting, machining parts. Figure 1.6 shows Example of A six-axis industrial robot ($60K)(Fanuc Robotics), but an 37

5 additional $200K is often spent for tooling and programming. Sensory Employs sensors for feedback Uses sensors for feedback. Closed-loop robots use sensors in conjunction with actuators to gain higher accuracy servo motors. Uses include mobile robotics, telepresence, search and rescue, pick and place with machine vision. RESULTS Lights out manufacturing is when a production system is 100% or near to 100% automated (not hiring any workers). In order to eliminates the need for labor s all together. The biggest benefit of Robotic automation is that it saves labor; however, it is also used to save energy and materials and to improve quality, accuracy and precision. Production rate for the month June July in a Manual paint shop in Company A. S.No NUMBER OF VEHICLES PAINTED PER WEEK NUMBER OF SKILLED WORKERS ENGAGED NUMBER OF UNSKILLED WORKERS ENGAGED Labour 1 June Equipment Raw Material Used 2 Total 3.05 Production Rate 40 2 July From the above table Production per vehicle manually in Company A = Production rate for the month June July in a Robotic paint shop in Company B. S.No NUMBER OF VEHICLES PAINTED PER WEEK NUMBER OF SKILLED WORKERS ENGAGED Labour 1 June July Equipment Raw Material Used 8 8 Total Production Rate

6 No. of Vehicles per month in AGU International Journal of Science and Technology From the above table Production per vehicle manually in Company B = Cost save by robots in company B per vehicle = = Company A(Manually) Company B( Using Robots) June July Bar chart shows the Production Rate at paint shops during the months of June & July in Company A and B Company A Company B Line chart shows the Production Cost at paint shops during the months of June and July in Company A& B Abscissa in the above chart shows the Company A and Company B.Ordinates Show the number of vehicles painted during the month of June and July. June July 39

7 Production Rate in June Company A 20% Company B 80% Production rate in July Company A 23% Company B 77% In Chart C Maroon color shows the production rate in June and July month at Company B and Blue color shows production rate in June and July month at Company A respectively. 40

8 7/1/2014 6/1/ Time Taken in Days Time taken to paint 40 vehicles manually in paint shop of Company A =1 month Time taken to paint 40 vehicles using Robots in paint shop of Company B =7.5 days Total Time saved by using Robots in paint shop of company B =22.5 days CONCLUSION From above shown results we conclude the following advantages and disadvantages for Robots used companies and also other application of robotics in industries. ADVANTAGES It reduces human efforts. It produces high productivity Replacing human operators in tedious tasks. Replacing humans in tasks that should be done in dangerous environments (i.e. Fire, space, volcanoes, nuclear facilities, under the water, etc) Making task that are beyond the human capabilities such as handle too heavy loads, too large objects, too hot or too cold substances or the requirement to make things too fast or too slow. Economy improvement. Sometimes and some kinds of robot automation implies improves in economy of enterprises, society or most of humankind. For example, when an enterprise that has invested in robots recovers its investment; when a state or country increases its income due to robots like Germany or Japan. DISADVANTAGES Technology limits. Nowadays technology is not able to automate all the desired tasks. 41

9 Initial s are relative high. The robots desired for manufacturing of a new product required a huge initial investment in comparison with the unit of the product, although the of Robotic automation is spread in many product batches. The automation of a Plant required a great initial investment too, although this is spread in the products to be produced. Causing unemployment and poverty by replacing human labor. Security Threats/Vulnerability: An Robotic systems may have a limited level of intelligence, and is therefore more susceptible to committing errors outside of its immediate scope of knowledge (e.g., it is typically unable to apply the rules of simple logic to general propositions). Unpredictable/excessive development s: The research and development of Robots for automating a process may exceed the saved by the Robots automation itself. High initial : The automation of a new product or plant typically requires a very large initial investment in comparison with the unit of the product, although the of robotic automation may be spread among many products and over time. In manufacturing, the purpose of robots has shifted to issues broader than productivity,, and time. Knowledgebase for Robotics Typical knowledgebase for the design and operation of robotics systems Dynamic system modeling and analysis Feedback control Sensors and signal conditioning Actuators and power electronics Hardware/computer interfacing Computer programming Applications of Robots in Industries Agriculture Automobile Construction Entertainment Health care: hospitals, patient-care, surgery, research, etc. Laboratories: science, engineering, etc. Law enforcement: surveillance, patrol, etc. Manufacturing Military: demining, surveillance, attack, etc. Mining, excavation, and exploration Transportation: air, ground, rail, space, etc. Utilities: gas, water, and electric Warehouses 42

10 REFERENCES [1] YifangZhong, Changlin Wu, Zhengbao Tang, Mechanical and Machine Design(ı ııı ), 2 ed. Huazhong University of Science and Technology press, 2006 [2] Ming Chang, Descriptive Geometry and Engineering Graphics (ı ıııııııı ), 3 ed. Huazhong University of Science and Technology press, 2004 [3] Shiquan Zhou, Fundamentals for Mechanical Manufacturing Process (ı ı I ı ıııı ), Huazhong University of Science and Technology press, 2005 [4] Jiao Ni, Guoqing Li, Qin Qian, Mechanical of Materials,(ı ııı ), Huazhong University of Science and Technology press, 2006 [5] Bradski, Gary, and Adrian Kaehler. Learning OpenCV: Computer Vision with the OpenCVLibrary.O'Reilly Media, Print. [6] Jianbo Shi, Tomasi, C."Good features to track," Computer Vision and Pattern Recognition, Proceedings CVPR '94., 1994 IEEE Computer Society Conference on, vol., no., pp , Jun 1994 [7] Bouguet, Jean-Yves."Pyramidal Implementation of the Lucas Kanade Feature Tracker Description of the algorithm." Print. [8] H. Asada and J.J. Slotine, Robot Analysis and Control, Wiley, New York, [9] K. Fu, R. Gonzalez, and C.S.G. Lee, Robotics: Control, Sensing, Vision, and Intelligence, McGraw-Hill, New York, [10] E. Riven, Mechanical Design of Robots, McGraw-Hill, New York, [11] J.C. Latombe, Robot Motion Planning, Kiuwer Academic Publishers, Boston, [12] M. Spong, Robot Control: Dynamics, Motion Planning, and Analysis, HiEE Press, New York, [13] S.Y. Nof, Handbook of Industrial Robotics, 2nd Edition, Wiley, New York, [14] L.W. Tsai, Robot Analysis: The Mechanics of Serial and Parallel Manipulators, Wiley, New York, [15] L. Sciavicco and B. Siciliano, Modelling and Control of Robot Manipulators, 2nd Edition, Springer-Verlag, London, [16] G. Schmierer and R. Schraft, Service Robots, A.K. Peters, Natick, MA, Robotics World.IEEE Transactions on Robotics and Automation.International Journal of Robotics Research (MIT Press). [20] ASME Journal of Dynamic Systems, Measurement, and Control. [21] International Journal of Robotics & Automation (lasted). [22] Y. Abe, M. Shikano, T. Fukuda, F. Arai, Y. Tanaka, Vision based navigation system for autonomous mobile robot with global matching, in: Proceedings of the International Conference on Robotics and Automation, Detroit, MI, 1999, pp

11 [23] J.R. Asensio, J.M.M. Montiel, L. Montano, Goal directed reactive robot navigation with relocation using laser andvision, in: Proceedings of the International Conference on Robotics and Automation, Detroit, MI, 1999, pp [24] C. Bartneck, M. Okada, Robotic user interfaces, in: Proceedings of the Human Computer Conference, [25] A. Billard, Robota: clever toy and educational tool, in: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Lausanne, Switzerland, Also: Robotics and Autonomous Systems 42 (2003) (this issue). [26] "Four-legged Robot, 'Cheetah,' Sets New Speed Record" Reuters

JNTU World. Introduction to Robotics. Materials Provided by JNTU World Team. JNTU World JNTU World. Downloaded From JNTU World (http://(http://

JNTU World. Introduction to Robotics. Materials Provided by JNTU World Team. JNTU World JNTU World. Downloaded From JNTU World (http://(http:// Introduction to Robotics Materials Provided by Team Definition Types Uses History Key components Applications Future Robotics @ MPCRL Outline Robot Defined Word robot was coined by a Czech novelist Karel

More information

Henry Lin, Department of Electrical and Computer Engineering, California State University, Bakersfield Lecture 8 (Robotics) July 25 th, 2012

Henry Lin, Department of Electrical and Computer Engineering, California State University, Bakersfield Lecture 8 (Robotics) July 25 th, 2012 Henry Lin, Department of Electrical and Computer Engineering, California State University, Bakersfield Lecture 8 (Robotics) July 25 th, 2012 1 2 Robotic Applications in Smart Homes Control of the physical

More information

ROBOTICS ENG YOUSEF A. SHATNAWI INTRODUCTION

ROBOTICS ENG YOUSEF A. SHATNAWI INTRODUCTION ROBOTICS INTRODUCTION THIS COURSE IS TWO PARTS Mobile Robotics. Locomotion (analogous to manipulation) (Legged and wheeled robots). Navigation and obstacle avoidance algorithms. Robot Vision Sensors and

More information

EE631 Cooperating Autonomous Mobile Robots. Lecture 1: Introduction. Prof. Yi Guo ECE Department

EE631 Cooperating Autonomous Mobile Robots. Lecture 1: Introduction. Prof. Yi Guo ECE Department EE631 Cooperating Autonomous Mobile Robots Lecture 1: Introduction Prof. Yi Guo ECE Department Plan Overview of Syllabus Introduction to Robotics Applications of Mobile Robots Ways of Operation Single

More information

Chapter 1 Introduction to Robotics

Chapter 1 Introduction to Robotics Chapter 1 Introduction to Robotics PS: Most of the pages of this presentation were obtained and adapted from various sources in the internet. 1 I. Definition of Robotics Definition (Robot Institute of

More information

* Intelli Robotic Wheel Chair for Specialty Operations & Physically Challenged

* Intelli Robotic Wheel Chair for Specialty Operations & Physically Challenged ADVANCED ROBOTICS SOLUTIONS * Intelli Mobile Robot for Multi Specialty Operations * Advanced Robotic Pick and Place Arm and Hand System * Automatic Color Sensing Robot using PC * AI Based Image Capturing

More information

NCCT IEEE PROJECTS ADVANCED ROBOTICS SOLUTIONS. Latest Projects, in various Domains. Promise for the Best Projects

NCCT IEEE PROJECTS ADVANCED ROBOTICS SOLUTIONS. Latest Projects, in various Domains. Promise for the Best Projects NCCT Promise for the Best Projects IEEE PROJECTS in various Domains Latest Projects, 2009-2010 ADVANCED ROBOTICS SOLUTIONS EMBEDDED SYSTEM PROJECTS Microcontrollers VLSI DSP Matlab Robotics ADVANCED ROBOTICS

More information

Advanced Robotics Introduction

Advanced Robotics Introduction Advanced Robotics Introduction Institute for Software Technology 1 Motivation Agenda Some Definitions and Thought about Autonomous Robots History Challenges Application Examples 2 http://youtu.be/rvnvnhim9kg

More information

Introduction to Robotics

Introduction to Robotics Introduction to Robotics Jee-Hwan Ryu School of Mechanical Engineering Korea University of Technology and Education What is Robot? Robots in our Imagination What is Robot Like in Our Real Life? Origin

More information

Autonomous and Mobile Robotics Prof. Giuseppe Oriolo. Introduction: Applications, Problems, Architectures

Autonomous and Mobile Robotics Prof. Giuseppe Oriolo. Introduction: Applications, Problems, Architectures Autonomous and Mobile Robotics Prof. Giuseppe Oriolo Introduction: Applications, Problems, Architectures organization class schedule 2017/2018: 7 Mar - 1 June 2018, Wed 8:00-12:00, Fri 8:00-10:00, B2 6

More information

Advanced Robotics Introduction

Advanced Robotics Introduction Advanced Robotics Introduction Institute for Software Technology 1 Agenda Motivation Some Definitions and Thought about Autonomous Robots History Challenges Application Examples 2 Bridge the Gap Mobile

More information

Lecture 23: Robotics. Instructor: Joelle Pineau Class web page: What is a robot?

Lecture 23: Robotics. Instructor: Joelle Pineau Class web page:   What is a robot? COMP 102: Computers and Computing Lecture 23: Robotics Instructor: (jpineau@cs.mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/comp102 What is a robot? The word robot is popularized by the Czech playwright

More information

Teleoperation. History and applications

Teleoperation. History and applications Teleoperation History and applications Notes You always need telesystem or human intervention as a backup at some point a human will need to take control embed in your design Roboticists automate what

More information

Noel Brown Head, School of Engineering University of Technology, Jamaica

Noel Brown Head, School of Engineering University of Technology, Jamaica 1 Noel Brown Head, School of Engineering University of Technology, Jamaica 2 Definitions Why do we need Robots? Is there a need to replace human labour with robots? Implications for: Engineering Agriculture

More information

Cognitive robots and emotional intelligence Cloud robotics Ethical, legal and social issues of robotic Construction robots Human activities in many

Cognitive robots and emotional intelligence Cloud robotics Ethical, legal and social issues of robotic Construction robots Human activities in many Preface The jubilee 25th International Conference on Robotics in Alpe-Adria-Danube Region, RAAD 2016 was held in the conference centre of the Best Western Hotel M, Belgrade, Serbia, from 30 June to 2 July

More information

ROBOTICS 01PEEQW. Basilio Bona DAUIN Politecnico di Torino

ROBOTICS 01PEEQW. Basilio Bona DAUIN Politecnico di Torino ROBOTICS 01PEEQW Basilio Bona DAUIN Politecnico di Torino What is Robotics? Robotics is the study and design of robots Robots can be used in different contexts and are classified as 1. Industrial robots

More information

Robotics in Austria. 1 Introduction. 2 Robots

Robotics in Austria. 1 Introduction. 2 Robots ROBOTICS IN AUSTRIA 23 Robotics in Austria Peter Kopacek Intelligent Handling and Robotics IHRT Vienna University of Technology Favoritenstrasse 9; E325A6 1040 Wien Phone: +43 1 58801 31800 email: kopacek@ihrt.tuwien.ac.at

More information

Robotics. Lecturer: Dr. Saeed Shiry Ghidary

Robotics. Lecturer: Dr. Saeed Shiry Ghidary Robotics Lecturer: Dr. Saeed Shiry Ghidary Email: autrobotics@yahoo.com Outline of Course We will study fundamental algorithms for robotics with: Introduction to industrial robots and Particular emphasis

More information

Introduction to Robotics

Introduction to Robotics Introduction to Robotics Analysis, systems, Applications Saeed B. Niku Chapter 1 Fundamentals 1. Introduction Fig. 1.1 (a) A Kuhnezug truck-mounted crane Reprinted with permission from Kuhnezug Fordertechnik

More information

Dr. Ashish Dutta. Professor, Dept. of Mechanical Engineering Indian Institute of Technology Kanpur, INDIA

Dr. Ashish Dutta. Professor, Dept. of Mechanical Engineering Indian Institute of Technology Kanpur, INDIA Introduction: History of Robotics - past, present and future Dr. Ashish Dutta Professor, Dept. of Mechanical Engineering Indian Institute of Technology Kanpur, INDIA Origin of Automation: replacing human

More information

Introduction to Vision & Robotics

Introduction to Vision & Robotics Introduction to Vision & Robotics Vittorio Ferrari, 650-2697,IF 1.27 vferrari@staffmail.inf.ed.ac.uk Michael Herrmann, 651-7177, IF1.42 mherrman@inf.ed.ac.uk Lectures: Handouts will be on the web (but

More information

Introduction to robotics. Md. Ferdous Alam, Lecturer, MEE, SUST

Introduction to robotics. Md. Ferdous Alam, Lecturer, MEE, SUST Introduction to robotics Md. Ferdous Alam, Lecturer, MEE, SUST Hello class! Let s watch a video! So, what do you think? It s cool, isn t it? The dedication is not! A brief history The first digital and

More information

Humanoid robot. Honda's ASIMO, an example of a humanoid robot

Humanoid robot. Honda's ASIMO, an example of a humanoid robot Humanoid robot Honda's ASIMO, an example of a humanoid robot A humanoid robot is a robot with its overall appearance based on that of the human body, allowing interaction with made-for-human tools or environments.

More information

Robotics: Applications

Robotics: Applications Lecture 01 Feb. 04, 2019 Robotics: Applications Prof. S.K. Saha Dept. of Mech. Eng. IIT Delhi Outline Introduction Industrial applications Other applications Summary Introduction 90% robots in factories:

More information

Cognitive Robotics 2017/2018

Cognitive Robotics 2017/2018 Cognitive Robotics 2017/2018 Course Introduction Matteo Matteucci matteo.matteucci@polimi.it Artificial Intelligence and Robotics Lab - Politecnico di Milano About me and my lectures Lectures given by

More information

Robotics: Evolution, Technology and Applications

Robotics: Evolution, Technology and Applications Robotics: Evolution, Technology and Applications By: Dr. Hamid D. Taghirad Head of Control Group, and Department of Electrical Engineering K.N. Toosi University of Tech. Department of Electrical Engineering

More information

CS494/594: Software for Intelligent Robotics

CS494/594: Software for Intelligent Robotics CS494/594: Software for Intelligent Robotics Spring 2007 Tuesday/Thursday 11:10 12:25 Instructor: Dr. Lynne E. Parker TA: Rasko Pjesivac Outline Overview syllabus and class policies Introduction to class:

More information

Robotics Prof. Dilip Kumar Pratihar Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Robotics Prof. Dilip Kumar Pratihar Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Robotics Prof. Dilip Kumar Pratihar Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 01 Introduction to Robot and Robotics Let us start with the course on Robotics.

More information

CONTROLLING METHODS AND CHALLENGES OF ROBOTIC ARM

CONTROLLING METHODS AND CHALLENGES OF ROBOTIC ARM CONTROLLING METHODS AND CHALLENGES OF ROBOTIC ARM Aniket D. Kulkarni *1, Dr.Sayyad Ajij D. *2 *1(Student of E&C Department, MIT Aurangabad, India) *2(HOD of E&C department, MIT Aurangabad, India) aniket2212@gmail.com*1,

More information

UNIT-1 INTRODUCATION The field of robotics has its origins in science fiction. The term robot was derived from the English translation of a fantasy play written in Czechoslovakia around 1920. It took another

More information

Introduction to Vision & Robotics

Introduction to Vision & Robotics Introduction to Vision & Robotics Lecturers: Tim Hospedales 50-4450, IF 1.10 t.hospedales@ed.ac.uk Michael Herrmann 51-7177, IF 1.42 michael.herrmann@ed.ac.uk Lectures (Mon and Thr 9:00 9:50) are available

More information

By Marek Perkowski ECE Seminar, Friday January 26, 2001

By Marek Perkowski ECE Seminar, Friday January 26, 2001 By Marek Perkowski ECE Seminar, Friday January 26, 2001 Why people build Humanoid Robots? Challenge - it is difficult Money - Hollywood, Brooks Fame -?? Everybody? To build future gods - De Garis Forthcoming

More information

Chapter 1 Introduction

Chapter 1 Introduction Chapter 1 Introduction It is appropriate to begin the textbook on robotics with the definition of the industrial robot manipulator as given by the ISO 8373 standard. An industrial robot manipulator is

More information

INTRODUCTION to ROBOTICS

INTRODUCTION to ROBOTICS 1 INTRODUCTION to ROBOTICS Robotics is a relatively young field of modern technology that crosses traditional engineering boundaries. Understanding the complexity of robots and their applications requires

More information

What is a robot. Robots (seen as artificial beings) appeared in books and movies long before real applications. Basilio Bona ROBOTICS 01PEEQW

What is a robot. Robots (seen as artificial beings) appeared in books and movies long before real applications. Basilio Bona ROBOTICS 01PEEQW ROBOTICS 01PEEQW An Introduction Basilio Bona DAUIN Politecnico di Torino What is a robot According to the Robot Institute of America (1979) a robot is: A reprogrammable, multifunctional manipulator designed

More information

Robot Mechanics Lec. 1: An Introduction

Robot Mechanics Lec. 1: An Introduction Robot Mechanics Lec. 1: An Introduction Prof. S.K. Saha Dept. of Mech. Eng. IIT Delhi August 01, 2017@IIT Delhi Contribution of IIT Delhi Humanoid Robots Asimo (Honda): 120cm; 52kg Qrio (Sony): 58cm; 7kg

More information

RoboCup: Not Only a Robotics Soccer Game but also a New Market Created for Future

RoboCup: Not Only a Robotics Soccer Game but also a New Market Created for Future RoboCup: Not Only a Robotics Soccer Game but also a New Market Created for Future Kuo-Yang Tu Institute of Systems and Control Engineering National Kaohsiung First University of Science and Technology

More information

Cognitive Robotics 2016/2017

Cognitive Robotics 2016/2017 Cognitive Robotics 2016/2017 Course Introduction Matteo Matteucci matteo.matteucci@polimi.it Artificial Intelligence and Robotics Lab - Politecnico di Milano About me and my lectures Lectures given by

More information

ENME 489L: Biologically Inspired Robotics

ENME 489L: Biologically Inspired Robotics ENME 489L: Biologically Inspired Robotics Satyandra K. Gupta and Arvind Ananthanarayanan Department of Mechanical Engineering and Institute for Systems Research University of Maryland Course Introduction

More information

PICK AND PLACE HUMANOID ROBOT USING RASPBERRY PI AND ARDUINO FOR INDUSTRIAL APPLICATIONS

PICK AND PLACE HUMANOID ROBOT USING RASPBERRY PI AND ARDUINO FOR INDUSTRIAL APPLICATIONS PICK AND PLACE HUMANOID ROBOT USING RASPBERRY PI AND ARDUINO FOR INDUSTRIAL APPLICATIONS Bernard Franklin 1, Sachin.P 2, Jagadish.S 3, Shaista Noor 4, Rajashekhar C. Biradar 5 1,2,3,4,5 School of Electronics

More information

CYBORG definition: A cyborg, short for "cybernetic organism," is a being with both biological and artificial (e.g. electronic, mechanical or robotic)

CYBORG definition: A cyborg, short for cybernetic organism, is a being with both biological and artificial (e.g. electronic, mechanical or robotic) CYBORG definition: A cyborg, short for "cybernetic organism," is a being with both biological and artificial (e.g. electronic, mechanical or robotic) enhancements. The term cyborg is often applied to an

More information

Autonomous Robotics. CS Fall Amarda Shehu. Department of Computer Science George Mason University

Autonomous Robotics. CS Fall Amarda Shehu. Department of Computer Science George Mason University Autonomous Robotics CS 485 - Fall 2016 Amarda Shehu Department of Computer Science George Mason University 1 Outline of Today s Class 2 Robotics over the Years 3 Trends in Robotics Research 4 Course Organization

More information

Year 1805 Doll, made by Maillardet, that wrote in either French or English and could draw landscapes

Year 1805 Doll, made by Maillardet, that wrote in either French or English and could draw landscapes Unit 8 : ROBOTICS INTRODUCTION Robots are devices that are programmed to move parts, or to do work with a tool. Robotics is a multidisciplinary engineering field dedicated to the development of autonomous

More information

Birth of An Intelligent Humanoid Robot in Singapore

Birth of An Intelligent Humanoid Robot in Singapore Birth of An Intelligent Humanoid Robot in Singapore Ming Xie Nanyang Technological University Singapore 639798 Email: mmxie@ntu.edu.sg Abstract. Since 1996, we have embarked into the journey of developing

More information

Robotics Manipulation and control. University of Strasbourg Telecom Physique Strasbourg, ISAV option Master IRIV, AR track Jacques Gangloff

Robotics Manipulation and control. University of Strasbourg Telecom Physique Strasbourg, ISAV option Master IRIV, AR track Jacques Gangloff Robotics Manipulation and control University of Strasbourg Telecom Physique Strasbourg, ISAV option Master IRIV, AR track Jacques Gangloff Outline of the lecture Introduction : Overview 1. Theoretical

More information

Robotics Intelligent connection of the perception to action. Applications

Robotics Intelligent connection of the perception to action. Applications Robotics Intelligent connection of the perception to action Applications Applications Automotive industry Assembly Medical laboratories Medecine Nuclear energy Agriculture Spatial exploration Underwater

More information

Robot Mechanics Lec. 1: An Introduction

Robot Mechanics Lec. 1: An Introduction Robot Mechanics Lec. 1: An Introduction Prof. S.K. Saha Dept. of Mech. Eng. IIT Delhi August 03, 2015@IIT Delhi Contribution of IIT Delhi Humanoid Robots Asimo (Honda): 120cm; 52kg Qrio (Sony): 58cm; 7kg

More information

Simulation of a mobile robot navigation system

Simulation of a mobile robot navigation system Edith Cowan University Research Online ECU Publications 2011 2011 Simulation of a mobile robot navigation system Ahmed Khusheef Edith Cowan University Ganesh Kothapalli Edith Cowan University Majid Tolouei

More information

An Introduction to Robotics. Elliot Ratchik, MS Former Senior Scientist, Hoffman LaRoche And Mannkind Corp.

An Introduction to Robotics. Elliot Ratchik, MS Former Senior Scientist, Hoffman LaRoche And Mannkind Corp. An Introduction to Robotics Elliot Ratchik, MS Former Senior Scientist, Hoffman LaRoche And Mannkind Corp. What is a Robot What can it do History Key Components Applications Future Outline What is a Robot?

More information

CONTROL SYSTEMS, ROBOTICS, AND AUTOMATION Vol.XXII Robotics - T. Fukuda and N. Kubota. T. Fukuda Department of Micro Systems, Nagoya University, JAPAN

CONTROL SYSTEMS, ROBOTICS, AND AUTOMATION Vol.XXII Robotics - T. Fukuda and N. Kubota. T. Fukuda Department of Micro Systems, Nagoya University, JAPAN ROBOTICS T. Fukuda Department of Micro Systems, Nagoya University, JAPAN N. Kubota Department of Human and Artificial Intelligent Systems, Fukui University, JAPAN Keywords: Mobile Robot, Robot Manipulator,

More information

Implementation of a Self-Driven Robot for Remote Surveillance

Implementation of a Self-Driven Robot for Remote Surveillance International Journal of Research Studies in Science, Engineering and Technology Volume 2, Issue 11, November 2015, PP 35-39 ISSN 2349-4751 (Print) & ISSN 2349-476X (Online) Implementation of a Self-Driven

More information

Introduction To Robotics (Kinematics, Dynamics, and Design)

Introduction To Robotics (Kinematics, Dynamics, and Design) Introduction To Robotics (Kinematics, Dynamics, and Design) SESSION # 4: Applications of Robotics Ali Meghdari, Professor School of Mechanical Engineering Sharif University of Technology Tehran, IRAN 11365-9567

More information

World Technology Evaluation Center International Study of Robotics Research. Robotic Vehicles. Robotic vehicles study group:

World Technology Evaluation Center International Study of Robotics Research. Robotic Vehicles. Robotic vehicles study group: World Technology Evaluation Center International Study of Robotics Research Robotic Vehicles Robotic vehicles study group: Arthur Sanderson, Rensselaer Polytechnic Institute (Presenter) George Bekey, University

More information

A conversation with Russell Stewart, July 29, 2015

A conversation with Russell Stewart, July 29, 2015 Participants A conversation with Russell Stewart, July 29, 2015 Russell Stewart PhD Student, Stanford University Nick Beckstead Research Analyst, Open Philanthropy Project Holden Karnofsky Managing Director,

More information

Human Robot Interaction (HRI)

Human Robot Interaction (HRI) Brief Introduction to HRI Batu Akan batu.akan@mdh.se Mälardalen Högskola September 29, 2008 Overview 1 Introduction What are robots What is HRI Application areas of HRI 2 3 Motivations Proposed Solution

More information

MTRX 4700 : Experimental Robotics

MTRX 4700 : Experimental Robotics Mtrx 4700 : Experimental Robotics Dr. Stefan B. Williams Dr. Robert Fitch Slide 1 Course Objectives The objective of the course is to provide students with the essential skills necessary to develop robotic

More information

T.C. MARMARA UNIVERSITY FACULTY of ENGINEERING COMPUTER ENGINEERING DEPARTMENT

T.C. MARMARA UNIVERSITY FACULTY of ENGINEERING COMPUTER ENGINEERING DEPARTMENT T.C. MARMARA UNIVERSITY FACULTY of ENGINEERING COMPUTER ENGINEERING DEPARTMENT CSE497 Engineering Project Project Specification Document INTELLIGENT WALL CONSTRUCTION BY MEANS OF A ROBOTIC ARM Group Members

More information

ENGINEERING SERVICE-ORIENTED ROBOTIC SYSTEMS

ENGINEERING SERVICE-ORIENTED ROBOTIC SYSTEMS ENGINEERING SERVICE-ORIENTED ROBOTIC SYSTEMS Prof. Dr. Lucas Bueno R. de Oliveira Prof. Dr. José Carlos Maldonado SSC5964 2016/01 AGENDA Robotic Systems Service-Oriented Architecture Service-Oriented Robotic

More information

UNIT VI. Current approaches to programming are classified as into two major categories:

UNIT VI. Current approaches to programming are classified as into two major categories: Unit VI 1 UNIT VI ROBOT PROGRAMMING A robot program may be defined as a path in space to be followed by the manipulator, combined with the peripheral actions that support the work cycle. Peripheral actions

More information

Introduction to Robotics in CIM Systems

Introduction to Robotics in CIM Systems Introduction to Robotics in CIM Systems Fifth Edition James A. Rehg The Pennsylvania State University Altoona, Pennsylvania Prentice Hall Upper Saddle River, New Jersey Columbus, Ohio Contents Introduction

More information

This list supersedes the one published in the November 2002 issue of CR.

This list supersedes the one published in the November 2002 issue of CR. PERIODICALS RECEIVED This is the current list of periodicals received for review in Reviews. International standard serial numbers (ISSNs) are provided to facilitate obtaining copies of articles or subscriptions.

More information

Design Concept of State-Chart Method Application through Robot Motion Equipped With Webcam Features as E-Learning Media for Children

Design Concept of State-Chart Method Application through Robot Motion Equipped With Webcam Features as E-Learning Media for Children Design Concept of State-Chart Method Application through Robot Motion Equipped With Webcam Features as E-Learning Media for Children Rossi Passarella, Astri Agustina, Sutarno, Kemahyanto Exaudi, and Junkani

More information

Robotics Introduction Matteo Matteucci

Robotics Introduction Matteo Matteucci Robotics Introduction About me and my lectures 2 Lectures given by Matteo Matteucci +39 02 2399 3470 matteo.matteucci@polimi.it http://www.deib.polimi.it/ Research Topics Robotics and Autonomous Systems

More information

Space Research expeditions and open space work. Education & Research Teaching and laboratory facilities. Medical Assistance for people

Space Research expeditions and open space work. Education & Research Teaching and laboratory facilities. Medical Assistance for people Space Research expeditions and open space work Education & Research Teaching and laboratory facilities. Medical Assistance for people Safety Life saving activity, guarding Military Use to execute missions

More information

ME7752: Mechanics and Control of Robots Lecture 1

ME7752: Mechanics and Control of Robots Lecture 1 ME7752: Mechanics and Control of Robots Lecture 1 Instructor: Manoj Srinivasan Office: E340 Scott Laboratory Email: srinivasan.88@osu.edu ( PDF posted. In the PDF, if there are no links to videos, do a

More information

A Genetic Algorithm-Based Controller for Decentralized Multi-Agent Robotic Systems

A Genetic Algorithm-Based Controller for Decentralized Multi-Agent Robotic Systems A Genetic Algorithm-Based Controller for Decentralized Multi-Agent Robotic Systems Arvin Agah Bio-Robotics Division Mechanical Engineering Laboratory, AIST-MITI 1-2 Namiki, Tsukuba 305, JAPAN agah@melcy.mel.go.jp

More information

Collective Robotics. Marcin Pilat

Collective Robotics. Marcin Pilat Collective Robotics Marcin Pilat Introduction Painting a room Complex behaviors: Perceptions, deductions, motivations, choices Robotics: Past: single robot Future: multiple, simple robots working in teams

More information

AI MAGAZINE AMER ASSOC ARTIFICIAL INTELL UNITED STATES English ANNALS OF MATHEMATICS AND ARTIFICIAL

AI MAGAZINE AMER ASSOC ARTIFICIAL INTELL UNITED STATES English ANNALS OF MATHEMATICS AND ARTIFICIAL Title Publisher ISSN Country Language ACM Transactions on Autonomous and Adaptive Systems ASSOC COMPUTING MACHINERY 1556-4665 UNITED STATES English ACM Transactions on Intelligent Systems and Technology

More information

GESTURE BASED ROBOTIC ARM

GESTURE BASED ROBOTIC ARM GESTURE BASED ROBOTIC ARM Arusha Suyal 1, Anubhav Gupta 2, Manushree Tyagi 3 1,2,3 Department of Instrumentation And Control Engineering, JSSATE, Noida, (India) ABSTRACT In recent years, there are development

More information

Design and Implementation of FPGA-Based Robotic Arm Manipulator

Design and Implementation of FPGA-Based Robotic Arm Manipulator Design and Implementation of FPGABased Robotic Arm Manipulator Mohammed Ibrahim Mohammed Ali Military Technical College, Cairo, Egypt Supervisors: Ahmed S. Bahgat 1, Engineering physics department Mahmoud

More information

New Solution for Walking Robot

New Solution for Walking Robot New Solution for Walking Robot Tadeusz Mikolajczyk 1,a*, Tomasz Fas 1,b, Tomasz Malinowski 1,c, ukasz Romanowski 1,d 1 University of Technology and Life Sciences, Department of Production Engineering 85-876

More information

CS148 - Building Intelligent Robots Lecture 2: Robotics Introduction and Philosophy. Instructor: Chad Jenkins (cjenkins)

CS148 - Building Intelligent Robots Lecture 2: Robotics Introduction and Philosophy. Instructor: Chad Jenkins (cjenkins) Lecture 2 Robot Philosophy Slide 1 CS148 - Building Intelligent Robots Lecture 2: Robotics Introduction and Philosophy Instructor: Chad Jenkins (cjenkins) Lecture 2 Robot Philosophy Slide 2 What is robotics?

More information

NAVIGATION OF MOBILE ROBOT USING THE PSO PARTICLE SWARM OPTIMIZATION

NAVIGATION OF MOBILE ROBOT USING THE PSO PARTICLE SWARM OPTIMIZATION Journal of Academic and Applied Studies (JAAS) Vol. 2(1) Jan 2012, pp. 32-38 Available online @ www.academians.org ISSN1925-931X NAVIGATION OF MOBILE ROBOT USING THE PSO PARTICLE SWARM OPTIMIZATION Sedigheh

More information

Artificial Intelligence and Robotics Getting More Human

Artificial Intelligence and Robotics Getting More Human Weekly Barometer 25 janvier 2012 Artificial Intelligence and Robotics Getting More Human July 2017 ATONRÂ PARTNERS SA 12, Rue Pierre Fatio 1204 GENEVA SWITZERLAND - Tel: + 41 22 310 15 01 http://www.atonra.ch

More information

Abstract. Keywords: virtual worlds; robots; robotics; standards; communication and interaction.

Abstract. Keywords: virtual worlds; robots; robotics; standards; communication and interaction. On the Creation of Standards for Interaction Between Robots and Virtual Worlds By Alex Juarez, Christoph Bartneck and Lou Feijs Eindhoven University of Technology Abstract Research on virtual worlds and

More information

ARTIFICIAL INTELLIGENCE - ROBOTICS

ARTIFICIAL INTELLIGENCE - ROBOTICS ARTIFICIAL INTELLIGENCE - ROBOTICS http://www.tutorialspoint.com/artificial_intelligence/artificial_intelligence_robotics.htm Copyright tutorialspoint.com Robotics is a domain in artificial intelligence

More information

Motion Control of a Three Active Wheeled Mobile Robot and Collision-Free Human Following Navigation in Outdoor Environment

Motion Control of a Three Active Wheeled Mobile Robot and Collision-Free Human Following Navigation in Outdoor Environment Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,, March 16-18, 2016, Hong Kong Motion Control of a Three Active Wheeled Mobile Robot and Collision-Free

More information

Future Intelligent Machines

Future Intelligent Machines Future Intelligent Machines TKK GIM research institute Content of the talk Introductory remarks Intelligent machines Subsystems technology and modularity Robots and biology Robots in homes Introductory

More information

Cost Oriented Humanoid Robots

Cost Oriented Humanoid Robots Cost Oriented Humanoid Robots P. Kopacek Vienna University of Technology, Intelligent Handling and Robotics- IHRT, Favoritenstrasse 9/E325A6; A-1040 Wien kopacek@ihrt.tuwien.ac.at Abstract. Currently there

More information

FUNDAMENTALS ROBOT TECHNOLOGY. An Introduction to Industrial Robots, T eleoperators and Robot Vehicles. D J Todd. Kogan Page

FUNDAMENTALS ROBOT TECHNOLOGY. An Introduction to Industrial Robots, T eleoperators and Robot Vehicles. D J Todd. Kogan Page FUNDAMENTALS of ROBOT TECHNOLOGY An Introduction to Industrial Robots, T eleoperators and Robot Vehicles D J Todd &\ Kogan Page First published in 1986 by Kogan Page Ltd 120 Pentonville Road, London Nl

More information

Automation Techniques and it s an Industrial Application: A Review

Automation Techniques and it s an Industrial Application: A Review Automation Techniques and it s an Industrial Application: A Review Umesh S. Patharkar 1 and J.J.Salunke 2 1 PG Student Mechanical Engineering Department, Deogiri Institute of Engineering & Management Studies,

More information

Revised and extended. Accompanies this course pages heavier Perception treated more thoroughly. 1 - Introduction

Revised and extended. Accompanies this course pages heavier Perception treated more thoroughly. 1 - Introduction Topics to be Covered Coordinate frames and representations. Use of homogeneous transformations in robotics. Specification of position and orientation Manipulator forward and inverse kinematics Mobile Robots:

More information

Instituto Nacional de Ciência e Tecnologia em Sistemas Embarcados Críticos

Instituto Nacional de Ciência e Tecnologia em Sistemas Embarcados Críticos Instituto Nacional de Ciência e Tecnologia em Sistemas Embarcados Críticos INCT-SEC José Carlos Maldonado ICMC/USP LRM Laboratóriode Robótica Móvel Principais Projetos: GT1, GT2 e GT3 GT 1 - Robôs Táticos

More information

Fundamentals of Robotics

Fundamentals of Robotics Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2017 205 - ESEIAAT - Terrassa School of Industrial, Aerospace and Audiovisual Engineering 707 - ESAII - Department of Automatic Control

More information

FUNDAMENTALS OF ROBOTICS

FUNDAMENTALS OF ROBOTICS FUNDAMENTALS OF ROBOTICS Ingeniería en Computación UDA: FUNDAMENTOS DE ROBÓTICA TEMA: INTRODUCCIÓN A LA ROBÓTICA E L A B O R Ó : D R. E N C. H É C T O R R A F A E L O R O Z C O A G U I R R E C U U A E

More information

Wirelessly Controlled Wheeled Robotic Arm

Wirelessly Controlled Wheeled Robotic Arm Wirelessly Controlled Wheeled Robotic Arm Muhammmad Tufail 1, Mian Muhammad Kamal 2, Muhammad Jawad 3 1 Department of Electrical Engineering City University of science and Information Technology Peshawar

More information

CYCLIC GENETIC ALGORITHMS FOR EVOLVING MULTI-LOOP CONTROL PROGRAMS

CYCLIC GENETIC ALGORITHMS FOR EVOLVING MULTI-LOOP CONTROL PROGRAMS CYCLIC GENETIC ALGORITHMS FOR EVOLVING MULTI-LOOP CONTROL PROGRAMS GARY B. PARKER, CONNECTICUT COLLEGE, USA, parker@conncoll.edu IVO I. PARASHKEVOV, CONNECTICUT COLLEGE, USA, iipar@conncoll.edu H. JOSEPH

More information

INTELLIGENT HUMANOID LEGS

INTELLIGENT HUMANOID LEGS INTELLIGENT HUMANOID LEGS GUNJAN KADU, SANKET ZADE Gunjan Kadu, Electronics and Telecommunication Engineering, SVPCET, Nagpur Maharashtra, India Sanket Zade, Electronics and Telecommunication Engineering,

More information

FLEX SENSOR BASED ROBOTIC ARM CONTROLLER: DEVELOPMENT

FLEX SENSOR BASED ROBOTIC ARM CONTROLLER: DEVELOPMENT FLEX SENSOR BASED ROBOTIC ARM CONTROLLER: DEVELOPMENT Jagtap Gautami 1, Alve Sampada 2, Malhotra Sahil 3, Pankaj Dadhich 4 Electronics and Telecommunication Department, Guru Gobind Singh Polytechnic, Nashik

More information

A Brief Survey on Robotics

A Brief Survey on Robotics Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology ISSN 2320 088X IMPACT FACTOR: 6.017 IJCSMC,

More information

Robotics. In Textile Industry: Global Scenario

Robotics. In Textile Industry: Global Scenario Robotics In Textile Industry: A Global Scenario By: M.Parthiban & G.Mahaalingam Abstract Robotics In Textile Industry - A Global Scenario By: M.Parthiban & G.Mahaalingam, Faculty of Textiles,, SSM College

More information

Voice Guided Military Robot for Defence Application

Voice Guided Military Robot for Defence Application IJIRST International Journal for Innovative Research in Science & Technology Volume 2 Issue 11 April 2016 ISSN (online): 2349-6010 Voice Guided Military Robot for Defence Application Palak N. Patel Minal

More information

Humanoid Robots. by Julie Chambon

Humanoid Robots. by Julie Chambon Humanoid Robots by Julie Chambon 25th November 2008 Outlook Introduction Why a humanoid appearance? Particularities of humanoid Robots Utility of humanoid Robots Complexity of humanoids Humanoid projects

More information

CORC 3303 Exploring Robotics. Why Teams?

CORC 3303 Exploring Robotics. Why Teams? Exploring Robotics Lecture F Robot Teams Topics: 1) Teamwork and Its Challenges 2) Coordination, Communication and Control 3) RoboCup Why Teams? It takes two (or more) Such as cooperative transportation:

More information

Keywords: Multi-robot adversarial environments, real-time autonomous robots

Keywords: Multi-robot adversarial environments, real-time autonomous robots ROBOT SOCCER: A MULTI-ROBOT CHALLENGE EXTENDED ABSTRACT Manuela M. Veloso School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213, USA veloso@cs.cmu.edu Abstract Robot soccer opened

More information

Path Following and Obstacle Avoidance Fuzzy Controller for Mobile Indoor Robots

Path Following and Obstacle Avoidance Fuzzy Controller for Mobile Indoor Robots Path Following and Obstacle Avoidance Fuzzy Controller for Mobile Indoor Robots Mousa AL-Akhras, Maha Saadeh, Emad AL Mashakbeh Computer Information Systems Department King Abdullah II School for Information

More information

Development of Running Robot Based on Charge Coupled Device

Development of Running Robot Based on Charge Coupled Device Development of Running Robot Based on Charge Coupled Device Hongzhang He School of Mechanics, North China Electric Power University, Baoding071003, China. hhzh_ncepu@163.com Abstract Robot technology is

More information

Service Robots in an Intelligent House

Service Robots in an Intelligent House Service Robots in an Intelligent House Jesus Savage Bio-Robotics Laboratory biorobotics.fi-p.unam.mx School of Engineering Autonomous National University of Mexico UNAM 2017 OUTLINE Introduction A System

More information

Humanoids. Lecture Outline. RSS 2010 Lecture # 19 Una-May O Reilly. Definition and motivation. Locomotion. Why humanoids? What are humanoids?

Humanoids. Lecture Outline. RSS 2010 Lecture # 19 Una-May O Reilly. Definition and motivation. Locomotion. Why humanoids? What are humanoids? Humanoids RSS 2010 Lecture # 19 Una-May O Reilly Lecture Outline Definition and motivation Why humanoids? What are humanoids? Examples Locomotion RSS 2010 Humanoids Lecture 1 1 Why humanoids? Capek, Paris

More information

A Model Based Approach for Human Recognition and Reception by Robot

A Model Based Approach for Human Recognition and Reception by Robot 16 MHz ARDUINO A Model Based Approach for Human Recognition and Reception by Robot Prof. R. Sunitha Department Of ECE, N.R.I Institute Of Technology, J.N.T University, Kakinada, India. V. Sai Krishna,

More information