Design and Implementation of FPGA-Based Robotic Arm Manipulator

Size: px
Start display at page:

Download "Design and Implementation of FPGA-Based Robotic Arm Manipulator"

Transcription

1 Design and Implementation of FPGABased Robotic Arm Manipulator Mohammed Ibrahim Mohammed Ali Military Technical College, Cairo, Egypt Supervisors: Ahmed S. Bahgat 1, Engineering physics department Mahmoud Safwat Hamed 2, Electronic engineering department Ahmed Medhat Youssef 3, Aircraft electric systems department Military Technical College, Egypt, 1 a.s.bahgat48@gmail.com, 2 mshamid2014@gmail.com, 3 ammyk_khater@yahoo.com Abstract Robotic arm manipulators have a wide variety of applications. It is the core of manufacturing process in all factories nowadays. In this paper, the design, implementation and control of modified design of a six degrees of freedom (DOF) LYNX6 robotic arm FPGAbased controller is introduced. In LYNX6 arm, the lengths of the arms are modified and we used FR4 material to achieve the lightweight requirements of the arm structure. LYNX6 arm has 5 DOF plus a grip movement (51). It is also similar to human arm from the number of joints point of view. Servomotors are controlled by pulsewidth modulated (PWM) signals that control the position of the servo actuator. To position the robotic arm in 3D space, the angle of each joint must be set. A MATLAB GUI is designed to pick the desired (X, Y, Z) coordinates from the user, check the robot domain, perform the inverse kinematics algorithm and send the angles data serially through wireless module to FPGA controller to generate the necessary pulsewidth modulated signals for the motors. The controller architecture is implemented on a Xilinx spartan3 FPGA evaluation board ug VHDL. FPGA with its large number of I/O pins and parallel procesg capabilities is suitable for interfacing and controlling the six motors at the same time. The proposed FPGAbased controller offered flexible, standalone, and compact design with high system reliability [1, 2]. Keywords VHDL,LYNX6,PWM,Arm manipulator LYNX6 is a good alternative for such robot manipulators, because it is inexpensive, flexible and similar to industrial, robot arms. Lynx 6 robot arm has five directions of motion (DOF) plus a gripper movement (51). It is also similar to human arm from the number of joints point of view. These joints provide shoulder rotation, shoulder back and forth motion, elbow motion, wrist up and down motion, wrist rotation and gripper motion. It has three arms that are connected together ug servomotors mechanism and these three parts are connected to a base that is rotating ug base servomotor as shown in figure 1. I. INTRODUCTION Humans are fortunate that the human body is overall, a nearly perfect intelligent machine which can lift heavy loads, it can move itself around, and it has builtin protective mechanisms to feed itself when hungry. Robots are often modeled after humans if not in the form then at least in function. For decades, scientists and experimenters have tried to duplicate the human body, to create machines with intelligence, strength, mobility, and autosensory mechanisms. Like the human body, the body of the robot holds all its vital parts. The body is the substructure that prevents its electronic and electro mechanical parts from spilling out. Robot bodies go by many names, including frame and chassis, but the idea is the same [3]. There are many industrial applications uses those robotic arms; for examples: pick and place application, welding, spray painting, polishing, material handling, water jet cutting and many more. Generally, all applications above use almost the same design robot arm but the different is the software programming depending on the applications. Figure 1 Side and top view of Lynx 6 To position the robotic arm in 3D space, the angle of each joint must be set. If the physical dimensions of the robotic arm and the angles of all joints are known, the position of any point in the robotic arm assembly can be calculated by starting from the base and calculating the position of each joint successively, until the x, y, z coordinates of the point of interest are determined. This is called forward kinematics. The opposite calculation, calculating the required angle for each joint that results in the point of interest being located at a specific x, y, z coordinates, is called inverse kinematics. MATLAB GUI program is designed to pick the desired (X, Y, Z) coordinates from the user, check the robot domain, perform the inverse kinematics algorithm and send the angles data serially through a wireless module to an FPGA board to control the servomotors. A servomotor is a small DC motor with the following 1

2 components added: some gear reduction, a position sensor on the motor shaft, and an electronic circuit that controls the motor's operation. The gear reduction provided in a servo is large. Servomotors are typically used for angular positioning, such as in radio controled airplanes. They have a movement range of 0 up to 180 degrees, but some extend up to 210 degrees. Typically, a potentiometer measures the position of the output shaft at all times so the controller can accurately place and maintain its position. In practice, servos are used in radiocontrolled airplanes to position control surfaces like the elevators and rudders. They are also used in radiocontrolled cars, puppets, and of course, robots. Servos are extremely useful in robotics. The motors are small and have built in control circuitry, and are extremely powerful for their size. The servomotors are controlled ug pulse width modulated signal. Pulse width modulation (PWM) is a technique to provide logic '1' or '0' for a specified period. It is a square wave, which, when sufficiently fast, creates an effective average voltage on the line. The ratio of high pulse length to period of the signal is called the duty cycle. By varying the duty cycle, you can vary the average voltage as shown in figure 2. II. ROBOT KINEMATICS: The transformation between the joint space and the Cartesian space of the robot is very important [712]. Robots are operated with their servo motors in the joint space, whereas tasks are defined and objects are manipulated in the Cartesian space. The kinematics solution of any robot manipulator consists of twosub problems forward and inverse kinematics. Forward kinematics will determine where the robot s manipulator hand will be if all joints are known whereas inverse kinematics will calculate what each joint variable must be if the desired position and orientation of endeffector is determined. Hence, Forward kinematics is defined as transformation from joint space to Cartesian space whereas Inverse kinematics is defined as transformation from Cartesian space to joint space. For our Lynx6 Robotic Arm the angles definition is as shown in figure 3 Figure 3 Modeling of Lynx6 Robotic Arm angles A. Figure 2 Relation between pulse width and angle Field Programmable Gate Arrays (FPGAs) are used to provide the required PWM signal to control the servomotors. FPGA is a regular structure of logic cells (or modules) and interconnect, which is under your complete control. This means that you can design, program, and make changes to your circuit whenever you wish. FPGAs are digital ICs that contain programmable logic blocks along with configurable interconnects between these blocks. Design engineers can configure such devices to perform tremendous variety of tasks. FPGA with its large number of I/O pins and parallel procesg capabilities is suitable for interfacing and controlling the six motors at the same time. The proposed FPGAbased controller offered flexible, standalone, and compact design with high system reliability. The main controller is designed based on Spartan3 kit.the Spartan 3 family of FieldProgrammable Gate Arrays is specifically designed to meet the needs of high volume, and teffective consumer electronic applications. FORWARD KINEMATICS: In this section we are concerning with translation between the angles of the robotic arm and the corresponding position relative to these values. The following equations represent the forward calculations. (90 ) (180 ) (1) B. (90 (180 INVERSE KINEMATICS: ) ) (2) (3) (4) In this section we are concerning with translation between the position and the corresponding angles of the robotic arm relative to these values [12]. Inverse Kinematics analysis determines the joint angles for desired position and orientation in Cartesian space. The following equations represent the inverse calculations. 2

3 tan Where m masses of arms and load. l lengths of arms. g gravity acceleration Where tan We have now four equations with five unknowns, so assuming that the third link is to be horizontal or by taking the angle of this link from the user. Then, 9 14 This torque equation is considered as a static position but it will differ in case of dynamics as it differs from up or down as the weight component may be in the direction of motion or against the motion. For the arm to move from a rest position, acceleration is required. To solve for this added torque, it is known that the sum of torques acting at a pivot point is equal to the moment of inertia (I) multiplied by the angular acceleration. To calculate the extra torque required to move (i.e. create an angular acceleration) you would calculate the moment of inertia of the part from the end to the pivot. In the case of a robotic arm, the moment of inertia must take into consideration. For each joint, the moment of inertia is calculated by adding the products of each individual mass (mi) by the square of its respective length from the pivot (li). All the previous discussion concludes to use a higher torque motor than the calculated static torque values. The block diagram of the robotic arm system that describe the whole design of the robot arm control system as shown in figure III. TORQUE CALCULATION 13 IV. ROBOTIC ARM CONTROL SYSTEM 10 Torque is defined as a turning or twisting force. The force acts at a length from a pivot point as shown in figure 4. In a vertical plane, the force acting on an object is the acceleration due to gravity multiplied by its mass. a b θ3 c θ2 θ4 ml m1 m2 m3 Figure 4 Forces acting on robot arm The torque equations are as follows: 12 3 Figure 5 Block diagram of the Robotic arm control system

4 The ( X,Y,Z ) data and gripper angle is input to a MATLAB GUI interface as shown in figure 6,the domain shown in figure 7 is checked for the desired position, the inverse kinematic is calculated and through the wireless module the data is transmitted to the Spartan3 kit to control the servomotors according to the received data. JZ862 wireless module is used as the wireless data transmission in short distance. With the characteristics of small size, weight, low power consumption, good stability and reliability, it can provide bidirectional data transmission, test and control for users ug serial data communication. Ug the FPGA architecture make the design of the control circuit is very easy as it has millions of gates that are used in the design of the control circuit. The servomotors need PWM signals to operate hence, VHDL programming is used for implementing the required circuitry to generate PWM signals for the motors [4, 11]. It consists of counter with certain frequency and is reset every 20 ms and ug the comparator to check the counter data with the required PWM coming from hold circuit that hold data for 20 ms. The FPGA schematic of PWM module is shown in figures 8 and 9. Figure 8: Schematic diagram of the PWM Module. Figure 6: MATLAB GUI interface The robot domain is calculated based on the forward kinematics equations and based on the lengths of arms of the robot and the range of angles of the servo motors and based also on the constrains of the mechanical design. Figure 9: Top level of PWM module. Figure 7: RZ Robot domain V. CONCLUSION Robotic arms show a variety of applications all over the world nowadays. The manipulation and control of the robotic arms required a lot of mathematical calculation as well as control circuits. In this paper, a robotic arm controller is designed and implemented ug the Spartan3 kit FPGA architecture. The robotic arm design is based on the Lynx6 arm manipulator with some modification in the material and lengths of the arms. Calculation of the angles of the motors is carried out ug MATLAB software with a GUI interface. The angles are sent to the FPGA ug serial communication. The designed robotic arm system ug the Spartan3 FPGA offers flexible, standalone, and compact design with high system reliability. 4

5 REFERENCES [1] Iovine J, PIC Robotics: A Beginner s Guide to Robotics Projects Ug the PICmicro, McGraw Hill, [2] Iovine J, Robots, Androids, and Animatrons: 12 Incredible Projects You Can Build, McGraw Hill, [3] Lunt K., Build Your Own Robot, A. K. Peters Ltd., [4] Boylestad, R., and L. Nashelsky Electronic Devices and Circuit Theory, Englewood Cliffs, N.J.: Prentice Hall. (1992). [5] P. Myke Programming Robot Controller. McgrawHill. (2003). [6] Fu, K.S., Gonzalez R.C., Lee, C.S.G (1987). Robotic: Control, Seng, Vision and Intelligence. Singapore: McGrawHill Book Company. [7] Saeed B.Niku Introduction to Robotics Analysis, Systems, Application. Pearson Education, (2001). [8] Dan W. Patterson Artificial Neural Network Theory and Applications. Printice Hall, Inc. (1996). [9] David Cook Robot Building for Beginners. New York Apress, (2002). [10] David Cook. Intermediate Robot Building. New York. Apress. (2002) [11] FPGA Implementation of Multilevel Space Vector PWM Algorithms Prawin Angel Michael, Dr.N. Devarajan, Member, IEEE [12] Software Development for the Kinematic Analysis of a Lynx 6 Robot Arm. Baki Koyuncu, and Mehmet Güzel. 5

Design and Control of the BUAA Four-Fingered Hand

Design and Control of the BUAA Four-Fingered Hand Proceedings of the 2001 IEEE International Conference on Robotics & Automation Seoul, Korea May 21-26, 2001 Design and Control of the BUAA Four-Fingered Hand Y. Zhang, Z. Han, H. Zhang, X. Shang, T. Wang,

More information

FUNDAMENTALS ROBOT TECHNOLOGY. An Introduction to Industrial Robots, T eleoperators and Robot Vehicles. D J Todd. Kogan Page

FUNDAMENTALS ROBOT TECHNOLOGY. An Introduction to Industrial Robots, T eleoperators and Robot Vehicles. D J Todd. Kogan Page FUNDAMENTALS of ROBOT TECHNOLOGY An Introduction to Industrial Robots, T eleoperators and Robot Vehicles D J Todd &\ Kogan Page First published in 1986 by Kogan Page Ltd 120 Pentonville Road, London Nl

More information

Development of a Controlling Program for Six-legged Robot by VHDL Programming

Development of a Controlling Program for Six-legged Robot by VHDL Programming Development of a Controlling Program for Six-legged Robot by VHDL Programming Saroj Pullteap Department of Mechanical Engineering, Faculty of Engineering and Industrial Technology Silpakorn University

More information

Tele-Operated Anthropomorphic Arm and Hand Design

Tele-Operated Anthropomorphic Arm and Hand Design Tele-Operated Anthropomorphic Arm and Hand Design Namal A. Senanayake, Khoo B. How, and Quah W. Wai Abstract In this project, a tele-operated anthropomorphic robotic arm and hand is designed and built

More information

UNIT-1 INTRODUCATION The field of robotics has its origins in science fiction. The term robot was derived from the English translation of a fantasy play written in Czechoslovakia around 1920. It took another

More information

DC motor control using arduino

DC motor control using arduino DC motor control using arduino 1) Introduction: First we need to differentiate between DC motor and DC generator and where we can use it in this experiment. What is the main different between the DC-motor,

More information

Milind R. Shinde #1, V. N. Bhaiswar *2, B. G. Achmare #3 1 Student of MTECH CAD/CAM, Department of Mechanical Engineering, GHRCE Nagpur, MH, India

Milind R. Shinde #1, V. N. Bhaiswar *2, B. G. Achmare #3 1 Student of MTECH CAD/CAM, Department of Mechanical Engineering, GHRCE Nagpur, MH, India Design and simulation of robotic arm for loading and unloading of work piece on lathe machine by using workspace simulation software: A Review Milind R. Shinde #1, V. N. Bhaiswar *2, B. G. Achmare #3 1

More information

Prof. Ciro Natale. Francesco Castaldo Andrea Cirillo Pasquale Cirillo Umberto Ferrara Luigi Palmieri

Prof. Ciro Natale. Francesco Castaldo Andrea Cirillo Pasquale Cirillo Umberto Ferrara Luigi Palmieri Real Time Control of an Anthropomorphic Robotic Arm using FPGA Advisor: Prof. Ciro Natale Students: Francesco Castaldo Andrea Cirillo Pasquale Cirillo Umberto Ferrara Luigi Palmieri Objective Introduction

More information

Chapter 1 Introduction to Robotics

Chapter 1 Introduction to Robotics Chapter 1 Introduction to Robotics PS: Most of the pages of this presentation were obtained and adapted from various sources in the internet. 1 I. Definition of Robotics Definition (Robot Institute of

More information

IMU Platform for Workshops

IMU Platform for Workshops IMU Platform for Workshops Lukáš Palkovič *, Jozef Rodina *, Peter Hubinský *3 * Institute of Control and Industrial Informatics Faculty of Electrical Engineering, Slovak University of Technology Ilkovičova

More information

THE IMPORTANCE OF PLANNING AND DRAWING IN DESIGN

THE IMPORTANCE OF PLANNING AND DRAWING IN DESIGN PROGRAM OF STUDY ENGR.ROB Standard 1 Essential UNDERSTAND THE IMPORTANCE OF PLANNING AND DRAWING IN DESIGN The student will understand and implement the use of hand sketches and computer-aided drawing

More information

International Journal of Advance Engineering and Research Development

International Journal of Advance Engineering and Research Development Scientific Journal of Impact Factor (SJIF): 4.14 International Journal of Advance Engineering and Research Development Volume 3, Issue 2, February -2016 e-issn (O): 2348-4470 p-issn (P): 2348-6406 SIMULATION

More information

The Mathematics of the Stewart Platform

The Mathematics of the Stewart Platform The Mathematics of the Stewart Platform The Stewart Platform consists of 2 rigid frames connected by 6 variable length legs. The Base is considered to be the reference frame work, with orthogonal axes

More information

Introduction: Components used:

Introduction: Components used: Introduction: As, this robotic arm is automatic in a way that it can decides where to move and when to move, therefore it works in a closed loop system where sensor detects if there is any object in a

More information

Wirelessly Controlled Wheeled Robotic Arm

Wirelessly Controlled Wheeled Robotic Arm Wirelessly Controlled Wheeled Robotic Arm Muhammmad Tufail 1, Mian Muhammad Kamal 2, Muhammad Jawad 3 1 Department of Electrical Engineering City University of science and Information Technology Peshawar

More information

SELF STABILIZING PLATFORM

SELF STABILIZING PLATFORM SELF STABILIZING PLATFORM Shalaka Turalkar 1, Omkar Padvekar 2, Nikhil Chavan 3, Pritam Sawant 4 and Project Guide: Mr Prathamesh Indulkar 5. 1,2,3,4,5 Department of Electronics and Telecommunication,

More information

Automobile Prototype Servo Control

Automobile Prototype Servo Control IJIRST International Journal for Innovative Research in Science & Technology Volume 2 Issue 10 March 2016 ISSN (online): 2349-6010 Automobile Prototype Servo Control Mr. Linford William Fernandes Don Bosco

More information

A Semi-Minimalistic Approach to Humanoid Design

A Semi-Minimalistic Approach to Humanoid Design International Journal of Scientific and Research Publications, Volume 2, Issue 4, April 2012 1 A Semi-Minimalistic Approach to Humanoid Design Hari Krishnan R., Vallikannu A.L. Department of Electronics

More information

Fundamentals of Robotics

Fundamentals of Robotics Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2017 205 - ESEIAAT - Terrassa School of Industrial, Aerospace and Audiovisual Engineering 707 - ESAII - Department of Automatic Control

More information

Chapter 1 Introduction

Chapter 1 Introduction Chapter 1 Introduction It is appropriate to begin the textbook on robotics with the definition of the industrial robot manipulator as given by the ISO 8373 standard. An industrial robot manipulator is

More information

Categories of Robots and their Hardware Components. Click to add Text Martin Jagersand

Categories of Robots and their Hardware Components. Click to add Text Martin Jagersand Categories of Robots and their Hardware Components Click to add Text Martin Jagersand Click to add Text Robot? Click to add Text Robot? How do we categorize these robots? What they can do? Most robots

More information

Mechatronics Engineering and Automation Faculty of Engineering, Ain Shams University MCT-151, Spring 2015 Lab-4: Electric Actuators

Mechatronics Engineering and Automation Faculty of Engineering, Ain Shams University MCT-151, Spring 2015 Lab-4: Electric Actuators Mechatronics Engineering and Automation Faculty of Engineering, Ain Shams University MCT-151, Spring 2015 Lab-4: Electric Actuators Ahmed Okasha, Assistant Lecturer okasha1st@gmail.com Objective Have a

More information

Introduction to Robotics in CIM Systems

Introduction to Robotics in CIM Systems Introduction to Robotics in CIM Systems Fifth Edition James A. Rehg The Pennsylvania State University Altoona, Pennsylvania Prentice Hall Upper Saddle River, New Jersey Columbus, Ohio Contents Introduction

More information

AE2610 Introduction to Experimental Methods in Aerospace

AE2610 Introduction to Experimental Methods in Aerospace AE2610 Introduction to Experimental Methods in Aerospace Lab #3: Dynamic Response of a 3-DOF Helicopter Model C.V. Di Leo 1 Lecture/Lab learning objectives Familiarization with the characteristics of dynamical

More information

Advanced Android Controlled Pick and Place Robotic ARM Using Bluetooth Technology

Advanced Android Controlled Pick and Place Robotic ARM Using Bluetooth Technology ISSN No: 2454-9614 Advanced Android Controlled Pick and Place Robotic ARM Using Bluetooth Technology S.Dineshkumar, M.Satheeswari, K.Moulidharan, R.Muthukumar Electronics and Communication Engineering,

More information

Design and Control of an Anthropomorphic Robotic Arm

Design and Control of an Anthropomorphic Robotic Arm Journal Of Industrial Engineering Research ISSN- 2077-4559 Journal home page: http://www.iwnest.com/ijer/ 2016. 2(1): 1-8 RSEARCH ARTICLE Design and Control of an Anthropomorphic Robotic Arm Simon A/L

More information

DESIGN AND OPERATION OF SYNCHRONIZED ROBOTIC ARM

DESIGN AND OPERATION OF SYNCHRONIZED ROBOTIC ARM DESIGN AND OPERATION OF SYNCHRONIZED ROBOTIC ARM Goldy Katal 1, Saahil Gupta 2, Shitij Kakkar 3 1 Student, Electrical and Electronics Department, Maharaja Agrasen Institute of Technology, Delhi, India,

More information

Wireless Master-Slave Embedded Controller for a Teleoperated Anthropomorphic Robotic Arm with Gripping Force Sensing

Wireless Master-Slave Embedded Controller for a Teleoperated Anthropomorphic Robotic Arm with Gripping Force Sensing Wireless Master-Slave Embedded Controller for a Teleoperated Anthropomorphic Robotic Arm with Gripping Force Sensing Presented by: Benjamin B. Rhoades ECGR 6185 Adv. Embedded Systems January 16 th 2013

More information

Based on the ARM and PID Control Free Pendulum Balance System

Based on the ARM and PID Control Free Pendulum Balance System Available online at www.sciencedirect.com Procedia Engineering 29 (2012) 3491 3495 2012 International Workshop on Information and Electronics Engineering (IWIEE) Based on the ARM and PID Control Free Pendulum

More information

CHAPTER 5 INDUSTRIAL ROBOTICS

CHAPTER 5 INDUSTRIAL ROBOTICS CHAPTER 5 INDUSTRIAL ROBOTICS 5.1 Basic of Robotics 5.1.1 Introduction There are two widely used definitions of industrial robots : i) An industrial robot is a reprogrammable, multifunctional manipulator

More information

III. MATERIAL AND COMPONENTS USED

III. MATERIAL AND COMPONENTS USED Prototype Development of a Smartphone- Controlled Robotic Vehicle with Pick- Place Capability Dheeraj Sharma Electronics and communication department Gian Jyoti Institute Of Engineering And Technology,

More information

Introduction to robotics. Md. Ferdous Alam, Lecturer, MEE, SUST

Introduction to robotics. Md. Ferdous Alam, Lecturer, MEE, SUST Introduction to robotics Md. Ferdous Alam, Lecturer, MEE, SUST Hello class! Let s watch a video! So, what do you think? It s cool, isn t it? The dedication is not! A brief history The first digital and

More information

Mapping device with wireless communication

Mapping device with wireless communication University of Arkansas, Fayetteville ScholarWorks@UARK Electrical Engineering Undergraduate Honors Theses Electrical Engineering 12-2011 Mapping device with wireless communication Xiangyu Liu University

More information

ANN BASED ANGLE COMPUTATION UNIT FOR REDUCING THE POWER CONSUMPTION OF THE PARABOLIC ANTENNA CONTROLLER

ANN BASED ANGLE COMPUTATION UNIT FOR REDUCING THE POWER CONSUMPTION OF THE PARABOLIC ANTENNA CONTROLLER International Journal on Technical and Physical Problems of Engineering (IJTPE) Published by International Organization on TPE (IOTPE) ISSN 2077-3528 IJTPE Journal www.iotpe.com ijtpe@iotpe.com September

More information

Computer-Aided Manufacturing

Computer-Aided Manufacturing Computer-Aided Manufacturing Third Edition Tien-Chien Chang, Richard A. Wysk, and Hsu-Pin (Ben) Wang PEARSON Prentice Hall Upper Saddle River, New Jersey 07458 Contents Chapter 1 Introduction to Manufacturing

More information

ON STAGE PERFORMER TRACKING SYSTEM

ON STAGE PERFORMER TRACKING SYSTEM ON STAGE PERFORMER TRACKING SYSTEM Salman Afghani, M. Khalid Riaz, Yasir Raza, Zahid Bashir and Usman Khokhar Deptt. of Research and Development Electronics Engg., APCOMS, Rawalpindi Pakistan ABSTRACT

More information

Performance Analysis of Ultrasonic Mapping Device and Radar

Performance Analysis of Ultrasonic Mapping Device and Radar Volume 118 No. 17 2018, 987-997 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu Performance Analysis of Ultrasonic Mapping Device and Radar Abhishek

More information

Lab Exercise 9: Stepper and Servo Motors

Lab Exercise 9: Stepper and Servo Motors ME 3200 Mechatronics Laboratory Lab Exercise 9: Stepper and Servo Motors Introduction In this laboratory exercise, you will explore some of the properties of stepper and servomotors. These actuators are

More information

Robotics: Evolution, Technology and Applications

Robotics: Evolution, Technology and Applications Robotics: Evolution, Technology and Applications By: Dr. Hamid D. Taghirad Head of Control Group, and Department of Electrical Engineering K.N. Toosi University of Tech. Department of Electrical Engineering

More information

Introduction To Robotics (Kinematics, Dynamics, and Design)

Introduction To Robotics (Kinematics, Dynamics, and Design) Introduction To Robotics (Kinematics, Dynamics, and Design) SESSION # 5: Concepts & Defenitions Ali Meghdari, Professor School of Mechanical Engineering Sharif University of Technology Tehran, IRAN 11365-9567

More information

Hardware in the Loop Simulation for Unmanned Aerial Vehicles

Hardware in the Loop Simulation for Unmanned Aerial Vehicles NATIONAL 1 AEROSPACE LABORATORIES BANGALORE-560 017 INDIA CSIR-NAL Hardware in the Loop Simulation for Unmanned Aerial Vehicles Shikha Jain Kamali C Scientist, Flight Mechanics and Control Division National

More information

Hardware Implementation of Fuzzy Logic using VHDL. Vikas Kumar Sharma Supervisor : Prof. Laurent Cabaret and Prof. Celine Hudelot July 23, 2007

Hardware Implementation of Fuzzy Logic using VHDL. Vikas Kumar Sharma Supervisor : Prof. Laurent Cabaret and Prof. Celine Hudelot July 23, 2007 Hardware Implementation of Fuzzy Logic using VHDL Vikas Kumar Sharma Supervisor : Prof. Laurent Cabaret and Prof. Celine Hudelot July 23, 2007 Abstract In this project, we propose a Fuzzy Logic approach

More information

Design of Joint Controller Circuit for PA10 Robot Arm

Design of Joint Controller Circuit for PA10 Robot Arm Design of Joint Controller Circuit for PA10 Robot Arm Sereiratha Phal and Manop Wongsaisuwan Department of Electrical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.

More information

The control of the ball juggler

The control of the ball juggler 18th Telecommunications forum TELFOR 010 Serbia, Belgrade, November 3-5, 010. The control of the ball juggler S.Triaška, M.Žalman Abstract The ball juggler is a mechanical machinery designed to demonstrate

More information

DIGITAL SYSTEM DESIGN WITH VHDL AND FPGA CONTROLLER BASED PULSE WIDTH MODULATION

DIGITAL SYSTEM DESIGN WITH VHDL AND FPGA CONTROLLER BASED PULSE WIDTH MODULATION DIGITAL SYSTEM DESIGN WITH VHDL AND FPGA CONTROLLER BASED PULSE WIDTH MODULATION Muzakkir Mas ud Adamu Depertment of Computer Engineering, Hussaini Adamu Federal Polytechnic Kazaure, Jigawa State Nigeria.

More information

Autonomous Stair Climbing Algorithm for a Small Four-Tracked Robot

Autonomous Stair Climbing Algorithm for a Small Four-Tracked Robot Autonomous Stair Climbing Algorithm for a Small Four-Tracked Robot Quy-Hung Vu, Byeong-Sang Kim, Jae-Bok Song Korea University 1 Anam-dong, Seongbuk-gu, Seoul, Korea vuquyhungbk@yahoo.com, lovidia@korea.ac.kr,

More information

Position Control of AC Servomotor Using Internal Model Control Strategy

Position Control of AC Servomotor Using Internal Model Control Strategy Position Control of AC Servomotor Using Internal Model Control Strategy Ahmed S. Abd El-hamid and Ahmed H. Eissa Corresponding Author email: Ahmednrc64@gmail.com Abstract: This paper focuses on the design

More information

Design and Analysis of Articulated Inspection Arm of Robot

Design and Analysis of Articulated Inspection Arm of Robot VOLUME 5 ISSUE 1 MAY 015 - ISSN: 349-9303 Design and Analysis of Articulated Inspection Arm of Robot K.Gunasekaran T.J Institute of Technology, Engineering Design (Mechanical Engineering), kgunasekaran.590@gmail.com

More information

DESIGN OF A TWO DIMENSIONAL MICROPROCESSOR BASED PARABOLIC ANTENNA CONTROLLER

DESIGN OF A TWO DIMENSIONAL MICROPROCESSOR BASED PARABOLIC ANTENNA CONTROLLER DESIGN OF A TWO DIMENSIONAL MICROPROCESSOR BASED PARABOLIC ANTENNA CONTROLLER Veysel Silindir, Haluk Gözde, Gazi University, Electrical And Electronics Engineering Department, Ankara, Turkey 4 th Main

More information

Design and Implementation of an Inverted Pendulum Controller to be used as a Lab Setup

Design and Implementation of an Inverted Pendulum Controller to be used as a Lab Setup Design and Implementation of an Inverted Pendulum Controller to be used as a Lab Setup Harsha Abeykoon, S.R.H. Mudunkotuwa, Malithi Gunawardana, Haroos Mohamed, Darshana Mannapperuma Department of Electrical

More information

ACTUATORS AND SENSORS. Joint actuating system. Servomotors. Sensors

ACTUATORS AND SENSORS. Joint actuating system. Servomotors. Sensors ACTUATORS AND SENSORS Joint actuating system Servomotors Sensors JOINT ACTUATING SYSTEM Transmissions Joint motion low speeds high torques Spur gears change axis of rotation and/or translate application

More information

SRV02-Series Rotary Experiment # 3. Ball & Beam. Student Handout

SRV02-Series Rotary Experiment # 3. Ball & Beam. Student Handout SRV02-Series Rotary Experiment # 3 Ball & Beam Student Handout SRV02-Series Rotary Experiment # 3 Ball & Beam Student Handout 1. Objectives The objective in this experiment is to design a controller for

More information

Simulating the Arm Movements of a Stepper Motor Controlled Pickand-Place Robot Using the Stepper Motor Model

Simulating the Arm Movements of a Stepper Motor Controlled Pickand-Place Robot Using the Stepper Motor Model , pp.59-66 http://dx.doi.org/10.14257/ijast.2013.60.06 Simulating the Arm Movements of a Stepper Motor Controlled Pickand-Place Robot Using the Stepper Motor Model R. V. Sharan 1 and G. C. Onwubolu 2 1

More information

Design and Implementation of a Simplified Humanoid Robot with 8 DOF

Design and Implementation of a Simplified Humanoid Robot with 8 DOF Design and Implementation of a Simplified Humanoid Robot with 8 DOF Hari Krishnan R & Vallikannu A. L Department of Electronics and Communication Engineering, Hindustan Institute of Technology and Science,

More information

Figure 2.1 a. Block diagram representation of a system; b. block diagram representation of an interconnection of subsystems

Figure 2.1 a. Block diagram representation of a system; b. block diagram representation of an interconnection of subsystems 1 Figure 2.1 a. Block diagram representation of a system; b. block diagram representation of an interconnection of subsystems 2 Table 2.1 Laplace transform table 3 Table 2.2 Laplace transform theorems

More information

Structure Design of a Feeding Assistant Robot

Structure Design of a Feeding Assistant Robot Structure Design of a Feeding Assistant Robot Chenling Zheng a, Liangchao Hou b and Jianyong Li c Shandong University of Science and Technology, Qingdao 266590, China. a2425614112@qq.com, b 931936225@qq.com,

More information

العطاء رقم )7106/67( الخاص بشراء أجهز لقسم الهندسة الكهربائية على حساب البحث العلمي

العطاء رقم )7106/67( الخاص بشراء أجهز لقسم الهندسة الكهربائية على حساب البحث العلمي العطاء رقم )7106/67( الخاص بشراء أجهز لقسم الهندسة الكهربائية على حساب البحث العلمي رقم )7107/363( Page 1 of 6 1- Mechatronics Actuators Board & Mechatronics Systems Board with Education Laboratory for

More information

Familiarization with the Servo Robot System

Familiarization with the Servo Robot System Exercise 1 Familiarization with the Servo Robot System EXERCISE OBJECTIVE In this exercise, you will be introduced to the Lab-Volt Servo Robot System. In the Procedure section, you will install and connect

More information

PC-ROBOARM WITH EFFICIENT SPEED CONTROL AND PLANNING BASED ON WIRELESS TECHNOLOGY

PC-ROBOARM WITH EFFICIENT SPEED CONTROL AND PLANNING BASED ON WIRELESS TECHNOLOGY PC-ROBOARM WITH EFFICIENT SPEED CONTROL AND PLANNING BASED ON WIRELESS TECHNOLOGY Ms. M. Vennila 1, Ms. J. Anitha Thulasi 2 Associate Prof. &HOD / EEE Department 1, Assistant Professor /EEE Department

More information

Technical Cognitive Systems

Technical Cognitive Systems Part XII Actuators 3 Outline Robot Bases Hardware Components Robot Arms 4 Outline Robot Bases Hardware Components Robot Arms 5 (Wheeled) Locomotion Goal: Bring the robot to a desired pose (x, y, θ): (position

More information

Speed Control of BLDC Motor Using FPGA

Speed Control of BLDC Motor Using FPGA Speed Control of BLDC Motor Using FPGA Jisha Kuruvilla 1, Basil George 2, Deepu K 3, Gokul P.T 4, Mathew Jose 5 Assistant Professor, Dept. of EEE, Mar Athanasius College of Engineering, Kothamangalam,

More information

Teaching Mechanical Students to Build and Analyze Motor Controllers

Teaching Mechanical Students to Build and Analyze Motor Controllers Teaching Mechanical Students to Build and Analyze Motor Controllers Hugh Jack, Associate Professor Padnos School of Engineering Grand Valley State University Grand Rapids, MI email: jackh@gvsu.edu Session

More information

Korea Humanoid Robot Projects

Korea Humanoid Robot Projects Korea Humanoid Robot Projects Jun Ho Oh HUBO Lab., KAIST KOREA Humanoid Projects(~2001) A few humanoid robot projects were existed. Most researches were on dynamic and kinematic simulations for walking

More information

Introduction to Robotics

Introduction to Robotics Jianwei Zhang zhang@informatik.uni-hamburg.de Universität Hamburg Fakultät für Mathematik, Informatik und Naturwissenschaften Technische Aspekte Multimodaler Systeme 14. June 2013 J. Zhang 1 Robot Control

More information

GESTURE BASED ROBOTIC ARM

GESTURE BASED ROBOTIC ARM GESTURE BASED ROBOTIC ARM Arusha Suyal 1, Anubhav Gupta 2, Manushree Tyagi 3 1,2,3 Department of Instrumentation And Control Engineering, JSSATE, Noida, (India) ABSTRACT In recent years, there are development

More information

A COMPARISON STUDY OF THE COMMUTATION METHODS FOR THE THREE-PHASE PERMANENT MAGNET BRUSHLESS DC MOTOR

A COMPARISON STUDY OF THE COMMUTATION METHODS FOR THE THREE-PHASE PERMANENT MAGNET BRUSHLESS DC MOTOR A COMPARISON STUDY OF THE COMMUTATION METHODS FOR THE THREE-PHASE PERMANENT MAGNET BRUSHLESS DC MOTOR Shiyoung Lee, Ph.D. Pennsylvania State University Berks Campus Room 120 Luerssen Building, Tulpehocken

More information

Modeling and Experimental Studies of a Novel 6DOF Haptic Device

Modeling and Experimental Studies of a Novel 6DOF Haptic Device Proceedings of The Canadian Society for Mechanical Engineering Forum 2010 CSME FORUM 2010 June 7-9, 2010, Victoria, British Columbia, Canada Modeling and Experimental Studies of a Novel DOF Haptic Device

More information

ROBOTICS ENG YOUSEF A. SHATNAWI INTRODUCTION

ROBOTICS ENG YOUSEF A. SHATNAWI INTRODUCTION ROBOTICS INTRODUCTION THIS COURSE IS TWO PARTS Mobile Robotics. Locomotion (analogous to manipulation) (Legged and wheeled robots). Navigation and obstacle avoidance algorithms. Robot Vision Sensors and

More information

Design of double loop-locked system for brush-less DC motor based on DSP

Design of double loop-locked system for brush-less DC motor based on DSP International Conference on Advanced Electronic Science and Technology (AEST 2016) Design of double loop-locked system for brush-less DC motor based on DSP Yunhong Zheng 1, a 2, Ziqiang Hua and Li Ma 3

More information

Design and Development of Novel Two Axis Servo Control Mechanism

Design and Development of Novel Two Axis Servo Control Mechanism Design and Development of Novel Two Axis Servo Control Mechanism Shailaja Kurode, Chinmay Dharmadhikari, Mrinmay Atre, Aniruddha Katti, Shubham Shambharkar Abstract This paper presents design and development

More information

Undefined Obstacle Avoidance and Path Planning

Undefined Obstacle Avoidance and Path Planning Paper ID #6116 Undefined Obstacle Avoidance and Path Planning Prof. Akram Hossain, Purdue University, Calumet (Tech) Akram Hossain is a professor in the department of Engineering Technology and director

More information

Design and FPGA Implementation of a Modified Radio Altimeter Signal Processor

Design and FPGA Implementation of a Modified Radio Altimeter Signal Processor Design and FPGA Implementation of a Modified Radio Altimeter Signal Processor A. Nasser, Fathy M. Ahmed, K. H. Moustafa, Ayman Elshabrawy Military Technical Collage Cairo, Egypt Abstract Radio altimeter

More information

Automatic Control Systems 2017 Spring Semester

Automatic Control Systems 2017 Spring Semester Automatic Control Systems 2017 Spring Semester Assignment Set 1 Dr. Kalyana C. Veluvolu Deadline: 11-APR - 16:00 hours @ IT1-815 1) Find the transfer function / for the following system using block diagram

More information

CIS009-2, Mechatronics Signals & Motors

CIS009-2, Mechatronics Signals & Motors CIS009-2, Signals & Motors Bedfordshire 13 th December 2012 Outline 1 2 3 4 5 6 7 8 3 Signals Two types of signals exist: 4 Bedfordshire 52 Analogue signal In an analogue signal voltages and currents continuously

More information

Pick and Place Robotic Arm Using Arduino

Pick and Place Robotic Arm Using Arduino Pick and Place Robotic Arm Using Arduino Harish K 1, Megha D 2, Shuklambari M 3, Amit K 4, Chaitanya K Jambotkar 5 1,2,3,4 5 th SEM Students in Department of Electrical and Electronics Engineering, KLE.I.T,

More information

A Model Based Approach for Human Recognition and Reception by Robot

A Model Based Approach for Human Recognition and Reception by Robot 16 MHz ARDUINO A Model Based Approach for Human Recognition and Reception by Robot Prof. R. Sunitha Department Of ECE, N.R.I Institute Of Technology, J.N.T University, Kakinada, India. V. Sai Krishna,

More information

3-Degrees of Freedom Robotic ARM Controller for Various Applications

3-Degrees of Freedom Robotic ARM Controller for Various Applications 3-Degrees of Freedom Robotic ARM Controller for Various Applications Mohd.Maqsood Ali M.Tech Student Department of Electronics and Instrumentation Engineering, VNR Vignana Jyothi Institute of Engineering

More information

ASPECTS ON THE DESIGN OF A TRACKED MINI ROBOT DESTINED FOR MILITARY ENGINEERING APPLICATIONS

ASPECTS ON THE DESIGN OF A TRACKED MINI ROBOT DESTINED FOR MILITARY ENGINEERING APPLICATIONS Petrişor, S.M., Bârsan, G. and Moşteanu, D.E., 2017. Aspects on the design of a tracked mini robot destined for military engineering applications. Romanian Journal of Technical Sciences Applied Mechanics,

More information

DESIGN AND IMPLEMENTATION OF TWO PHASE INTERLEAVED DC-DC BOOST CONVERTER WITH DIGITAL PID CONTROLLER

DESIGN AND IMPLEMENTATION OF TWO PHASE INTERLEAVED DC-DC BOOST CONVERTER WITH DIGITAL PID CONTROLLER DESIGN AND IMPLEMENTATION OF TWO PHASE INTERLEAVED DC-DC BOOST CONVERTER WITH DIGITAL PID CONTROLLER H. M. MALLIKARJUNA SWAMY 1, K.P.GURUSWAMY 2, DR.S.P.SINGH 3 1,2,3 Electrical Dept.IIT Roorkee, Indian

More information

Wheeled Mobile Robot Obstacle Avoidance Using Compass and Ultrasonic

Wheeled Mobile Robot Obstacle Avoidance Using Compass and Ultrasonic Universal Journal of Control and Automation 6(1): 13-18, 2018 DOI: 10.13189/ujca.2018.060102 http://www.hrpub.org Wheeled Mobile Robot Obstacle Avoidance Using Compass and Ultrasonic Yousef Moh. Abueejela

More information

A Do-and-See Approach for Learning Mechatronics Concepts

A Do-and-See Approach for Learning Mechatronics Concepts Proceedings of the 5 th International Conference of Control, Dynamic Systems, and Robotics (CDSR'18) Niagara Falls, Canada June 7 9, 2018 Paper No. 124 DOI: 10.11159/cdsr18.124 A Do-and-See Approach for

More information

Time Response Analysis of a DC Motor Speed Control with PI and Fuzzy Logic Using LAB View Compact RIO

Time Response Analysis of a DC Motor Speed Control with PI and Fuzzy Logic Using LAB View Compact RIO Time Response Analysis of a DC Motor Speed Control with PI and Fuzzy Logic Using LAB View Compact RIO B. Udaya Kumar 1, Dr. M. Ramesh Patnaik 2 1 Associate professor, Dept of Electronics and Instrumentation,

More information

Comparative Study of PID and Fuzzy Controllers for Speed Control of DC Motor

Comparative Study of PID and Fuzzy Controllers for Speed Control of DC Motor Comparative Study of PID and Fuzzy Controllers for Speed Control of DC Motor Osama Omer Adam Mohammed 1, Dr. Awadalla Taifor Ali 2 P.G. Student, Department of Control Engineering, Faculty of Engineering,

More information

Adaptive Humanoid Robot Arm Motion Generation by Evolved Neural Controllers

Adaptive Humanoid Robot Arm Motion Generation by Evolved Neural Controllers Proceedings of the 3 rd International Conference on Mechanical Engineering and Mechatronics Prague, Czech Republic, August 14-15, 2014 Paper No. 170 Adaptive Humanoid Robot Arm Motion Generation by Evolved

More information

EXPERIMENT 6: Advanced I/O Programming

EXPERIMENT 6: Advanced I/O Programming EXPERIMENT 6: Advanced I/O Programming Objectives: To familiarize students with DC Motor control and Stepper Motor Interfacing. To utilize MikroC and MPLAB for Input Output Interfacing and motor control.

More information

Signal Processing and Display of LFMCW Radar on a Chip

Signal Processing and Display of LFMCW Radar on a Chip Signal Processing and Display of LFMCW Radar on a Chip Abstract The tremendous progress in embedded systems helped in the design and implementation of complex compact equipment. This progress may help

More information

PICK AND PLACE HUMANOID ROBOT USING RASPBERRY PI AND ARDUINO FOR INDUSTRIAL APPLICATIONS

PICK AND PLACE HUMANOID ROBOT USING RASPBERRY PI AND ARDUINO FOR INDUSTRIAL APPLICATIONS PICK AND PLACE HUMANOID ROBOT USING RASPBERRY PI AND ARDUINO FOR INDUSTRIAL APPLICATIONS Bernard Franklin 1, Sachin.P 2, Jagadish.S 3, Shaista Noor 4, Rajashekhar C. Biradar 5 1,2,3,4,5 School of Electronics

More information

Inverted Pendulum Swing Up Controller

Inverted Pendulum Swing Up Controller Dublin Institute of Technology ARROW@DIT Conference Papers School of Mechanical and Design Engineering 2011-09-29 Inverted Pendulum Swing Up Controller David Kennedy Dublin Institute of Technology, david.kennedy@dit.ie

More information

Lab Design of FANUC Robot Operation for Engineering Technology Major Students

Lab Design of FANUC Robot Operation for Engineering Technology Major Students Paper ID #21185 Lab Design of FANUC Robot Operation for Engineering Technology Major Students Dr. Maged Mikhail, Purdue University Northwest Dr. Maged B.Mikhail, Assistant Professor, Mechatronics Engineering

More information

4R and 5R Parallel Mechanism Mobile Robots

4R and 5R Parallel Mechanism Mobile Robots 4R and 5R Parallel Mechanism Mobile Robots Tasuku Yamawaki Department of Mechano-Micro Engineering Tokyo Institute of Technology 4259 Nagatsuta, Midoriku Yokohama, Kanagawa, Japan Email: d03yamawaki@pms.titech.ac.jp

More information

Sensors and Sensing Motors, Encoders and Motor Control

Sensors and Sensing Motors, Encoders and Motor Control Sensors and Sensing Motors, Encoders and Motor Control Todor Stoyanov Mobile Robotics and Olfaction Lab Center for Applied Autonomous Sensor Systems Örebro University, Sweden todor.stoyanov@oru.se 05.11.2015

More information

L E C T U R E R, E L E C T R I C A L A N D M I C R O E L E C T R O N I C E N G I N E E R I N G

L E C T U R E R, E L E C T R I C A L A N D M I C R O E L E C T R O N I C E N G I N E E R I N G P R O F. S L A C K L E C T U R E R, E L E C T R I C A L A N D M I C R O E L E C T R O N I C E N G I N E E R I N G G B S E E E @ R I T. E D U B L D I N G 9, O F F I C E 0 9-3 1 8 9 ( 5 8 5 ) 4 7 5-5 1 0

More information

GPS System Design and Control Modeling. Chua Shyan Jin, Ronald. Assoc. Prof Gerard Leng. Aeronautical Engineering Group, NUS

GPS System Design and Control Modeling. Chua Shyan Jin, Ronald. Assoc. Prof Gerard Leng. Aeronautical Engineering Group, NUS GPS System Design and Control Modeling Chua Shyan Jin, Ronald Assoc. Prof Gerard Leng Aeronautical Engineering Group, NUS Abstract A GPS system for the autonomous navigation and surveillance of an airship

More information

The Haptic Impendance Control through Virtual Environment Force Compensation

The Haptic Impendance Control through Virtual Environment Force Compensation The Haptic Impendance Control through Virtual Environment Force Compensation OCTAVIAN MELINTE Robotics and Mechatronics Department Institute of Solid Mechanicsof the Romanian Academy ROMANIA octavian.melinte@yahoo.com

More information

Continuous Rotation Control of Robotic Arm using Slip Rings for Mars Rover

Continuous Rotation Control of Robotic Arm using Slip Rings for Mars Rover International Conference on Mechanical, Industrial and Materials Engineering 2017 (ICMIME2017) 28-30 December, 2017, RUET, Rajshahi, Bangladesh. Paper ID: AM-270 Continuous Rotation Control of Robotic

More information

Article Info. 1. Introduction

Article Info. 1. Introduction Novel Sliding Mode Controller for Robot Manipulator using FPGA Farzin Piltan, Atefeh Gavahian, Nasri Sulaiman and M.H. Marhaban Department of Electrical and Electronic Engineering, Faculty of Engineering,

More information

INTRODUCTION. In the industrial applications, many three-phase loads require a. supply of Variable Voltage Variable Frequency (VVVF) using fast and

INTRODUCTION. In the industrial applications, many three-phase loads require a. supply of Variable Voltage Variable Frequency (VVVF) using fast and 1 Chapter 1 INTRODUCTION 1.1. Introduction In the industrial applications, many three-phase loads require a supply of Variable Voltage Variable Frequency (VVVF) using fast and high-efficient electronic

More information

Performance Analysis of Multipliers in VLSI Design

Performance Analysis of Multipliers in VLSI Design Performance Analysis of Multipliers in VLSI Design Lunius Hepsiba P 1, Thangam T 2 P.G. Student (ME - VLSI Design), PSNA College of, Dindigul, Tamilnadu, India 1 Associate Professor, Dept. of ECE, PSNA

More information

SPEED CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR USING FPGA FOR HIGH FREQUENCY SIC MOSFET INVERTER

SPEED CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR USING FPGA FOR HIGH FREQUENCY SIC MOSFET INVERTER Journal of Engineering Science and Technology Special Issue on Applied Engineering and Sciences, October (2014) 11-20 School of Engineering, Taylor s University SPEED CONTROL OF PERMANENT MAGNET SYNCHRONOUS

More information

Robotic Swing Drive as Exploit of Stiffness Control Implementation

Robotic Swing Drive as Exploit of Stiffness Control Implementation Robotic Swing Drive as Exploit of Stiffness Control Implementation Nathan J. Nipper, Johnny Godowski, A. Arroyo, E. Schwartz njnipper@ufl.edu, jgodows@admin.ufl.edu http://www.mil.ufl.edu/~swing Machine

More information