Content. Robotik: Möglichkeiten, Trends und Visionen. Introduction. Robotics the challenges and technology drivers. Robot Examples

Size: px
Start display at page:

Download "Content. Robotik: Möglichkeiten, Trends und Visionen. Introduction. Robotics the challenges and technology drivers. Robot Examples"

Transcription

1 Robotik: Möglichkeiten, Trends und Visionen Roland Siegwart, ETH Zurich Helbling-Abendseminar 18. März 2015, Swissôtel Zürich Roland Siegwart Content Introduction Robotics the challenges and technology drivers Robot Examples Rolling Running Flying Household Opportunities / Markets Roland Siegwart

2 Research Mission and Dedication to create intelligent robots and systems that are able of operating autonomously in complex and dynamic environments. Research Foci novel robot concepts that are best adapted for acting on the ground, in the air, or in the water. Navigation concepts for autonomous operation in challenging environments. Roland Siegwart ASL ETH Zurich Micro Air Vehicles Walking and Running Quadruped Robots Service Robots Autonomous Robots/Cars for Inner City Environments Inspection Robots Space Robots for Planetary Exploration Swimming Robots Prof. Dr. Roland Siegwart 15

3 Autonomous mobile robot the see-think-act cycle knowledge, data base mission commands Localization Map Building position global map Cognition Path Planning environment model local map path Perception Information Extraction raw data Sensing see-think-act Path Execution actuator commands Acting Motion Control Real World Environment Roland Siegwart Robotics the challenges and technology drivers The challenges Seeing, feeling and understanding the world Dealing with uncertain and only partially available information The technology drivers Sensor Technologies Computational power Actuator technologies Technology evolutions enable robotics revolutions Laser time-of-flight sensors Cameras and IMUs combined with required calculation power Torque controlled motors New materials Roland Siegwart

4 Seeing the world a world full of uncertainties Reasoning about a situation Dealing with the real world Cognitive systems have to analyze and interpret situations based on uncertain and only partially available information The need ways to learn functional and contextual information (models / semantics / understanding) Probabilistic Reasoning Roland Siegwart Seeing the world more than appearance Perception and models ( understanding ) are strongly linked What is the difference in brightness? Roland Siegwart

5 Seeing the world more than appearance Perception and models ( understanding ) are strongly linked What is the difference in brightness? Roland Siegwart Feeling the world torque controlled actuation Tactility, key for controlling the real world Courtesy of Albu-Schaeffer & Hirzinger, DLR, Germany It takes us around 14 years to learn holding a glass with an optimal force

6 Understanding the world Bayesian Reasoning Reasoning in the presence of uncertainties and incomplete information Combining preliminary information and models with learning from experimental data Picture Courtesy of Bessiere, INRIA Grenoble, France Roland Siegwart Localization where am I? SEE: The robot queries its sensors finds itself next to a pillar ACT: Robot moves forward motion estimated by wheel encoders accumulation of uncertainty SEE: The robot queries its sensors again finds itself next to a pillar Belief update (information fusion) Roland Siegwart

7 Learning the world real-time adaptation Courtesy of Aude Billard EPFL Roland Siegwart 30 Understanding the world Fusing & Compressing Information Places / Situations A specific room, a meeting situation, Servicing / Reasoning Interaction Navigation Objects Doors, Humans, Coke bottle, car, Features Lines, Contours, Colors, Phonemes, Raw Data Vision, Laser, Sound, Smell, Functional / Contextual Relationships of Objects imposed learned spatial / temporal/semantic Models / Semantics imposed learned Models imposed learned Roland Siegwart

8 Understanding the world Humans are unbeatable in taking decisions in complex situations Technology is better in simple but fast decisions (ABS, ESP, ) Complexity of Services Tactile Mobile Manipulation Position Based Mobile Manipulation Advanced Dialog Autonomous Navigation Actions from simple motion to complex interaction Robotics Roadmap Static Structured, 2D Static Toys AGVs Household assistant Industrial services Tour-Guides Household universal All-terrain navigation Static Unstructured, 3D Agriculture robots Search and Rescue Autonomous car freeway Dynamic Structured, 2D Autonomous car urban Dynamic Unstructured, Dynamic3D Semantics dynamic Environment - from static 2D grid maps to 3D cognitive maps

9 Rolling Robots some examples Roland Siegwart Laser-based outdoor navigation Roland Siegwart

10 Roland Siegwart V-Charge Automonous driving using close-to-market sensors Expensive and complex Roland Siegwart

11 V-Charge Autonomous driving using close-to-market sensors Wheel encoders ultrasound cameras Roland Siegwart V-Charge a typical scenario Roland Siegwart

12 V-Charge Vision and Results Roland Siegwart Running Robots Roland Siegwart

13 Efficient Walking and Running what nature evolved (Extreme Jumpy Dog) Roland Siegwart Spot hydraulic quadruped Roland Siegwart

14 Efficient Walking and Running serial elastic actuation Roland Siegwart StarlETH Leg Design for Dynamic Walking High fidelity DCmotors with harmonic drives Leaf springs Planar 3-DoF guiding unit Chain drive reduces leg inertia High resolution encoders to register forces damper Modular foot design Nonlinear spring for knee Roland Siegwart

15 StarlETH agile, efficiency and robust precise torque control during stance fast task space position control during swing virtual model controller for ground contact autonomous gait discovery by stochastic optimization Roland Siegwart Swimming Robots some examples Roland Siegwart

16 Sepios The calmar robot Roland Siegwart Environmental monitoring Monitoring (e.g. algaes) in lakes LizhbETH Roland Siegwart

17 Flying Robots some examples Roland Siegwart UAV (Unmanned Aerial Vehicles) flight concepts Helicopters: < 20 minutes Highly dynamic and agility Fixed Wing Airplanes: > some hours; continuous flights possible Non-holonomic constraints Blimp: lighter-than-air > some hours (dependent on wind conditions); Sensitive to wind Large size (dependent on payload) Flapping wings < 20 minutes; gliding mode possible Non-holonomic constraints Very complex mechanics Festo BionicOpter Roland Siegwart

18 UAV potential applications Search and rescue, surveillance Industrial inspection Agriculture, mining and construction Next generation satellites Roland Siegwart UAV requirements Appropriate flight concept Power autonomy Agility Robustness Navigation with on-board sensing and processing Robustness against communication and GPS loss home button Simple and intuitive operation Stable on hands-off Collision avoidance and localization / SLAM Roland Siegwart

19 UAV Vision only navigation Swarm of small helicopters Vision only navigation (one camera, GPS denied) Fully autonomous with on-board computing Feature-based visual SLAM robust against lighting changes and large scale changes Proto 1 Proto 2 Proto 3 Roland Siegwart A Synchronized Visual-Inertial Sensor System with FPGA Pre-Processing for Accurate Real-Time Slam Roland Siegwart

20 Keyframe VIO with Online Extrinsics Estimation Handheld around ETH MSCKF: visual-inertial stochastic cloning slidingwindow filter (Mourikis et al., 2009). Roland Siegwart UAV collision avoidance and path planning Real time 3D mapping (on-board) optimal path planning considering localization uncertainties Proto 1 Proto 2 Proto 3 Roland Siegwart

21 UAV facade scanning and 3D reconstruction Enhanced teleoperation or autonomous operation Visual-inertial localization for optimal 3D reconstruction Proto 1 Proto 2 Proto 3 Roland Siegwart UAV 3D mapping in mines Vision-based localization and SLAM Laser-based 3D mapping Roland Siegwart

22 overview an omnidirectional, spherical aircraft Actuation Unit Skye Bus Electronics and Camera Total Weight Actuation Units (4x) Electronics and Power Hull Pressure Elements kg kg kg kg Ca Kg Buoyancy Ca. 10 kg Diameter Ca. 2.7 m Volume Ca. 10 m 3 Roland Siegwart Solar Airplane design methodology for continuous flights Based on Mass & Power Balance Need for precise scaling laws (mass models) Airplane Parts Solar cells Battery Airframe Total mass Aerodynamic & Conditions Power for level Flight Roland Siegwart

23 Solar Airplane Optimization Design space at 38 N, June 21 st Battery mass [kg] Fixed Aspect Ratio: Excess Time [h] Wingspan [m] Flat optimum at wingspan 11.5 m Chosen AtlantikSolar configuration: Wingspan 5.65 m Battery mass 2.9 kg Structural weight Predicted: g Effective: g Prediction [Noth 08]: g Roland Siegwart Solar powered fixed wing airplanes: Long duration / continuous flights sensesoar Wingspan: 3 m Wing area: m2 Peak Solar power 140 W Power Consumption 50 W Masses: Overall: 3.72 kg Batteries: 1.89 kg Nominal Speed 10 m/s Sensors Air speed IMU GPS Camera IR camera AtlantikSolar Wingspan: 5.64 m Solar area: 1.5 m2 Peak Solar power 280 W Power Consumption 40 W Masses: Overall: 6.2 kg Batteries: 2.9 kg Nominal Speed 10 m/s Sensors Air speed IMU GPS Camera Roland Siegwart

24 crossing the Atlantic Boston Lisbon Around 6 days without tail wind Roland Siegwart Solar Airplane visual navigation Visual-inertial sensor with multiple cameras Integrated thermal vision Robust state estimation and flight control Autonomous planning for complete inspection Long endurance solar powered fight Roland Siegwart

25 ARMAR-III Karlsruhe Institute of Technology PR2 Willow Garage Household Robots some examples Roland Siegwart ARMAR-III in the kitchen Courtesy of Karlsruhe Institute of Technology

26 Perceiving and Handling of Objects the PR2-Robot from Willow Garage Fold towels Courtesy of Clean-up with cart Roland Siegwart Opportunities / Markets Industrial transportation Cleaning Medical robotics Entertainment / edutainment Autonomous Cars Office logistics Industrial services Surveillance and rescue Construction and mining Agriculture The coffee servant Nesspresso / Bluebotics, Switzerland Health and elderly care Personal / services robots Roland Siegwart

27 KIVA Robots the other warehouse automation Excerpt from History Channel, 2008 Acquired by Amazon in 2012 Key Industrial Collaborations and Partnerships Roland Siegwart

28 ASL Team Roland Siegwart Switzerland, the Silicon Valley of Robotics Chris Anderson CEO of 3DRobotics WIRED, editor-in-chief until 2012 Roland Siegwart

Walking and Flying Robots for Challenging Environments

Walking and Flying Robots for Challenging Environments Shaping the future Walking and Flying Robots for Challenging Environments Roland Siegwart, ETH Zurich www.asl.ethz.ch www.wysszurich.ch Lisbon, Portugal, July 29, 2016 Roland Siegwart 29.07.2016 1 Content

More information

Ground and Aerial Robots for Challenging Environments

Ground and Aerial Robots for Challenging Environments Shaping the future Ground and Aerial Robots for Challenging Environments Roland Siegwart, & Wyss Zurich www.asl.ethz.ch & www.wysszurich.ch Qualcomm Augmented Reality Lecture Series Vienna, April 21, 2016

More information

Robots Leaving the Production Halls Opportunities and Challenges

Robots Leaving the Production Halls Opportunities and Challenges Shaping the future Robots Leaving the Production Halls Opportunities and Challenges Prof. Dr. Roland Siegwart www.asl.ethz.ch www.wysszurich.ch APAC INNOVATION SUMMIT 17 Hong Kong Science Park Science,

More information

Roboter lernen sehen und selbst zu navigieren - Chancen und Herausforderungen autonomer Roboter für die Arbeits- und Alltagswelt.

Roboter lernen sehen und selbst zu navigieren - Chancen und Herausforderungen autonomer Roboter für die Arbeits- und Alltagswelt. Shaping the future Roboter lernen sehen und selbst zu navigieren - Chancen und Herausforderungen autonomer Roboter für die Arbeits- und Alltagswelt. Roland Siegwart, ETH Zurich www.asl.ethz.ch www.wysszurich.ch

More information

ROBOTICS ENG YOUSEF A. SHATNAWI INTRODUCTION

ROBOTICS ENG YOUSEF A. SHATNAWI INTRODUCTION ROBOTICS INTRODUCTION THIS COURSE IS TWO PARTS Mobile Robotics. Locomotion (analogous to manipulation) (Legged and wheeled robots). Navigation and obstacle avoidance algorithms. Robot Vision Sensors and

More information

The Autonomous Robots Lab. Kostas Alexis

The Autonomous Robots Lab. Kostas Alexis The Autonomous Robots Lab Kostas Alexis Who we are? Established at January 2016 Current Team: 1 Head, 1 Senior Postdoctoral Researcher, 3 PhD Candidates, 1 Graduate Research Assistant, 2 Undergraduate

More information

COS Lecture 1 Autonomous Robot Navigation

COS Lecture 1 Autonomous Robot Navigation COS 495 - Lecture 1 Autonomous Robot Navigation Instructor: Chris Clark Semester: Fall 2011 1 Figures courtesy of Siegwart & Nourbakhsh Introduction Education B.Sc.Eng Engineering Phyics, Queen s University

More information

Revised and extended. Accompanies this course pages heavier Perception treated more thoroughly. 1 - Introduction

Revised and extended. Accompanies this course pages heavier Perception treated more thoroughly. 1 - Introduction Topics to be Covered Coordinate frames and representations. Use of homogeneous transformations in robotics. Specification of position and orientation Manipulator forward and inverse kinematics Mobile Robots:

More information

EE631 Cooperating Autonomous Mobile Robots. Lecture 1: Introduction. Prof. Yi Guo ECE Department

EE631 Cooperating Autonomous Mobile Robots. Lecture 1: Introduction. Prof. Yi Guo ECE Department EE631 Cooperating Autonomous Mobile Robots Lecture 1: Introduction Prof. Yi Guo ECE Department Plan Overview of Syllabus Introduction to Robotics Applications of Mobile Robots Ways of Operation Single

More information

Autonomous and Mobile Robotics Prof. Giuseppe Oriolo. Introduction: Applications, Problems, Architectures

Autonomous and Mobile Robotics Prof. Giuseppe Oriolo. Introduction: Applications, Problems, Architectures Autonomous and Mobile Robotics Prof. Giuseppe Oriolo Introduction: Applications, Problems, Architectures organization class schedule 2017/2018: 7 Mar - 1 June 2018, Wed 8:00-12:00, Fri 8:00-10:00, B2 6

More information

* Intelli Robotic Wheel Chair for Specialty Operations & Physically Challenged

* Intelli Robotic Wheel Chair for Specialty Operations & Physically Challenged ADVANCED ROBOTICS SOLUTIONS * Intelli Mobile Robot for Multi Specialty Operations * Advanced Robotic Pick and Place Arm and Hand System * Automatic Color Sensing Robot using PC * AI Based Image Capturing

More information

Automation and Control Electrical Engineering

Automation and Control Electrical Engineering Automation and Control Electrical Engineering Technical University of Denmark DTU-Building 326 DK-2800 Kgs. Lyngby Denmark aut.elektro.dtu.dk Ole Ravn Total students ~9.300 including Ph.D. 1.150 and Int.

More information

ROBOTICS 01PEEQW. Basilio Bona DAUIN Politecnico di Torino

ROBOTICS 01PEEQW. Basilio Bona DAUIN Politecnico di Torino ROBOTICS 01PEEQW Basilio Bona DAUIN Politecnico di Torino What is Robotics? Robotics studies robots For history and definitions see the 2013 slides http://www.ladispe.polito.it/corsi/meccatronica/01peeqw/2014-15/slides/robotics_2013_01_a_brief_history.pdf

More information

NCCT IEEE PROJECTS ADVANCED ROBOTICS SOLUTIONS. Latest Projects, in various Domains. Promise for the Best Projects

NCCT IEEE PROJECTS ADVANCED ROBOTICS SOLUTIONS. Latest Projects, in various Domains. Promise for the Best Projects NCCT Promise for the Best Projects IEEE PROJECTS in various Domains Latest Projects, 2009-2010 ADVANCED ROBOTICS SOLUTIONS EMBEDDED SYSTEM PROJECTS Microcontrollers VLSI DSP Matlab Robotics ADVANCED ROBOTICS

More information

ROBOTICS 01PEEQW. Basilio Bona DAUIN Politecnico di Torino

ROBOTICS 01PEEQW. Basilio Bona DAUIN Politecnico di Torino ROBOTICS 01PEEQW Basilio Bona DAUIN Politecnico di Torino What is Robotics? Robotics is the study and design of robots Robots can be used in different contexts and are classified as 1. Industrial robots

More information

Vision-based Localization and Mapping with Heterogeneous Teams of Ground and Micro Flying Robots

Vision-based Localization and Mapping with Heterogeneous Teams of Ground and Micro Flying Robots Vision-based Localization and Mapping with Heterogeneous Teams of Ground and Micro Flying Robots Davide Scaramuzza Robotics and Perception Group University of Zurich http://rpg.ifi.uzh.ch All videos in

More information

The Future of AI A Robotics Perspective

The Future of AI A Robotics Perspective The Future of AI A Robotics Perspective Wolfram Burgard Autonomous Intelligent Systems Department of Computer Science University of Freiburg Germany The Future of AI My Robotics Perspective Wolfram Burgard

More information

Autonomous Mobile Robots

Autonomous Mobile Robots Autonomous Mobile Robots The three key questions in Mobile Robotics Where am I? Where am I going? How do I get there?? To answer these questions the robot has to have a model of the environment (given

More information

Hardware in the Loop Simulation for Unmanned Aerial Vehicles

Hardware in the Loop Simulation for Unmanned Aerial Vehicles NATIONAL 1 AEROSPACE LABORATORIES BANGALORE-560 017 INDIA CSIR-NAL Hardware in the Loop Simulation for Unmanned Aerial Vehicles Shikha Jain Kamali C Scientist, Flight Mechanics and Control Division National

More information

CAPACITIES FOR TECHNOLOGY TRANSFER

CAPACITIES FOR TECHNOLOGY TRANSFER CAPACITIES FOR TECHNOLOGY TRANSFER The Institut de Robòtica i Informàtica Industrial (IRI) is a Joint University Research Institute of the Spanish Council for Scientific Research (CSIC) and the Technical

More information

CS494/594: Software for Intelligent Robotics

CS494/594: Software for Intelligent Robotics CS494/594: Software for Intelligent Robotics Spring 2007 Tuesday/Thursday 11:10 12:25 Instructor: Dr. Lynne E. Parker TA: Rasko Pjesivac Outline Overview syllabus and class policies Introduction to class:

More information

Autonomous Mobile Robot Design. Dr. Kostas Alexis (CSE)

Autonomous Mobile Robot Design. Dr. Kostas Alexis (CSE) Autonomous Mobile Robot Design Dr. Kostas Alexis (CSE) Course Goals To introduce students into the holistic design of autonomous robots - from the mechatronic design to sensors and intelligence. Develop

More information

On January 14, 2004, the President announced a new space exploration vision for NASA

On January 14, 2004, the President announced a new space exploration vision for NASA Exploration Conference January 31, 2005 President s Vision for U.S. Space Exploration On January 14, 2004, the President announced a new space exploration vision for NASA Implement a sustained and affordable

More information

Slides that go with the book

Slides that go with the book Autonomous Mobile Robots, Chapter Autonomous Mobile Robots, Chapter Autonomous Mobile Robots The three key questions in Mobile Robotics Where am I? Where am I going? How do I get there?? Slides that go

More information

Cognitive robots and emotional intelligence Cloud robotics Ethical, legal and social issues of robotic Construction robots Human activities in many

Cognitive robots and emotional intelligence Cloud robotics Ethical, legal and social issues of robotic Construction robots Human activities in many Preface The jubilee 25th International Conference on Robotics in Alpe-Adria-Danube Region, RAAD 2016 was held in the conference centre of the Best Western Hotel M, Belgrade, Serbia, from 30 June to 2 July

More information

Distribution Statement A (Approved for Public Release, Distribution Unlimited)

Distribution Statement A (Approved for Public Release, Distribution Unlimited) www.darpa.mil 14 Programmatic Approach Focus teams on autonomy by providing capable Government-Furnished Equipment Enables quantitative comparison based exclusively on autonomy, not on mobility Teams add

More information

Introduction to Mobile Robotics Welcome

Introduction to Mobile Robotics Welcome Introduction to Mobile Robotics Welcome Wolfram Burgard, Michael Ruhnke, Bastian Steder 1 Today This course Robotics in the past and today 2 Organization Wed 14:00 16:00 Fr 14:00 15:00 lectures, discussions

More information

Recommended Text. Logistics. Course Logistics. Intelligent Robotic Systems

Recommended Text. Logistics. Course Logistics. Intelligent Robotic Systems Recommended Text Intelligent Robotic Systems CS 685 Jana Kosecka, 4444 Research II kosecka@gmu.edu, 3-1876 [1] S. LaValle: Planning Algorithms, Cambridge Press, http://planning.cs.uiuc.edu/ [2] S. Thrun,

More information

OBSTACLE DETECTION AND COLLISION AVOIDANCE USING ULTRASONIC DISTANCE SENSORS FOR AN AUTONOMOUS QUADROCOPTER

OBSTACLE DETECTION AND COLLISION AVOIDANCE USING ULTRASONIC DISTANCE SENSORS FOR AN AUTONOMOUS QUADROCOPTER OBSTACLE DETECTION AND COLLISION AVOIDANCE USING ULTRASONIC DISTANCE SENSORS FOR AN AUTONOMOUS QUADROCOPTER Nils Gageik, Thilo Müller, Sergio Montenegro University of Würzburg, Aerospace Information Technology

More information

World Technology Evaluation Center International Study of Robotics Research. Robotic Vehicles. Robotic vehicles study group:

World Technology Evaluation Center International Study of Robotics Research. Robotic Vehicles. Robotic vehicles study group: World Technology Evaluation Center International Study of Robotics Research Robotic Vehicles Robotic vehicles study group: Arthur Sanderson, Rensselaer Polytechnic Institute (Presenter) George Bekey, University

More information

Future Intelligent Machines

Future Intelligent Machines Future Intelligent Machines TKK GIM research institute Content of the talk Introductory remarks Intelligent machines Subsystems technology and modularity Robots and biology Robots in homes Introductory

More information

EE631 Cooperating Autonomous Mobile Robots. Lecture 1: Introduction. Prof. Yi Guo ECE Department

EE631 Cooperating Autonomous Mobile Robots. Lecture 1: Introduction. Prof. Yi Guo ECE Department EE631 Cooperating Autonomous Mobile Robots Lecture 1: Introduction Prof. Yi Guo ECE Department Plan Overview of Syllabus Introduction to Robotics Applications of Mobile Robots Ways of Operation Single

More information

Planning in autonomous mobile robotics

Planning in autonomous mobile robotics Sistemi Intelligenti Corso di Laurea in Informatica, A.A. 2017-2018 Università degli Studi di Milano Planning in autonomous mobile robotics Nicola Basilico Dipartimento di Informatica Via Comelico 39/41-20135

More information

Glossary of terms. Short explanation

Glossary of terms. Short explanation Glossary Concept Module. Video Short explanation Abstraction 2.4 Capturing the essence of the behavior of interest (getting a model or representation) Action in the control Derivative 4.2 The control signal

More information

Team Kanaloa: research initiatives and the Vertically Integrated Project (VIP) development paradigm

Team Kanaloa: research initiatives and the Vertically Integrated Project (VIP) development paradigm Additive Manufacturing Renewable Energy and Energy Storage Astronomical Instruments and Precision Engineering Team Kanaloa: research initiatives and the Vertically Integrated Project (VIP) development

More information

Robots in society: Event 2

Robots in society: Event 2 Robots in society: Event 2 Service Robots Professor Gurvinder Singh Virk Technical Director, InnotecUK Trustee, CLAWAR Association Ltd Innovative Technology and Science Ltd InnoTecUK set up in 2009 and

More information

Wide Area Wireless Networked Navigators

Wide Area Wireless Networked Navigators Wide Area Wireless Networked Navigators Dr. Norman Coleman, Ken Lam, George Papanagopoulos, Ketula Patel, and Ricky May US Army Armament Research, Development and Engineering Center Picatinny Arsenal,

More information

Introduction to Robotics

Introduction to Robotics Introduction to Robotics CSc 8400 Fall 2005 Simon Parsons Brooklyn College Textbook (slides taken from those provided by Siegwart and Nourbakhsh with a (few) additions) Intelligent Robotics and Autonomous

More information

Advanced Robotics Introduction

Advanced Robotics Introduction Advanced Robotics Introduction Institute for Software Technology 1 Motivation Agenda Some Definitions and Thought about Autonomous Robots History Challenges Application Examples 2 http://youtu.be/rvnvnhim9kg

More information

Prospective Teleautonomy For EOD Operations

Prospective Teleautonomy For EOD Operations Perception and task guidance Perceived world model & intent Prospective Teleautonomy For EOD Operations Prof. Seth Teller Electrical Engineering and Computer Science Department Computer Science and Artificial

More information

Advanced Robotics Introduction

Advanced Robotics Introduction Advanced Robotics Introduction Institute for Software Technology 1 Agenda Motivation Some Definitions and Thought about Autonomous Robots History Challenges Application Examples 2 Bridge the Gap Mobile

More information

MTRX 4700 : Experimental Robotics

MTRX 4700 : Experimental Robotics Mtrx 4700 : Experimental Robotics Dr. Stefan B. Williams Dr. Robert Fitch Slide 1 Course Objectives The objective of the course is to provide students with the essential skills necessary to develop robotic

More information

Introduction to Robotics

Introduction to Robotics Autonomous Mobile Robots, Chapter Introduction to Robotics CSc 8400 Fall 2005 Simon Parsons Brooklyn College Autonomous Mobile Robots, Chapter Textbook (slides taken from those provided by Siegwart and

More information

Robotics Enabling Autonomy in Challenging Environments

Robotics Enabling Autonomy in Challenging Environments Robotics Enabling Autonomy in Challenging Environments Ioannis Rekleitis Computer Science and Engineering, University of South Carolina CSCE 190 21 Oct. 2014 Ioannis Rekleitis 1 Why Robotics? Mars exploration

More information

ARTIFICIAL INTELLIGENCE - ROBOTICS

ARTIFICIAL INTELLIGENCE - ROBOTICS ARTIFICIAL INTELLIGENCE - ROBOTICS http://www.tutorialspoint.com/artificial_intelligence/artificial_intelligence_robotics.htm Copyright tutorialspoint.com Robotics is a domain in artificial intelligence

More information

4D-Particle filter localization for a simulated UAV

4D-Particle filter localization for a simulated UAV 4D-Particle filter localization for a simulated UAV Anna Chiara Bellini annachiara.bellini@gmail.com Abstract. Particle filters are a mathematical method that can be used to build a belief about the location

More information

Mobile Robots (Wheeled) (Take class notes)

Mobile Robots (Wheeled) (Take class notes) Mobile Robots (Wheeled) (Take class notes) Wheeled mobile robots Wheeled mobile platform controlled by a computer is called mobile robot in a broader sense Wheeled robots have a large scope of types and

More information

Introduction to Robotics

Introduction to Robotics Introduction to Robotics CIS 32.5 Fall 2009 Simon Parsons Brooklyn College Textbook (slides taken from those provided by Siegwart and Nourbakhsh with a (few) additions) Intelligent Robotics and Autonomous

More information

Jager UAVs to Locate GPS Interference

Jager UAVs to Locate GPS Interference JIFX 16-1 2-6 November 2015 Camp Roberts, CA Jager UAVs to Locate GPS Interference Stanford GPS Research Laboratory and the Stanford Intelligent Systems Lab Principal Investigator: Sherman Lo, PhD Area

More information

Overview of Challenges in the Development of Autonomous Mobile Robots. August 23, 2011

Overview of Challenges in the Development of Autonomous Mobile Robots. August 23, 2011 Overview of Challenges in the Development of Autonomous Mobile Robots August 23, 2011 What is in a Robot? Sensors Effectors and actuators (i.e., mechanical) Used for locomotion and manipulation Controllers

More information

CS 730/830: Intro AI. Prof. Wheeler Ruml. TA Bence Cserna. Thinking inside the box. 5 handouts: course info, project info, schedule, slides, asst 1

CS 730/830: Intro AI. Prof. Wheeler Ruml. TA Bence Cserna. Thinking inside the box. 5 handouts: course info, project info, schedule, slides, asst 1 CS 730/830: Intro AI Prof. Wheeler Ruml TA Bence Cserna Thinking inside the box. 5 handouts: course info, project info, schedule, slides, asst 1 Wheeler Ruml (UNH) Lecture 1, CS 730 1 / 23 My Definition

More information

Robotic Technology for Port and Maritime Automation

Robotic Technology for Port and Maritime Automation Industrial/Service Robots Field Robots Robotic Technology for Port and Maritime Automation Presenter: Assoc Prof Chen I-Ming Director, Robotics Research Center & Intelligent Systems Center School of Mechanical

More information

FUNDAMENTALS ROBOT TECHNOLOGY. An Introduction to Industrial Robots, T eleoperators and Robot Vehicles. D J Todd. Kogan Page

FUNDAMENTALS ROBOT TECHNOLOGY. An Introduction to Industrial Robots, T eleoperators and Robot Vehicles. D J Todd. Kogan Page FUNDAMENTALS of ROBOT TECHNOLOGY An Introduction to Industrial Robots, T eleoperators and Robot Vehicles D J Todd &\ Kogan Page First published in 1986 by Kogan Page Ltd 120 Pentonville Road, London Nl

More information

Event-based Algorithms for Robust and High-speed Robotics

Event-based Algorithms for Robust and High-speed Robotics Event-based Algorithms for Robust and High-speed Robotics Davide Scaramuzza All my research on event-based vision is summarized on this page: http://rpg.ifi.uzh.ch/research_dvs.html Davide Scaramuzza University

More information

A New Perspective to Altitude Acquire-and- Hold for Fixed Wing UAVs

A New Perspective to Altitude Acquire-and- Hold for Fixed Wing UAVs Student Research Paper Conference Vol-1, No-1, Aug 2014 A New Perspective to Altitude Acquire-and- Hold for Fixed Wing UAVs Mansoor Ahsan Avionics Department, CAE NUST Risalpur, Pakistan mahsan@cae.nust.edu.pk

More information

Perception. Read: AIMA Chapter 24 & Chapter HW#8 due today. Vision

Perception. Read: AIMA Chapter 24 & Chapter HW#8 due today. Vision 11-25-2013 Perception Vision Read: AIMA Chapter 24 & Chapter 25.3 HW#8 due today visual aural haptic & tactile vestibular (balance: equilibrium, acceleration, and orientation wrt gravity) olfactory taste

More information

OFFensive Swarm-Enabled Tactics (OFFSET)

OFFensive Swarm-Enabled Tactics (OFFSET) OFFensive Swarm-Enabled Tactics (OFFSET) Dr. Timothy H. Chung, Program Manager Tactical Technology Office Briefing Prepared for OFFSET Proposers Day 1 Why are Swarms Hard: Complexity of Swarms Number Agent

More information

The EDA SUM Project. Surveillance in an Urban environment using Mobile sensors. 2012, September 13 th - FMV SENSORS SYMPOSIUM 2012

The EDA SUM Project. Surveillance in an Urban environment using Mobile sensors. 2012, September 13 th - FMV SENSORS SYMPOSIUM 2012 Surveillance in an Urban environment using Mobile sensors 2012, September 13 th - FMV SENSORS SYMPOSIUM 2012 TABLE OF CONTENTS European Defence Agency Supported Project 1. SUM Project Description. 2. Subsystems

More information

18/07/2014 ICARUS AND ITS OPERATIONAL USE IN BOSNIA. Geert De Cubber Royal Military Academy Brussels, Belgium

18/07/2014 ICARUS AND ITS OPERATIONAL USE IN BOSNIA. Geert De Cubber Royal Military Academy Brussels, Belgium 18/07/2014 ICARUS AND ITS OPERATIONAL USE IN BOSNIA Geert De Cubber Royal Military Academy Brussels, Belgium PROBLEM STATEMENT Disasters disrupt our society Disasters are very difficult to manage Source:

More information

ROMEO Humanoid for Action and Communication. Rodolphe GELIN Aldebaran Robotics

ROMEO Humanoid for Action and Communication. Rodolphe GELIN Aldebaran Robotics ROMEO Humanoid for Action and Communication Rodolphe GELIN Aldebaran Robotics 7 th workshop on Humanoid November Soccer 2012 Robots Osaka, November 2012 Overview French National Project labeled by Cluster

More information

Intelligent Robotic Systems!! CS 685!! Jana Kosecka, 4444 Research II! ! Office hours Tue 2-3pm!

Intelligent Robotic Systems!! CS 685!! Jana Kosecka, 4444 Research II! ! Office hours Tue 2-3pm! Intelligent Robotic Systems!! CS 685!! Jana Kosecka, 4444 Research II! kosecka@gmu.edu, 3-1876! Office hours Tue 2-3pm! Logistics! Grading: Homeworks + Project 65% Exam: 35%! Prerequisites: basic statistical

More information

Information and Program

Information and Program Robotics 1 Information and Program Prof. Alessandro De Luca Robotics 1 1 Robotics 1 2017/18! First semester (12 weeks)! Monday, October 2, 2017 Monday, December 18, 2017! Courses of study (with this course

More information

Humanoid robot. Honda's ASIMO, an example of a humanoid robot

Humanoid robot. Honda's ASIMO, an example of a humanoid robot Humanoid robot Honda's ASIMO, an example of a humanoid robot A humanoid robot is a robot with its overall appearance based on that of the human body, allowing interaction with made-for-human tools or environments.

More information

The drone for precision agriculture

The drone for precision agriculture The drone for precision agriculture Reap the benefits of scouting crops from above If precision technology has driven the farming revolution of recent years, monitoring crops from the sky will drive the

More information

FLCS V2.1. AHRS, Autopilot, Gyro Stabilized Gimbals Control, Ground Control Station

FLCS V2.1. AHRS, Autopilot, Gyro Stabilized Gimbals Control, Ground Control Station AHRS, Autopilot, Gyro Stabilized Gimbals Control, Ground Control Station The platform provides a high performance basis for electromechanical system control. Originally designed for autonomous aerial vehicle

More information

PEGASUS : a future tool for providing near real-time high resolution data for disaster management. Lewyckyj Nicolas

PEGASUS : a future tool for providing near real-time high resolution data for disaster management. Lewyckyj Nicolas PEGASUS : a future tool for providing near real-time high resolution data for disaster management Lewyckyj Nicolas nicolas.lewyckyj@vito.be http://www.pegasus4europe.com Overview Vito in a nutshell GI

More information

Resilient and Accurate Autonomous Vehicle Navigation via Signals of Opportunity

Resilient and Accurate Autonomous Vehicle Navigation via Signals of Opportunity Resilient and Accurate Autonomous Vehicle Navigation via Signals of Opportunity Zak M. Kassas Autonomous Systems Perception, Intelligence, and Navigation (ASPIN) Laboratory University of California, Riverside

More information

Canadian Activities in Intelligent Robotic Systems - An Overview

Canadian Activities in Intelligent Robotic Systems - An Overview In Proceedings of the 8th ESA Workshop on Advanced Space Technologies for Robotics and Automation 'ASTRA 2004' ESTEC, Noordwijk, The Netherlands, November 2-4, 2004 Canadian Activities in Intelligent Robotic

More information

What will the robot do during the final demonstration?

What will the robot do during the final demonstration? SPENCER Questions & Answers What is project SPENCER about? SPENCER is a European Union-funded research project that advances technologies for intelligent robots that operate in human environments. Such

More information

Distributed Robotics From Science to Systems

Distributed Robotics From Science to Systems Distributed Robotics From Science to Systems Nikolaus Correll Distributed Robotics Laboratory, CSAIL, MIT August 8, 2008 Distributed Robotic Systems DRS 1 sensor 1 actuator... 1 device Applications Giant,

More information

Ubiquitous Positioning: A Pipe Dream or Reality?

Ubiquitous Positioning: A Pipe Dream or Reality? Ubiquitous Positioning: A Pipe Dream or Reality? Professor Terry Moore The University of What is Ubiquitous Positioning? Multi-, low-cost and robust positioning Based on single or multiple users Different

More information

Eurathlon Scenario Application Paper (SAP) Review Sheet

Eurathlon Scenario Application Paper (SAP) Review Sheet Eurathlon 2013 Scenario Application Paper (SAP) Review Sheet Team/Robot Scenario Space Applications Reconnaissance and surveillance in urban structures (USAR) For each of the following aspects, especially

More information

DEVELOPMENT OF A HUMANOID ROBOT FOR EDUCATION AND OUTREACH. K. Kelly, D. B. MacManus, C. McGinn

DEVELOPMENT OF A HUMANOID ROBOT FOR EDUCATION AND OUTREACH. K. Kelly, D. B. MacManus, C. McGinn DEVELOPMENT OF A HUMANOID ROBOT FOR EDUCATION AND OUTREACH K. Kelly, D. B. MacManus, C. McGinn Department of Mechanical and Manufacturing Engineering, Trinity College, Dublin 2, Ireland. ABSTRACT Robots

More information

Funzionalità per la navigazione di robot mobili. Corso di Robotica Prof. Davide Brugali Università degli Studi di Bergamo

Funzionalità per la navigazione di robot mobili. Corso di Robotica Prof. Davide Brugali Università degli Studi di Bergamo Funzionalità per la navigazione di robot mobili Corso di Robotica Prof. Davide Brugali Università degli Studi di Bergamo Variability of the Robotic Domain UNIBG - Corso di Robotica - Prof. Brugali Tourist

More information

Recent Progress in the Development of On-Board Electronics for Micro Air Vehicles

Recent Progress in the Development of On-Board Electronics for Micro Air Vehicles Recent Progress in the Development of On-Board Electronics for Micro Air Vehicles Jason Plew Jason Grzywna M. C. Nechyba Jason@mil.ufl.edu number9@mil.ufl.edu Nechyba@mil.ufl.edu Machine Intelligence Lab

More information

Experimental Study of Autonomous Target Pursuit with a Micro Fixed Wing Aircraft

Experimental Study of Autonomous Target Pursuit with a Micro Fixed Wing Aircraft Experimental Study of Autonomous Target Pursuit with a Micro Fixed Wing Aircraft Stanley Ng, Frank Lanke Fu Tarimo, and Mac Schwager Mechanical Engineering Department, Boston University, Boston, MA, 02215

More information

Robo$cs Introduc$on. ROS Workshop. Faculty of Informa$on Technology, Brno University of Technology Bozetechova 2, Brno

Robo$cs Introduc$on. ROS Workshop. Faculty of Informa$on Technology, Brno University of Technology Bozetechova 2, Brno Robo$cs Introduc$on ROS Workshop Faculty of Informa$on Technology, Brno University of Technology Bozetechova 2, 612 66 Brno name@fit.vutbr.cz What is a Robot? a programmable, mul.func.on manipulator USA

More information

Lecture 23: Robotics. Instructor: Joelle Pineau Class web page: What is a robot?

Lecture 23: Robotics. Instructor: Joelle Pineau Class web page:   What is a robot? COMP 102: Computers and Computing Lecture 23: Robotics Instructor: (jpineau@cs.mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/comp102 What is a robot? The word robot is popularized by the Czech playwright

More information

GPS System Design and Control Modeling. Chua Shyan Jin, Ronald. Assoc. Prof Gerard Leng. Aeronautical Engineering Group, NUS

GPS System Design and Control Modeling. Chua Shyan Jin, Ronald. Assoc. Prof Gerard Leng. Aeronautical Engineering Group, NUS GPS System Design and Control Modeling Chua Shyan Jin, Ronald Assoc. Prof Gerard Leng Aeronautical Engineering Group, NUS Abstract A GPS system for the autonomous navigation and surveillance of an airship

More information

Customer Showcase > Defense and Intelligence

Customer Showcase > Defense and Intelligence Customer Showcase Skyline TerraExplorer is a critical visualization technology broadly deployed in defense and intelligence, public safety and security, 3D geoportals, and urban planning markets. It fuses

More information

Eurathlon Scenario Application Paper (SAP) Review Sheet

Eurathlon Scenario Application Paper (SAP) Review Sheet Eurathlon 2013 Scenario Application Paper (SAP) Review Sheet Team/Robot Scenario Space Applications Services Mobile manipulation for handling hazardous material For each of the following aspects, especially

More information

Autonomous and Autonomic Systems: With Applications to NASA Intelligent Spacecraft Operations and Exploration Systems

Autonomous and Autonomic Systems: With Applications to NASA Intelligent Spacecraft Operations and Exploration Systems Walt Truszkowski, Harold L. Hallock, Christopher Rouff, Jay Karlin, James Rash, Mike Hinchey, and Roy Sterritt Autonomous and Autonomic Systems: With Applications to NASA Intelligent Spacecraft Operations

More information

Development of intelligent systems

Development of intelligent systems Development of intelligent systems (RInS) Robot sensors Danijel Skočaj University of Ljubljana Faculty of Computer and Information Science Academic year: 2017/18 Development of intelligent systems Robotic

More information

Invited talk IET-Renault Workshop Autonomous Vehicles: From theory to full scale applications Novotel Paris Les Halles, June 18 th 2015

Invited talk IET-Renault Workshop Autonomous Vehicles: From theory to full scale applications Novotel Paris Les Halles, June 18 th 2015 Risk assessment & Decision-making for safe Vehicle Navigation under Uncertainty Christian LAUGIER, First class Research Director at Inria http://emotion.inrialpes.fr/laugier Contributions from Mathias

More information

Lecture information. Intelligent Robotics Mobile robotic technology. Description of our seminar. Content of this course

Lecture information. Intelligent Robotics Mobile robotic technology. Description of our seminar. Content of this course Intelligent Robotics Mobile robotic technology Lecturer Houxiang Zhang TAMS, Department of Informatics, Germany http://sied.dis.uniroma1.it/ssrr07/ Lecture information Class Schedule: Seminar Intelligent

More information

CMPUT 412 Introduction. Csaba Szepesvári University of Alberta

CMPUT 412 Introduction. Csaba Szepesvári University of Alberta CMPUT 412 Introduction Csaba Szepesvári University of Alberta Table of contents Admin Robots Basics of control Robot design Admin Teams: Not yet assembled (next week) Rotational scheme First lab: Learn

More information

Intro to AI. AI is a huge field. AI is a huge field 2/19/15. What is AI. One definition:

Intro to AI. AI is a huge field. AI is a huge field 2/19/15. What is AI. One definition: Intro to AI CS30 David Kauchak Spring 2015 http://www.bbspot.com/comics/pc-weenies/2008/02/3248.php Adapted from notes from: Sara Owsley Sood AI is a huge field What is AI AI is a huge field What is AI

More information

ISTAR Concepts & Solutions

ISTAR Concepts & Solutions ISTAR Concepts & Solutions CDE Call Presentation Cardiff, 8 th September 2011 Today s Brief Introduction to the programme The opportunities ISTAR challenges The context Requirements for Novel Integrated

More information

Technical Cognitive Systems

Technical Cognitive Systems Part XII Actuators 3 Outline Robot Bases Hardware Components Robot Arms 4 Outline Robot Bases Hardware Components Robot Arms 5 (Wheeled) Locomotion Goal: Bring the robot to a desired pose (x, y, θ): (position

More information

Ground Robotics Capability Conference and Exhibit. Mr. George Solhan Office of Naval Research Code March 2010

Ground Robotics Capability Conference and Exhibit. Mr. George Solhan Office of Naval Research Code March 2010 Ground Robotics Capability Conference and Exhibit Mr. George Solhan Office of Naval Research Code 30 18 March 2010 1 S&T Focused on Naval Needs Broad FY10 DON S&T Funding = $1,824M Discovery & Invention

More information

How To Create The Right Collaborative System For Your Application. Corey Ryan Manager - Medical Robotics KUKA Robotics Corporation

How To Create The Right Collaborative System For Your Application. Corey Ryan Manager - Medical Robotics KUKA Robotics Corporation How To Create The Right Collaborative System For Your Application Corey Ryan Manager - Medical Robotics KUKA Robotics Corporation C Definitions Cobot: for this presentation a robot specifically designed

More information

A simple embedded stereoscopic vision system for an autonomous rover

A simple embedded stereoscopic vision system for an autonomous rover In Proceedings of the 8th ESA Workshop on Advanced Space Technologies for Robotics and Automation 'ASTRA 2004' ESTEC, Noordwijk, The Netherlands, November 2-4, 2004 A simple embedded stereoscopic vision

More information

Perception. Autonomous Mobile Robots. Sensors. Vision Uncertainties, Fusion Features. Autonomous Systems Lab. Zürich. Cognition.

Perception. Autonomous Mobile Robots. Sensors. Vision Uncertainties, Fusion Features. Autonomous Systems Lab. Zürich. Cognition. Autonomous Mobile Robots Localization "Position" Global Map Cognition Environment Model Local Map Path Perception Real World Environment Motion Control Perception Sensors Vision Uncertainties, Fusion Features

More information

Intelligent Robotics Sensors and Actuators

Intelligent Robotics Sensors and Actuators Intelligent Robotics Sensors and Actuators Luís Paulo Reis (University of Porto) Nuno Lau (University of Aveiro) The Perception Problem Do we need perception? Complexity Uncertainty Dynamic World Detection/Correction

More information

Field Robots. Abstract. Introduction. Chuck Thorpe and Hugh Durrant-Whyte

Field Robots. Abstract. Introduction. Chuck Thorpe and Hugh Durrant-Whyte Field Robots Chuck Thorpe and Hugh Durrant-Whyte Robotics Institute, Carnegie Mellon University, Pittsburgh USA; Australian Centre for Field Robotics, The University of Sydney, Sydney NSW 2006, Australia

More information

Instituto Nacional de Ciência e Tecnologia em Sistemas Embarcados Críticos

Instituto Nacional de Ciência e Tecnologia em Sistemas Embarcados Críticos Instituto Nacional de Ciência e Tecnologia em Sistemas Embarcados Críticos INCT-SEC José Carlos Maldonado ICMC/USP LRM Laboratóriode Robótica Móvel Principais Projetos: GT1, GT2 e GT3 GT 1 - Robôs Táticos

More information

International Journal of Scientific & Engineering Research, Volume 8, Issue 1, January ISSN

International Journal of Scientific & Engineering Research, Volume 8, Issue 1, January ISSN International Journal of Scientific & Engineering Research, Volume 8, Issue 1, January-2017 500 DESIGN AND FABRICATION OF VOICE CONTROLLED UNMANNED AERIAL VEHICLE Author-Shubham Maindarkar, Co-author-

More information

TECHNOLOGY DEVELOPMENT AREAS IN AAWA

TECHNOLOGY DEVELOPMENT AREAS IN AAWA TECHNOLOGY DEVELOPMENT AREAS IN AAWA Technologies for realizing remote and autonomous ships exist. The task is to find the optimum way to combine them reliably and cost effecticely. Ship state definition

More information

Humanoids. Lecture Outline. RSS 2010 Lecture # 19 Una-May O Reilly. Definition and motivation. Locomotion. Why humanoids? What are humanoids?

Humanoids. Lecture Outline. RSS 2010 Lecture # 19 Una-May O Reilly. Definition and motivation. Locomotion. Why humanoids? What are humanoids? Humanoids RSS 2010 Lecture # 19 Una-May O Reilly Lecture Outline Definition and motivation Why humanoids? What are humanoids? Examples Locomotion RSS 2010 Humanoids Lecture 1 1 Why humanoids? Capek, Paris

More information

Design of Tracked Robot with Remote Control for Surveillance

Design of Tracked Robot with Remote Control for Surveillance Proceedings of the 2014 International Conference on Advanced Mechatronic Systems, Kumamoto, Japan, August 10-12, 2014 Design of Tracked Robot with Remote Control for Surveillance Widodo Budiharto School

More information