Antenna Parameters. Ranga Rodrigo. University of Moratuwa. December 15, 2008

Size: px
Start display at page:

Download "Antenna Parameters. Ranga Rodrigo. University of Moratuwa. December 15, 2008"

Transcription

1 Antenna Parameters Ranga Rodrigo University of Moratuwa December 15, 2008 Ranga Rodrigo (University of Moratuwa) Antenna Parameters December 15, / 47

2 Summary of Last Week s Lecture 90 o Radiation Pattern for an Array with 10 Elements 135 o 45 o 180 o φ 0 o φ HP 225 o 315 o 270 o Figure 1: Half-Power Beam Width Ranga Rodrigo (University of Moratuwa) Antenna Parameters December 15, / 47

3 Directivity Summary of Last Week s Lecture Directivity We defined a parameter known as the directivity of the antenna, denoted by the symbol D, as the ratio of the maximum power density radiated by the antenna to the average power density. Thus the directivity of the Hertzian dipole is given by D = [P r] max [P r ] av = 1.5 (1) Ranga Rodrigo (University of Moratuwa) Antenna Parameters December 15, / 47

4 Summary of Last Week s Lecture Directivity D = 4π π θ=0 [f (θ, φ)] max 2π f (θ, φ) sin θdθdφ (2) φ=0 Ranga Rodrigo (University of Moratuwa) Antenna Parameters December 15, / 47

5 Summary of Last Week s Lecture Linear Antennas RF generator Z 0 forward wave reverse wave I V max V rms, I rms V min Open circuit transmission line. Ranga Rodrigo (University of Moratuwa) Antenna Parameters December 15, / 47

6 Summary of Last Week s Lecture Linear Antennas RF generator Z 0 forward wave reverse wave I V max V rms, I rms V min Radiation from a half-wave dipole. Ranga Rodrigo (University of Moratuwa) Antenna Parameters December 15, / 47

7 Summary of Last Week s Lecture Radiation Field Due to half-wave Dipole Now to find the radiation field due to the half-wave dipole, we divide it into a number of Hertzian dipoles, each of length dz. Ranga Rodrigo (University of Moratuwa) Antenna Parameters December 15, / 47

8 Summary of Last Week s Lecture Radiation Field Due to half-wave Dipole L 2 z i φ dz z θ θ P r r i θ z cos θ y x L 2 Half-wave dipole as a number of Hertzian dipoles. Ranga Rodrigo (University of Moratuwa) Antenna Parameters December 15, / 47

9 Summary of Last Week s Lecture Field Equation for the Half-Wave Dipole Evaluating the integral we obtain E θ = ηi 0 cos [(π/2) cos θ] sin (ωt π ) 2πr sin θ L r. (3a) Similarly where H = H φ i φ. H φ = I 0 cos [(π/2) cos θ] sin 2πr sin θ (ωt π L r ). (3b) Ranga Rodrigo (University of Moratuwa) Antenna Parameters December 15, / 47

10 Summary of Last Week s Lecture Power Radiated Power Radiated for the Half-Wave Dipole P rad = 0.609ηI2 0 π sin 2 ( ωt π L r ). (4) Ranga Rodrigo (University of Moratuwa) Antenna Parameters December 15, / 47

11 Summary of Last Week s Lecture Power Radiated for the Half-Wave Dipole Time-Average Radiated Power P rad = 1 ( ) 0.609η 2 I2 0. (5) π Ranga Rodrigo (University of Moratuwa) Antenna Parameters December 15, / 47

12 Summary of Last Week s Lecture Power Radiated for the Half-Wave Dipole Radiation Resistance of the Half-Wave Dipole R rad = 0.609η Ω. (6) π For free space, η = η 0 = 120πΩ, and R rad = = 73Ω. (7) Ranga Rodrigo (University of Moratuwa) Antenna Parameters December 15, / 47

13 Summary of Last Week s Lecture Radiation Pattern Radiation Pattern of the Half-Wave Dipole Radiation pattern for the field is cos [(π/2) cos θ]. sin θ Radiation pattern for the power desnsity is cos 2 [(π/2) cos θ]. sin 2 θ These are slightly more directional that the corresponding patterns for the Hertzian dipole. Ranga Rodrigo (University of Moratuwa) Antenna Parameters December 15, / 47

14 Summary of Last Week s Lecture Radiation Pattern Directivity of the Half-Wave Dipole From 2 D = Ranga Rodrigo (University of Moratuwa) Antenna Parameters December 15, / 47

15 Summary of Last Week s Lecture Center-Fed Linear Antennas of Arbitrary Length Center-Fed Linear Antennas of Arbitrary Length E θ = ηi 0 F(θ) sin(ωt βr). 2πr (8a) H φ = I 0 F(θ) sin(ωt βr). 2πr (8b) R rad = η π π/2 θ=0 F 2 (θ) sin θdθ. [ F 2 (θ) ] max (8c) D = π/2. (8d) θ=0 F2 (θ) sin θdθ Ranga Rodrigo (University of Moratuwa) Antenna Parameters December 15, / 47

16 Summary of Last Week s Lecture Center-Fed Linear Antennas of Arbitrary Length where F(θ) = cos ( βl 2 cos θ) cos βl 2. (9) sin θ F(θ) is the radiation pattern of the fields. For L = kλ, 9 reduces to F(θ) = cos(kπ cos θ) cos(kπ). (10) sin θ Ranga Rodrigo (University of Moratuwa) Antenna Parameters December 15, / 47

17 Antenna Parameters More on Directivity Directivity Continued We learned how to compute the directivity based on the radiation pattern. Directivity has no units, and is usually given in db or dbi, where the reference directivity is 1, the directivity of an isotropic antenna. However, sometimes the reference directivity is that of a half-wave dipole, The directivity then is in dbd. Ranga Rodrigo (University of Moratuwa) Antenna Parameters December 15, / 47

18 Gain Antenna Parameters Gain The gain of a transmit antenna is proportional to the directivity by a constant known as the antenna efficiency ot efficiency factor. This efficiency accounts for the power losses within the antenna. Gain, therefore, is not only a descriptor of antenna s power focusing ability, but also, takes into account the power losses within the antenna. Therefore the gain is always less than the directivity. Ranga Rodrigo (University of Moratuwa) Antenna Parameters December 15, / 47

19 Gain Antenna Parameters Gain Gain can be defined as maximum radiation intensity G = maximum radiation intensity from a reference antenna with same power output (11) Ranga Rodrigo (University of Moratuwa) Antenna Parameters December 15, / 47

20 Gain Antenna Parameters Gain G 0 = Often, the reference antenna is a linear half-wave antenna. If the reference antenna is assumed to be an isotropic antenna with 100 percent efficiency, the gain so defined for the subject antenna is called the gain with respect to an isotropic source and is designated G 0. maximum radiation intensity from subject antenna radiation intensity from (lossless) isotropic source with same power input (12) Ranga Rodrigo (University of Moratuwa) Antenna Parameters December 15, / 47

21 Antenna Parameters Let the maximum radiation intensity of from the subject antenna be U m. Let this be related to the value of the maximum radiation intensity U m for a 100 percent efficient subject antenna by a radiation efficiency factor k. Thus Gain U m = ku m (13) where 0 k 1. Therefore 12 may be written as G 0 = U m U 0 = ku m U 0, (14) where U 0 is the radiation intensity from a lossless isotropic source with the same power input. But U m U 0 is the directivity D in terms of intensities. Ranga Rodrigo (University of Moratuwa) Antenna Parameters December 15, / 47

22 Gain Antenna Parameters Gain where k is the efficiency factor. G = kd (15) Ranga Rodrigo (University of Moratuwa) Antenna Parameters December 15, / 47

23 Antenna Parameters Why Is Gain Always Less Than Directivity For a Practical Antenna? Gain Ranga Rodrigo (University of Moratuwa) Antenna Parameters December 15, / 47

24 Antenna Parameters Why Is Gain Always Less Than Directivity For a Practical Antenna? Gain The gain of a transmit antenna is proportional to directivity by a constant known as the antenna efficiency. This efficiency accounts for the power losses within the antenna. Gain therefore is not only a descriptor of the antenna s power focusing ability but also takes into account power losses within the antenna. Therefore, gain is always less than the directivity. Ranga Rodrigo (University of Moratuwa) Antenna Parameters December 15, / 47

25 Efficiency Antenna Parameters Efficiency 1 If the efficiency of an antenna is 100%, all the power delivered to the antenna is radiated. 2 Usually, however, some of this power is lost in conduction and dielectic losses. 3 Therefore, the efficiency is typically less than 100%. 4 A useful antenna should have an efficiency that is in the very least in the 80% range. Ranga Rodrigo (University of Moratuwa) Antenna Parameters December 15, / 47

26 Efficiency Antenna Parameters Efficiency P out = I 2 R rad. (16) P in = I 2 (R rad + R loss ). (17) where R loss is the loss resistance. Efficiency = P out P in = R rad R rad + R loss. (18) Ranga Rodrigo (University of Moratuwa) Antenna Parameters December 15, / 47

27 Antenna Parameters Antenna Aperture The Aperture Concept Consider a horn antenna as a receiving antenna. The power absorbed by the antenna is SA where A is the aperture area and S is the magnitude of power density of the incident electromagnetic wave. Ranga Rodrigo (University of Moratuwa) Antenna Parameters December 15, / 47

28 Antenna Parameters Antenna Aperture Effective Area of an Aperture An antenna has an effective aperture area as a receive antenna; it is the area which extracts the power from the incident electromagnetic wave. As a transmit antenna, the effective area is the area from which electromagnetic waves are given out. For aperture antennas such as horn antennas, the effective area is closely related to the physical area. However, for wire antennas such as dipoles, the effective area is much bigger than the physical area of the antenna. Ranga Rodrigo (University of Moratuwa) Antenna Parameters December 15, / 47

29 Antenna Parameters Effective Aperture Antenna Aperture Consider any type of collector or receiving antenna. The antenna collects power from the wave and delivers it to the terminating or load impedance Z T connected to its terminals. The antenna may be replaced by its Thévenin equivalent having an equivalent voltage of V and internal antenna impedance Z A. Z T V Z A Ranga Rodrigo (University of Moratuwa) Antenna Parameters December 15, / 47

30 Antenna Parameters Antenna Aperture The voltage V is induced by the passing wave and produces a current I = V Z T + Z A. (19) In general, the antenna and terminating impedances are complex, thus Z T = R T + jx T (20a) Z A = R A + jx A (20b) The antenna resistance comprises of two parts, a radiation resistance R rad, and a loss resistance R loss, that is R A = R rad + R loss. (21) Ranga Rodrigo (University of Moratuwa) Antenna Parameters December 15, / 47

31 Antenna Parameters Antenna Aperture Let the power delivered by the antenna to the terminating impedance be W. Then W = I 2 R T (22) I = V (R rad + R loss + R T ) 2 + (X A + X T ) 2. (23) W = V 2 R T (R rad + R loss + R T ) 2 + (X A + X T ) 2. (24) Ranga Rodrigo (University of Moratuwa) Antenna Parameters December 15, / 47

32 Antenna Parameters Effective Aperture Antenna Aperture The ratio of power W in the terminating impedance to the power density of the incident wave will be defined as the effective aperture A e. Thus, where P = P. Thus, A e = Effective aperture = W P = A e, (25) V 2 R T P [ (26) (R rad + R loss + R T ) 2 + (X A + X T ) 2]. V is the induced voltage when the antenna is oriented for maximum response and the incident wave has the same polarization as the antenna. Ranga Rodrigo (University of Moratuwa) Antenna Parameters December 15, / 47

33 Antenna Parameters Maximum Effective Aperture Maximum Effective Aperture When the terminating impedance is the complex conjugate of the antenna impedance, so that the maximum power is transferred, and if the antenna losses are zero (R loss = 0 and therefore R A = R rad ), So, the largest possible power is X T = X A (27) R T = R rad. (28) W = V2 R T 4R 2 T = V2 4R rad. (29) Ranga Rodrigo (University of Moratuwa) Antenna Parameters December 15, / 47

34 Antenna Parameters Maximum Effective Aperture The power W is delivered to the terminating impedance under the conditions of maximum power transfer and zero antenna losses. The ration of this power to the power density of the incident wave is the maximum effective aperture A em. Maximum effective aperture = W P = A em. (30) A em = V2 4PR rad. (31) Ranga Rodrigo (University of Moratuwa) Antenna Parameters December 15, / 47

35 Antenna Parameters Maximum Effective Aperture of a Hertzian Dipole Maximum Effective Aperture of a Hertzian Dipole Consider the Hertzian dipole with length dl λ, with a uniform current distribution. The terminating resistance R T is assumed to be equal to R rad, and the antenna loss resistance R loss is assumed to be equal to zero. V = Edl. (32) We found that ( ) 2 dl R rad = 80π 2 Ω (33) λ Ranga Rodrigo (University of Moratuwa) Antenna Parameters December 15, / 47

36 Antenna Parameters Maximum Effective Aperture of a Hertzian Dipole The (magnitude) of the power density in free space is P = E2 η = E2 120π (34) The maximum effective aperture of the Hertzian dipole is A em = 120πE2 (dl) 2 λ 2 320π 2 E 2 (dl) 2 = 3λ2 8π = 0.119λ2. (35) Ranga Rodrigo (University of Moratuwa) Antenna Parameters December 15, / 47

37 Antenna Parameters Maximum Effective Aperture of a Half-Wave Dipole Maximum Effective Aperture of a Half-Wave Dipole L 2 z i φ dz θ r r P z i θ θ z cos θ y x Ranga Rodrigo (University of Moratuwa) L 2 Antenna Parameters December 15, / 47

38 Antenna Parameters Maximum Effective Aperture of a Half-Wave Dipole Maximum Effective Aperture of a Half-Wave Dipole We noticed that when we considered the Hertzian dipole at a distance z from the origin of a half-wave dipole, the current in this Hertzian dipole is I 0 cos(πz /L) cos ωt. For the half-wave dipole L = λ/2. The infinitesimal voltage dv due to the voltage induced by the incident wave is this Hertzian dipole of length dz is dv = E(dz ) cos(2πz /λ) (36) We can find the total induced voltage by integrating over z. Ranga Rodrigo (University of Moratuwa) Antenna Parameters December 15, / 47

39 Antenna Parameters Maximum Effective Aperture of a Half-Wave Dipole Radiator A em D D (db) Isotropic λ 2 4π Short dipole 1 3λ 2 Half-wave dipole 8π 30λ2 73π A short dipole is always of finite length even though it may be very short. The current along a short dipole is uniform. Ranga Rodrigo (University of Moratuwa) Antenna Parameters December 15, / 47

40 Received Power in a Communication System Received Power in a Communication System The received power in relation to a radio link is given by the Friis transmission formula, which was presented by harold T. Friis while at Bell Labs in Ranga Rodrigo (University of Moratuwa) Antenna Parameters December 15, / 47

41 Received Power in a Communication System Suppose the transmit antenna and the receive antenna are aligned for maximum reception. If the transmit antenna is isotropic, the power density of the electromagnetic wave at the receiver is S r = P t 4πR 2 (37) where P t is the transmit power, and R is the distance from the transmitter. However, if the transmitter has a gain G t, the power density at the receiver is S r = P tg t 4πR 2 (38) Ranga Rodrigo (University of Moratuwa) Antenna Parameters December 15, / 47

42 Received Power in a Communication System If the effective area of the receive antenna is A er, the power collected at the receiver, P r = S r A er, is P r = P tg t A er 4πR 2. (39) Directivity and gain are related to the aperture area. Thus, the gain of the transmitter G t is related to its aperture A et by G t = 4π λ 2 A et. (40) Therefore, from Equations 39 and 40 we get P r = P ta et A er R 2 λ 2. (41) Ranga Rodrigo (University of Moratuwa) Antenna Parameters December 15, / 47

43 Received Power in a Communication System Power given by Equation 41 can also be expressed in terms of antenna gains: ( ) λ 2 P r = P t G t G r. (42) 4πR Ranga Rodrigo (University of Moratuwa) Antenna Parameters December 15, / 47

44 Received Power in a Communication System Example 3.1 What is the maximum effective aperture of a microwave antenna with a directivity of 800? Assume that the antenna is designed for 10 GHz. Ranga Rodrigo (University of Moratuwa) Antenna Parameters December 15, / 47

45 Received Power in a Communication System Example 3.1 What is the maximum effective aperture of a microwave antenna with a directivity of 800? Assume that the antenna is designed for 10 GHz. Solution 3.2 D = 4π λ 2 A em. λ = 3 cm =.03 m. A em = π = m2. Ranga Rodrigo (University of Moratuwa) Antenna Parameters December 15, / 47

46 Received Power in a Communication System Example 3.3 What is the maximum power received at a distance of 2 km over a 7 GHz free-space link consisting of a transmit antenna with a 30 db gain and a receive antenna with a 25 db gain? The gains are expressed with respect to a lossless isotropic source. The transmit antenna input power is 1 kw. Ranga Rodrigo (University of Moratuwa) Antenna Parameters December 15, / 47

47 Received Power in a Communication System Solution 3.4 ( ) λ 2 P r = P t G t G r, 4πR P r (dbw) = P t (dbw) + G t (db) + G r (db) + 10 log = , = 12.7 (db), = 0.2 pw. ( λ 4π Ranga Rodrigo (University of Moratuwa) Antenna Parameters December 15, / 47

48 Variation of Directivity with Length Variation of Directivity with Length As the length of the antenna becomes longer, the antenna beamwidth becomes narrower. However, as the antenna becomes longer that a wavelength, side-lobes appear in the radiation pattern. This means that the radiation is now not focused in one main-lobe but is focused in multiple directions. Ranga Rodrigo (University of Moratuwa) Antenna Parameters December 15, / 47

49 Variation of Directivity with Length Reference Indra J. Dayawansa. Antennas and propagation. Lecture notes, University of Moratuwa, John D. Kraus. Antennas. McGraw-Hill, Nannapaneni Narayana Rao. Elements of Engineering Electromaganetics. Prentice Hall, 4th edition, Ranga Rodrigo (University of Moratuwa) Antenna Parameters December 15, / 47

Impedance and Loop Antennas

Impedance and Loop Antennas Impedance and Loop Antennas Ranga Rodrigo University of Moratuwa January 4, 2009 Ranga Rodrigo (University of Moratuwa) Impedance and Loop Antennas January 4, 2009 1 / 41 Gain Summary of Last Week s Lecture

More information

Radiation from Antennas

Radiation from Antennas Radiation from Antennas Ranga Rodrigo University of Moratuwa November 20, 2008 Ranga Rodrigo (University of Moratuwa) Radiation from Antennas November 20, 2008 1 / 32 Summary of Last Week s Lecture Radiation

More information

An Introduction to Antennas

An Introduction to Antennas May 11, 010 An Introduction to Antennas 1 Outline Antenna definition Main parameters of an antenna Types of antennas Antenna radiation (oynting vector) Radiation pattern Far-field distance, directivity,

More information

Notes 21 Introduction to Antennas

Notes 21 Introduction to Antennas ECE 3317 Applied Electromagnetic Waves Prof. David R. Jackson Fall 018 Notes 1 Introduction to Antennas 1 Introduction to Antennas Antennas An antenna is a device that is used to transmit and/or receive

More information

Linear Wire Antennas. EE-4382/ Antenna Engineering

Linear Wire Antennas. EE-4382/ Antenna Engineering Linear Wire Antennas EE-438/5306 - Antenna Engineering Outline Introduction Infinitesimal Dipole Small Dipole Finite Length Dipole Half-Wave Dipole Ground Effect Constantine A. Balanis, Antenna Theory:

More information

( ) 2 ( ) 3 ( ) + 1. cos! t " R / v p 1 ) H =! ˆ" I #l ' $ 2 ' 2 (18.20) * + ! ˆ& "I #l ' $ 2 ' , ( βr << 1. "l ' E! ˆR I 0"l ' cos& + ˆ& 0

( ) 2 ( ) 3 ( ) + 1. cos! t  R / v p 1 ) H =! ˆ I #l ' $ 2 ' 2 (18.20) * + ! ˆ& I #l ' $ 2 ' , ( βr << 1. l ' E! ˆR I 0l ' cos& + ˆ& 0 Summary Chapter 8. This last chapter treats the problem of antennas and radiation from antennas. We start with the elemental electric dipole and introduce the idea of retardation of potentials and fields

More information

Antenna Fundamentals Basics antenna theory and concepts

Antenna Fundamentals Basics antenna theory and concepts Antenna Fundamentals Basics antenna theory and concepts M. Haridim Brno University of Technology, Brno February 2017 1 Topics What is antenna Antenna types Antenna parameters: radiation pattern, directivity,

More information

Antenna & Propagation. Antenna Parameters

Antenna & Propagation. Antenna Parameters For updated version, please click on http://ocw.ump.edu.my Antenna & Propagation Antenna Parameters by Nor Hadzfizah Binti Mohd Radi Faculty of Electric & Electronics Engineering hadzfizah@ump.edu.my Chapter

More information

Antenna Theory EELE 5445

Antenna Theory EELE 5445 Antenna Theory EELE 5445 Lecture 6: Dipole Antenna Dr. Mohamed Ouda Electrical Engineering Department Islamic University of Gaza 2013 The dipole and the monopole The dipole and the monopole are arguably

More information

Antenna Theory. Introduction

Antenna Theory. Introduction 1 Introduction Antenna Theory Antennas are device that designed to radiate electromagnetic energy efficiently in a prescribed manner. It is the current distributions on the antennas that produce the radiation.

More information

Final Examination. 22 April 2013, 9:30 12:00. Examiner: Prof. Sean V. Hum. All non-programmable electronic calculators are allowed.

Final Examination. 22 April 2013, 9:30 12:00. Examiner: Prof. Sean V. Hum. All non-programmable electronic calculators are allowed. UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING The Edward S. Rogers Sr. Department of Electrical and Computer Engineering ECE 422H1S RADIO AND MICROWAVE WIRELESS SYSTEMS Final Examination

More information

Dr. John S. Seybold. November 9, IEEE Melbourne COM/SP AP/MTT Chapters

Dr. John S. Seybold. November 9, IEEE Melbourne COM/SP AP/MTT Chapters Antennas Dr. John S. Seybold November 9, 004 IEEE Melbourne COM/SP AP/MTT Chapters Introduction The antenna is the air interface of a communication system An antenna is an electrical conductor or system

More information

EC ANTENNA AND WAVE PROPAGATION

EC ANTENNA AND WAVE PROPAGATION EC6602 - ANTENNA AND WAVE PROPAGATION FUNDAMENTALS PART-B QUESTION BANK UNIT 1 1. Define the following parameters w.r.t antenna: i. Radiation resistance. ii. Beam area. iii. Radiation intensity. iv. Directivity.

More information

ANTENNAS AND WAVE PROPAGATION EC602

ANTENNAS AND WAVE PROPAGATION EC602 ANTENNAS AND WAVE PROPAGATION EC602 B.Tech Electronics & Communication Engineering, Semester VI INSTITUTE OF TECHNOLOGY NIRMA UNIVERSITY 1 Lesson Planning (L-3,P-2,C-4) Chapter No. Name Hours 1. Basic

More information

ELEC4604. RF Electronics. Experiment 1

ELEC4604. RF Electronics. Experiment 1 ELEC464 RF Electronics Experiment ANTENNA RADATO N PATTERNS. ntroduction The performance of RF communication systems depend critically on the radiation characteristics of the antennae it employs. These

More information

Antenna Engineering Lecture 3: Basic Antenna Parameters

Antenna Engineering Lecture 3: Basic Antenna Parameters Antenna Engineering Lecture 3: Basic Antenna Parameters ELC 405a Fall 2011 Department of Electronics and Communications Engineering Faculty of Engineering Cairo University 2 Outline 1 Radiation Pattern

More information

ELEC 425 Interference Control in Electronics Lecture 7(a) Introduction to Antennas: Terminology

ELEC 425 Interference Control in Electronics Lecture 7(a) Introduction to Antennas: Terminology Dr. Gregory J. Mazzaro Fall 017 ELEC 45 Interference Control in Electronics Lecture 7(a) Introduction to Antennas: Terminology Chapter 9 THE CITADEL, THE MILITARY COLLEGE OF SOUTH CAROLINA 171 Moultrie

More information

ECE 4370: Antenna Engineering TEST 1 (Fall 2011)

ECE 4370: Antenna Engineering TEST 1 (Fall 2011) Name: GTID: ECE 4370: Antenna Engineering TEST 1 (Fall 2011) Please read all instructions before continuing with the test. This is a closed notes, closed book, closed friend, open mind test. On your desk

More information

UNIT Explain the radiation from two-wire. Ans: Radiation from Two wire

UNIT Explain the radiation from two-wire. Ans:   Radiation from Two wire UNIT 1 1. Explain the radiation from two-wire. Radiation from Two wire Figure1.1.1 shows a voltage source connected two-wire transmission line which is further connected to an antenna. An electric field

More information

What does reciprocity mean

What does reciprocity mean Antennas Definition of antenna: A device for converting electromagnetic radiation in space into electrical currents in conductors or vice-versa. Radio telescopes are antennas Reciprocity says we can treat

More information

Half-Wave Dipole. Radiation Resistance. Antenna Efficiency

Half-Wave Dipole. Radiation Resistance. Antenna Efficiency Antennas Simple Antennas Isotropic radiator is the simplest antenna mathematically Radiates all the power supplied to it, equally in all directions Theoretical only, can t be built Useful as a reference:

More information

ELEG 648 Radiation/Antennas I. Mark Mirotznik, Ph.D. Associate Professor The University of Delaware

ELEG 648 Radiation/Antennas I. Mark Mirotznik, Ph.D. Associate Professor The University of Delaware ELEG 648 Radiation/Antennas I Mark Mirotznik Ph.D. Associate Professor The University of Delaware A jk rr ' e ' r J r dv ' 4 r r ' F If we have magnetic sources jk rr ' e ' r M r dv ' 4 r r ' Field

More information

Friis Formula and Effects

Friis Formula and Effects Friis Formula and Effects Page 1 Friis transmission formula in free space is This equation assumes the following: Friis Formula and Effects G rg t λ (4πR). (1) 1. That the antennas are pointed at each

More information

ECE 4370: Antenna Engineering TEST 1 (Fall 2017)

ECE 4370: Antenna Engineering TEST 1 (Fall 2017) Name: GTID: ECE 437: Antenna Engineering TEST 1 Fall 17) Please read all instructions before continuing with the test. This is a closed notes, closed book, closed friend, open mind test. On your desk you

More information

Chapter 4 The RF Link

Chapter 4 The RF Link Chapter 4 The RF Link The fundamental elements of the communications satellite Radio Frequency (RF) or free space link are introduced. Basic transmission parameters, such as Antenna gain, Beamwidth, Free-space

More information

KULLIYYAH OF ENGINEERING

KULLIYYAH OF ENGINEERING KULLIYYAH OF ENGINEERING DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING ANTENNA AND WAVE PROPAGATION LABORATORY (ECE 4103) EXPERIMENT NO 3 RADIATION PATTERN AND GAIN CHARACTERISTICS OF THE DISH (PARABOLIC)

More information

Chapter 2. Fundamental Properties of Antennas. ECE 5318/6352 Antenna Engineering Dr. Stuart Long

Chapter 2. Fundamental Properties of Antennas. ECE 5318/6352 Antenna Engineering Dr. Stuart Long Chapter Fundamental Properties of Antennas ECE 5318/635 Antenna Engineering Dr. Stuart Long 1 IEEE Standards Definition of Terms for Antennas IEEE Standard 145-1983 IEEE Transactions on Antennas and Propagation

More information

25. Antennas II. Radiation patterns. Beyond the Hertzian dipole - superposition. Directivity and antenna gain. More complicated antennas

25. Antennas II. Radiation patterns. Beyond the Hertzian dipole - superposition. Directivity and antenna gain. More complicated antennas 25. Antennas II Radiation patterns Beyond the Hertzian dipole - superposition Directivity and antenna gain More complicated antennas Impedance matching Reminder: Hertzian dipole The Hertzian dipole is

More information

UNIT Write short notes on travelling wave antenna? Ans: Travelling Wave Antenna

UNIT Write short notes on travelling wave antenna? Ans:   Travelling Wave Antenna UNIT 4 1. Write short notes on travelling wave antenna? Travelling Wave Antenna Travelling wave or non-resonant or aperiodic antennas are those antennas in which there is no reflected wave i.e., standing

More information

Aalto University School of Electrical Engineering. ELEC-E4750 Radiowave Propagation and Scattering Session 1: Prerequisite

Aalto University School of Electrical Engineering. ELEC-E4750 Radiowave Propagation and Scattering Session 1: Prerequisite ELEC-E4750 Radiowave Propagation and Scattering Session 1: Prerequisite ELEC-E4750 15.09.2016 1 Course Implementation Responsible teacher: Katsuyuki Haneda, teachers: Usman Virk and Suzan Miah The course

More information

BHARATHIDASAN ENGINEERING COLLEGE NATTARAMPALLI Frequently Asked Questions (FAQ) Unit 1

BHARATHIDASAN ENGINEERING COLLEGE NATTARAMPALLI Frequently Asked Questions (FAQ) Unit 1 BHARATHIDASAN ENGINEERING COLLEGE NATTARAMPALLI 635854 Frequently Asked Questions (FAQ) Unit 1 Degree / Branch : B.E / ECE Sem / Year : 3 rd / 6 th Sub Name : Antennas & Wave Propagation Sub Code : EC6602

More information

EMG4066:Antennas and Propagation Exp 1:ANTENNAS MMU:FOE. To study the radiation pattern characteristics of various types of antennas.

EMG4066:Antennas and Propagation Exp 1:ANTENNAS MMU:FOE. To study the radiation pattern characteristics of various types of antennas. OBJECTIVES To study the radiation pattern characteristics of various types of antennas. APPARATUS Microwave Source Rotating Antenna Platform Measurement Interface Transmitting Horn Antenna Dipole and Yagi

More information

11/8/2007 Antenna Pattern notes 1/1

11/8/2007 Antenna Pattern notes 1/1 11/8/27 ntenna Pattern notes 1/1 C. ntenna Pattern Radiation Intensity is dependent on both the antenna and the radiated power. We can normalize the Radiation Intensity function to construct a result that

More information

TRANSMITTING ANTENNA WITH DUAL CIRCULAR POLARISATION FOR INDOOR ANTENNA MEASUREMENT RANGE

TRANSMITTING ANTENNA WITH DUAL CIRCULAR POLARISATION FOR INDOOR ANTENNA MEASUREMENT RANGE TRANSMITTING ANTENNA WITH DUAL CIRCULAR POLARISATION FOR INDOOR ANTENNA MEASUREMENT RANGE Michal Mrnka, Jan Vélim Doctoral Degree Programme (2), FEEC BUT E-mail: xmrnka01@stud.feec.vutbr.cz, velim@phd.feec.vutbr.cz

More information

CHAPTER 5 THEORY AND TYPES OF ANTENNAS. 5.1 Introduction

CHAPTER 5 THEORY AND TYPES OF ANTENNAS. 5.1 Introduction CHAPTER 5 THEORY AND TYPES OF ANTENNAS 5.1 Introduction Antenna is an integral part of wireless communication systems, considered as an interface between transmission line and free space [16]. Antenna

More information

Travelling Wave, Broadband, and Frequency Independent Antennas. EE-4382/ Antenna Engineering

Travelling Wave, Broadband, and Frequency Independent Antennas. EE-4382/ Antenna Engineering Travelling Wave, Broadband, and Frequency Independent Antennas EE-4382/5306 - Antenna Engineering Outline Traveling Wave Antennas Introduction Traveling Wave Antennas: Long Wire, V Antenna, Rhombic Antenna

More information

DUAL-ANTENNA SYSTEM COMPOSED OF PATCH AR- RAY AND PLANAR YAGI ANTENNA FOR ELIMINA- TION OF BLINDNESS IN CELLULAR MOBILE COMMU- NICATIONS

DUAL-ANTENNA SYSTEM COMPOSED OF PATCH AR- RAY AND PLANAR YAGI ANTENNA FOR ELIMINA- TION OF BLINDNESS IN CELLULAR MOBILE COMMU- NICATIONS Progress In Electromagnetics Research C, Vol. 21, 87 97, 2011 DUAL-ANTENNA SYSTEM COMPOSED OF PATCH AR- RAY AND PLANAR YAGI ANTENNA FOR ELIMINA- TION OF BLINDNESS IN CELLULAR MOBILE COMMU- NICATIONS S.-W.

More information

ECEn 665: Antennas and Propagation for Wireless Communications 48. Since the integrand is periodic, we can change the integration limits to

ECEn 665: Antennas and Propagation for Wireless Communications 48. Since the integrand is periodic, we can change the integration limits to ECEn 665: Antennas and Propagation for Wireless Communications 48 3.3 Loop Antenna An electric dipole antenna radiates an electric field that is aligned with the dipole and a magnetic field that radiates

More information

OSCILLATORS AND MIXERS RF Oscillators 605. Crystal Oscillators Microwave Oscillators 613

OSCILLATORS AND MIXERS RF Oscillators 605. Crystal Oscillators Microwave Oscillators 613 xvi 13 Contents OSCILLATORS AND MIXERS 604 13.1 RF Oscillators 605 General Analysis 606 Oscillators Using a Common Emitter BJT 607 Oscillators Using a Common Gate FET 609 Practical Considerations 610 Crystal

More information

Antenna and Noise Concepts

Antenna and Noise Concepts Antenna and Noise Concepts 1 Antenna concepts 2 Antenna impedance and efficiency 3 Antenna patterns 4 Receiving antenna performance Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018

More information

Radiation and Antennas

Radiation and Antennas Chapter 9 Radiation and Antennas. Basic Formulations 2. Hertzian Dipole Antenna 3. Linear Antennas An antenna is a device to transmit or receive electromagnetic power more efficiently with a more directive

More information

Propagation mechanisms

Propagation mechanisms RADIO SYSTEMS ETIN15 Lecture no: 2 Propagation mechanisms Ove Edfors, Department of Electrical and Information Technology Ove.Edfors@eit.lth.se Contents Short on db calculations Basics about antennas Propagation

More information

RADAR Antennas R A D A R R A D A R S Y S T E M S S Y S T E M S. Lecture DR Sanjeev Kumar Mishra. 2 max

RADAR Antennas R A D A R R A D A R S Y S T E M S S Y S T E M S. Lecture DR Sanjeev Kumar Mishra. 2 max Y T E M Y T E M anjeev Kumar Mishra Lecture 17-20 ntennas i p r t t ne L L L N kt BF PG 1 0 3 2 max 4 ) / ( 4 2 Y T E M ntenna: n antenna is an electromagnetic radiator, a sensor, a transducer and an impedance

More information

Introduction Antenna Ranges Radiation Patterns Gain Measurements Directivity Measurements Impedance Measurements Polarization Measurements Scale

Introduction Antenna Ranges Radiation Patterns Gain Measurements Directivity Measurements Impedance Measurements Polarization Measurements Scale Chapter 17 : Antenna Measurement Introduction Antenna Ranges Radiation Patterns Gain Measurements Directivity Measurements Impedance Measurements Polarization Measurements Scale Model Measurements 1 Introduction

More information

RF Design Final Spring 2005

RF Design Final Spring 2005 RF Design Final Spring 2005 Name: LAST 4 NUMBERS in Student Number: Do NOT begin until told to do so Make sure that you have all pages before starting Open notes, NO CELL PHONES/WIRELESS DEVICES DO ALL

More information

1 Propagation in free space and the aperture antenna

1 Propagation in free space and the aperture antenna 1 Propagation in free space and the aperture antenna This chapter introduces the basic concepts of radio signals travelling from one antenna to another. The aperture antenna is used initially to illustrate

More information

Dipole Antennas. Prof. Girish Kumar Electrical Engineering Department, IIT Bombay. (022)

Dipole Antennas. Prof. Girish Kumar Electrical Engineering Department, IIT Bombay. (022) Dipole Antennas Prof. Girish Kumar Electrical Engineering Department, IIT Bombay gkumar@ee.iitb.ac.in (022) 2576 7436 Infinitesimal Dipole An infinitesimally small current element is called the Hertz Dipole

More information

Chapter 3 Solution to Problems

Chapter 3 Solution to Problems Chapter 3 Solution to Problems 1. The telemetry system of a geostationary communications satellite samples 100 sensors on the spacecraft in sequence. Each sample is transmitted to earth as an eight-bit

More information

ELECTRIC field strength and power density in space produced

ELECTRIC field strength and power density in space produced 1006 IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 59, NO. 4, AUGUST 2017 Electromagnetic Compatibility (EMC) Antenna Gain and Factor Valentino Trainotti, Life Fellow, IEEE Abstract A method

More information

Mobile Communications

Mobile Communications Mobile Communications Part IV- Propagation Characteristics Professor Z Ghassemlooy School of Computing, Engineering and Information Sciences University of Northumbria U.K. http://soe.unn.ac.uk/ocr Contents

More information

ANTENNA INTRODUCTION / BASICS

ANTENNA INTRODUCTION / BASICS ANTENNA INTRODUCTION / BASICS RULES OF THUMB: 1. The Gain of an antenna with losses is given by: 2. Gain of rectangular X-Band Aperture G = 1.4 LW L = length of aperture in cm Where: W = width of aperture

More information

5/4/2005 Antenna Pattern present 1/1. C. Antenna Pattern

5/4/2005 Antenna Pattern present 1/1. C. Antenna Pattern 5/4/2005 Antenna Pattern present 1/1 C. Antenna Pattern Radiation Intensity is dependent on both the antenna and the radiated power. We can normalize the Radiation Intensity function to construct a result

More information

Antenna Fundamentals. Microwave Engineering EE 172. Dr. Ray Kwok

Antenna Fundamentals. Microwave Engineering EE 172. Dr. Ray Kwok Antenna Fundamentals Microwave Engineering EE 172 Dr. Ray Kwok Reference Antenna Theory and Design Warran Stutzman, Gary Thiele, Wiley & Sons (1981) Microstrip Antennas Bahl & Bhartia, Artech House (1980)

More information

SATELLITE LINK DESIGN

SATELLITE LINK DESIGN 1 SATELLITE LINK DESIGN Networks and Communication Department Dr. Marwah Ahmed Outlines 2 Introduction Basic Transmission Theory System Noise Temperature and G/T Ratio Design of Downlinks Satellite Communication

More information

Introduction to Radar Systems. Radar Antennas. MIT Lincoln Laboratory. Radar Antennas - 1 PRH 6/18/02

Introduction to Radar Systems. Radar Antennas. MIT Lincoln Laboratory. Radar Antennas - 1 PRH 6/18/02 Introduction to Radar Systems Radar Antennas Radar Antennas - 1 Disclaimer of Endorsement and Liability The video courseware and accompanying viewgraphs presented on this server were prepared as an account

More information

Topic 3. Fundamental Parameters of Antennas. Tamer Abuelfadl

Topic 3. Fundamental Parameters of Antennas. Tamer Abuelfadl Topic 3 Fundamental Parameters of Antennas Tamer Abuelfadl Electronics and Electrical Communications Department Faculty of Engineering Cairo University Tamer Abuelfadl (EEC, Cairo University) Topic 3 ELC

More information

LECTURE 4: Fundamental Antenna Parameters 1. Radiation Pattern Note:

LECTURE 4: Fundamental Antenna Parameters 1. Radiation Pattern Note: LECTURE 4: Fundamental Antenna Parameters (Radiation pattern. Pattern beamwidths. Radiation intensity. Directivity. Gain. Antenna efficiency and radiation efficiency. Frequency bandwidth. Input impedance

More information

2.5.3 Antenna Temperature

2.5.3 Antenna Temperature ECEn 665: Antennas and Propagation for Wireless Communications 36.5.3 Antenna Temperature We now turn to thermal noise received by an antenna. An antenna in a warm environment receives not only a signal

More information

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING SUBJECT NAME:

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING SUBJECT NAME: Chendu College of Engineering & Technology (Approved by AICTE, New Delhi and Affiliated to Anna University) Zamin Endathur, Madurantakam, Kancheepuram, District 603311. DEPARTMENT OF ELECTRONICS & COMMUNICATION

More information

BROADBAND GAIN STANDARDS FOR WIRELESS MEASUREMENTS

BROADBAND GAIN STANDARDS FOR WIRELESS MEASUREMENTS BROADBAND GAIN STANDARDS FOR WIRELESS MEASUREMENTS James D. Huff Carl W. Sirles The Howland Company, Inc. 4540 Atwater Court, Suite 107 Buford, Georgia 30518 USA Abstract Total Radiated Power (TRP) and

More information

Fundamentals of Wireless Transmissions

Fundamentals of Wireless Transmissions Fundamentals of Wireless Transmissions Dr. Farahmand Updated: 9/15/14 Overview (1) Week 1 Demo Energy and waves Dipole Antennas Signal characteristics and spectrum Bandwidth Signal power (Vpeak and Vrms)

More information

Electronically Steerable planer Phased Array Antenna

Electronically Steerable planer Phased Array Antenna Electronically Steerable planer Phased Array Antenna Amandeep Kaur Department of Electronics and Communication Technology, Guru Nanak Dev University, Amritsar, India Abstract- A planar phased-array antenna

More information

ANTENNA INTRODUCTION / BASICS

ANTENNA INTRODUCTION / BASICS Rules of Thumb: 1. The Gain of an antenna with losses is given by: G 0A 8 Where 0 ' Efficiency A ' Physical aperture area 8 ' wavelength ANTENNA INTRODUCTION / BASICS another is:. Gain of rectangular X-Band

More information

Module 2- Antenna: Radiation characteristics of antenna, radiation resistance, short dipole antenna, half wave dipole antenna, loop antenna

Module 2- Antenna: Radiation characteristics of antenna, radiation resistance, short dipole antenna, half wave dipole antenna, loop antenna Module - Antenna: Radiation characteristics of antenna, radiation resistance, short dipole antenna, half wave dipole antenna, loop antenna ELL 1 Instructor: Debanjan Bhowmik Department of Electrical Engineering

More information

The magnetic surface current density is defined in terms of the electric field at an aperture as follows: 2E n (6.1)

The magnetic surface current density is defined in terms of the electric field at an aperture as follows: 2E n (6.1) Chapter 6. Aperture antennas Antennas where radiation occurs from an open aperture are called aperture antennas. xamples include slot antennas, open-ended waveguides, rectangular and circular horn antennas,

More information

Antennas and Propagation. Chapter 4: Antenna Types

Antennas and Propagation. Chapter 4: Antenna Types Antennas and Propagation : Antenna Types 4.4 Aperture Antennas High microwave frequencies Thin wires and dielectrics cause loss Coaxial lines: may have 10dB per meter Waveguides often used instead Aperture

More information

Fundamentals of Antennas. Prof. Ely Levine

Fundamentals of Antennas. Prof. Ely Levine Fundamentals of Antennas Prof. Ely Levine levineel@zahav.net.il 1 Chapter 3 Wire Antennas 2 Types of Antennas 3 Isotropic Antenna Isotropic radiator is the simplest antenna mathematically Radiates all

More information

Continuous Arrays Page 1. Continuous Arrays. 1 One-dimensional Continuous Arrays. Figure 1: Continuous array N 1 AF = I m e jkz cos θ (1) m=0

Continuous Arrays Page 1. Continuous Arrays. 1 One-dimensional Continuous Arrays. Figure 1: Continuous array N 1 AF = I m e jkz cos θ (1) m=0 Continuous Arrays Page 1 Continuous Arrays 1 One-dimensional Continuous Arrays Consider the 2-element array we studied earlier where each element is driven by the same signal (a uniform excited array),

More information

Exercise 1-4. The Radar Equation EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION OF FUNDAMENTALS

Exercise 1-4. The Radar Equation EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION OF FUNDAMENTALS Exercise 1-4 The Radar Equation EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the different parameters in the radar equation, and with the interaction between these

More information

Millimetre-wave Phased Array Antennas for Mobile Terminals

Millimetre-wave Phased Array Antennas for Mobile Terminals Millimetre-wave Phased Array Antennas for Mobile Terminals Master s Thesis Alberto Hernández Escobar Aalborg University Department of Electronic Systems Fredrik Bajers Vej 7B DK-9220 Aalborg Contents

More information

S=E H ANTENNA RADIATION

S=E H ANTENNA RADIATION ANTENNA RADIATION Antennas radiate spherical waves that propagate in the radial direction for a coordinate system centered on the antenna. At large distances, spherical waves can be approx imated by plane

More information

Experiment 5: Spark Gap Microwave Generator Dipole Radiation, Polarization, Interference W14D2

Experiment 5: Spark Gap Microwave Generator Dipole Radiation, Polarization, Interference W14D2 Experiment 5: Spark Gap Microwave Generator Dipole Radiation, Polarization, Interference W14D2 1 Announcements Week 14 Prepset due Fri at 8:30 am PS 11 due Week 14 Friday at 9 pm in boxes outside 26-152

More information

ESCI Cloud Physics and Precipitation Processes Lesson 10 - Weather Radar Dr. DeCaria

ESCI Cloud Physics and Precipitation Processes Lesson 10 - Weather Radar Dr. DeCaria ESCI 340 - Cloud Physics and Precipitation Processes Lesson 10 - Weather Radar Dr. DeCaria References: A Short Course in Cloud Physics, 3rd ed., Rogers and Yau, Ch. 11 Radar Principles The components of

More information

Rec. ITU-R F RECOMMENDATION ITU-R F *

Rec. ITU-R F RECOMMENDATION ITU-R F * Rec. ITU-R F.162-3 1 RECOMMENDATION ITU-R F.162-3 * Rec. ITU-R F.162-3 USE OF DIRECTIONAL TRANSMITTING ANTENNAS IN THE FIXED SERVICE OPERATING IN BANDS BELOW ABOUT 30 MHz (Question 150/9) (1953-1956-1966-1970-1992)

More information

Antennas & wave Propagation ASSIGNMENT-I

Antennas & wave Propagation ASSIGNMENT-I Shri Vishnu Engineering College for Women :: Bhimavaram Department of Electronics & Communication Engineering Antennas & wave Propagation 1. Define the terms: i. Antenna Aperture ii. Beam Width iii. Aperture

More information

THE ELECTROMAGNETIC FIELD THEORY. Dr. A. Bhattacharya

THE ELECTROMAGNETIC FIELD THEORY. Dr. A. Bhattacharya 1 THE ELECTROMAGNETIC FIELD THEORY Dr. A. Bhattacharya The Underlying EM Fields The development of radar as an imaging modality has been based on power and power density It is important to understand some

More information

EEM.Ant. Antennas and Propagation

EEM.Ant. Antennas and Propagation EEM.ant/0304/08pg/Req: None 1/8 UNIVERSITY OF SURREY Department of Electronic Engineering MSc EXAMINATION EEM.Ant Antennas and Propagation Duration: 2 Hours Spring 2003/04 READ THESE INSTRUCTIONS Answer

More information

Designing and building a Yagi-Uda Antenna Array

Designing and building a Yagi-Uda Antenna Array 2015; 2(2): 296-301 IJMRD 2015; 2(2): 296-301 www.allsubjectjournal.com Received: 17-12-2014 Accepted: 26-01-2015 E-ISSN: 2349-4182 P-ISSN: 2349-5979 Impact factor: 3.762 Abdullah Alshahrani School of

More information

RVRUSA - DATA DE REFERENCIA PARA INGENIEROS

RVRUSA - DATA DE REFERENCIA PARA INGENIEROS Useful formulae Electrical formulae Electrical power in KW: DC power [KW]: YROW DPSHUH YROW DPSHUH AC power (single phase) [KW]: AC power (three-phase) [KW]: where: cos( j ) YROW DPSHUH 73. cos( j) Volt:

More information

11 Beam pattern, wave interference

11 Beam pattern, wave interference 11 Beam pattern, wave interference In this lecture we will see how antenna beams can be patterned by using interference effects of fields radiated by multiple dipoles or dipole-like elements. Let s recall

More information

Practical Considerations for Radiated Immunities Measurement using ETS-Lindgren EMC Probes

Practical Considerations for Radiated Immunities Measurement using ETS-Lindgren EMC Probes Practical Considerations for Radiated Immunities Measurement using ETS-Lindgren EMC Probes Detectors/Modulated Field ETS-Lindgren EMC probes (HI-6022/6122, HI-6005/6105, and HI-6053/6153) use diode detectors

More information

10 Antenna gain, beam pattern, directivity

10 Antenna gain, beam pattern, directivity 10 Antenna gain, beam pattern, directivity Adipoleantenna(oracloselyrelatedmonopoletobestudiedinLecture 18) is a near perfect radiator for purposes of broadcasting that is, sending waves of equal amplitudes

More information

ECE 6390: Satellite Communications and Navigation Systems TEST 1 (Fall 2004)

ECE 6390: Satellite Communications and Navigation Systems TEST 1 (Fall 2004) Name: GTID: ECE 6390: Satellite Communications and Navigation Systems TEST 1 (Fall 2004) Please read all instructions before continuing with the test. This is a closed notes, closed book, closed friend,

More information

A Simple Introduction to Antennas

A Simple Introduction to Antennas Appendix A A Simple Introduction to Antennas A.1 Introduction: Radiation Resistance and Radiation Patterns An antenna is a transitional device, or transducer, that forms an interface for energy traveling

More information

Design of a UHF Pyramidal Horn Antenna Using CST

Design of a UHF Pyramidal Horn Antenna Using CST Volume 114 No. 7 2017, 447-457 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu Design of a UHF Pyramidal Horn Antenna Using CST Biswa Ranjan Barik

More information

TELE4652 Mobile and Satellite Communication Systems

TELE4652 Mobile and Satellite Communication Systems TELE465 Mobile and Satellite Communication Systems Lecture 3 Antenna Theory A radio antenna, whether transmitting or receiving, is an integral component of any wireless communication system, whether it

More information

Basic Propagation Theory

Basic Propagation Theory S-7.333 POSTGRADUATE COURSE IN RADIO COMMUNICATIONS, AUTUMN 4 1 Basic Propagation Theory Fabio Belloni S-88 Signal Processing Laboratory, HUT fbelloni@hut.fi Abstract In this paper we provide an introduction

More information

Noise and Propagation mechanisms

Noise and Propagation mechanisms 2 Noise and Propagation mechanisms Noise Johnson-Nyquist noise Physical review 1928 V rms2 = 4kTBR k : Bolzmann s constant T : absolute temperature B : bandwidth R : Resistance P=4kTB 1 1 Why is this a

More information

UNIT Derive the fundamental equation for free space propagation?

UNIT Derive the fundamental equation for free space propagation? UNIT 8 1. Derive the fundamental equation for free space propagation? Fundamental Equation for Free Space Propagation Consider the transmitter power (P t ) radiated uniformly in all the directions (isotropic),

More information

Lab 12 Microwave Optics.

Lab 12 Microwave Optics. b Lab 12 Microwave Optics. CAUTION: The output power of the microwave transmitter is well below standard safety levels. Nevertheless, do not look directly into the microwave horn at close range when the

More information

Transmission Lines. Ranga Rodrigo. January 27, Antennas and Propagation: Transmission Lines 1/72

Transmission Lines. Ranga Rodrigo. January 27, Antennas and Propagation: Transmission Lines 1/72 Transmission Lines Ranga Rodrigo January 27, 2009 Antennas and Propagation: Transmission Lines 1/72 1 Standing Waves 2 Smith Chart 3 Impedance Matching Series Reactive Matching Shunt Reactive Matching

More information

DESIGN OF PRINTED YAGI ANTENNA WITH ADDI- TIONAL DRIVEN ELEMENT FOR WLAN APPLICA- TIONS

DESIGN OF PRINTED YAGI ANTENNA WITH ADDI- TIONAL DRIVEN ELEMENT FOR WLAN APPLICA- TIONS Progress In Electromagnetics Research C, Vol. 37, 67 81, 013 DESIGN OF PRINTED YAGI ANTENNA WITH ADDI- TIONAL DRIVEN ELEMENT FOR WLAN APPLICA- TIONS Jafar R. Mohammed * Communication Engineering Department,

More information

RECOMMENDATION ITU-R S.1512

RECOMMENDATION ITU-R S.1512 Rec. ITU-R S.151 1 RECOMMENDATION ITU-R S.151 Measurement procedure for determining non-geostationary satellite orbit satellite equivalent isotropically radiated power and antenna discrimination The ITU

More information

Sources classification

Sources classification Sources classification Radiometry relates to the measurement of the energy radiated by one or more sources in any region of the electromagnetic spectrum. As an antenna, a source, whose largest dimension

More information

Microstrip Antennas Integrated with Horn Antennas

Microstrip Antennas Integrated with Horn Antennas 53 Microstrip Antennas Integrated with Horn Antennas Girish Kumar *1, K. P. Ray 2 and Amit A. Deshmukh 1 1. Department of Electrical Engineering, I.I.T. Bombay, Powai, Mumbai 400 076, India Phone: 91 22

More information

Note: For. interested in. Radiation. A field pattern. H and a phase

Note: For. interested in. Radiation. A field pattern. H and a phase Lecture-3 Antenna parameters: (Continued ) 1.4.3 Radiated Power With this information, now we are in a position to calculate the total radiated power from an antenna. Mathematically it can be written as

More information

Transmission Lines. Ranga Rodrigo. January 13, Antennas and Propagation: Transmission Lines 1/46

Transmission Lines. Ranga Rodrigo. January 13, Antennas and Propagation: Transmission Lines 1/46 Transmission Lines Ranga Rodrigo January 13, 2009 Antennas and Propagation: Transmission Lines 1/46 1 Basic Transmission Line Properties 2 Standing Waves Antennas and Propagation: Transmission Lines Outline

More information

Antenna Fundamentals

Antenna Fundamentals HTEL 104 Antenna Fundamentals The antenna is the essential link between free space and the transmitter or receiver. As such, it plays an essential part in determining the characteristics of the complete

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUB.NAME : ANTENNAS & WAVE PROPAGATION SUB CODE : EC 1352 YEAR : III SEMESTER : VI UNIT I: ANTENNA FUNDAMENTALS

More information

EITN90 Radar and Remote Sensing Lecture 2: The Radar Range Equation

EITN90 Radar and Remote Sensing Lecture 2: The Radar Range Equation EITN90 Radar and Remote Sensing Lecture 2: The Radar Range Equation Daniel Sjöberg Department of Electrical and Information Technology Spring 2018 Outline 1 Radar Range Equation Received power Signal to

More information