Notes 21 Introduction to Antennas

Size: px
Start display at page:

Download "Notes 21 Introduction to Antennas"

Transcription

1 ECE 3317 Applied Electromagnetic Waves Prof. David R. Jackson Fall 018 Notes 1 Introduction to Antennas 1

2 Introduction to Antennas Antennas An antenna is a device that is used to transmit and/or receive an electromagnetic wave. Note: The antenna itself can always transmit or receive, but it may be used for only one of these functions in an application. Examples: Cell-phone antenna (transmit and receive) TV antenna in your home (receive only) Wireless LAN antenna (transmit and receive) FM radio antenna (receive only) Satellite dish antenna (receive only) AM radio broadcast tower (transmit only) GPS position location unit (receive only) GPS satellite (transmit only)

3 Introduction to Antennas (cont.) Antennas are often used for a variety of reasons: For communication over long distances, to have lower loss (see below) Where waveguiding systems (e.g., transmission lines) are impractical or inconvenient When it is desired to communicate with many users at once Power loss from antenna broadcast: Power loss from waveguiding system: 1/r (always better for very large r) r e α A r B 3

4 Introduction to Antennas (cont.) Main properties of antennas: Radiation pattern Beamwidth and Directivity (how directional the beam is) Sidelobe level Efficiency (power radiated relative to total input power) Polarization (linear, CP) Input Impedance Bandwidth (the useable frequency range) 4

5 Introduction to Antennas (cont.) Reflector (Dish) Antenna Ideally, the dish is parabolic in shape. Very high bandwidth Medium to high directivity (directivity is determined by the size) Linear or CP polarization (depending on how it is fed) Works by focusing the incoming wave to a collection (feed) point 5

6 Introduction to Antennas (cont.) Dipole Wire Antenna L λ / 0 Current (resonant) Very simple Moderate bandwidth Low directivity Omnidirectional in azimuth At resonance : Z = Ω 73 [ ] Most commonly fed by a twin-lead transmission line Linear polarization ( E θ, assuming wire is along z axis) The antenna is resonant when the length is about one-half free-space wavelength in 6

7 Introduction to Antennas (cont.) Dipole Wire Antenna (cont.) The bow-tie antenna has flared dipole arms, which increases the bandwidth. 7

8 Introduction to Antennas (cont.) Folded Dipole Antenna The folded dipole is a variation of the dipole antenna. It has an input impedance that is 4 times higher than that of the regular dipole antenna. At resonance : [ ] Z = 9 Ω in Compatible with TV twin lead Z 0 = 300 [ Ω] 8

9 Introduction to Antennas (cont.) Monopole Wire Antenna h h λ /4 0 At resonance : Z = Ω in 36.5 [ ] Feeding coax This is a variation of the dipole, using a ground plane instead of a second wire. Similar properties as the dipole Mainly used when the antenna is mounted on a conducing object or platform Usually fed with a coaxial cable feed 9

10 Introduction to Antennas (cont.) Monopole Wire Antenna (cont.) 10

11 Introduction to Antennas (cont.) Yagi Antenna This is a variation of the dipole, using multiples wires (with one reflector and one or more directors. Low bandwidth Moderate to high directivity Commonly used as a UHF TV antenna Prof. Yagi 11

12 Introduction to Antennas (cont.) Yagi Antenna (cont.) UHF Yagi UHF Yagi UHF Yagi VHF Log-periodic 1

13 Introduction to Antennas (cont.) Log-Periodic Antenna Beam This consists of multiple dipole antennas of varying lengths, connected together. High bandwidth Moderate directivity Commonly used as a VHF TV antenna 13

14 Introduction to Antennas (cont.) Log Periodic Antenna (cont.) 14

15 Introduction to Antennas (cont.) Typical Outdoor TV Antenna UHF Yagi VHF Log-periodic 15

16 Introduction to Antennas (cont.) Horn Antenna It acts like a loudspeaker for electromagnetic waves. High bandwidth Moderate directivity Commonly used at microwave frequencies and above Often used as a feed for a reflector antenna 16

17 Introduction to Antennas (cont.) Horn Antenna (cont.) Arno A. Penzias and Robert W. Wilson used a large horn antenna to detect microwave signals from the big bang (Nobel Prize, 1978). 17

18 Introduction to Antennas (cont.) Horn Antenna (cont.) This is a variety called the hoghorn antenna (a combination of horn+reflector). 18

19 Introduction to Antennas (cont.) Microstrip (Patch) Antenna y h W L Current ε r x L λ /= d 1 λ 0 ε r It consists of a printed patch of metal that is on top of a grounded dielectric substrate. Low bandwidth Low directivity (unless used in an array) Low-profile (h can be made very small, at the expense of bandwidth) Can be made by etching Easily fed by microstrip line or coaxial cable Can be made conformable (mounted on a curved surface) Commonly used at microwave frequencies and above 19

20 Introduction to Antennas (cont.) Microstrip (Patch) Antenna (cont.) 0

21 Introduction to Antennas (cont.) Dielectric Resonator Antenna (DRA) ε r The dielectric resonator antenna was invented by our very own Prof. Long! Cylindrical DRA It consists of a dielectric material (such as ceramic) on top of a grounded dielectric substrate. Moderate to large bandwidth Low directivity (unless used in an array) Commonly used at microwave frequencies and above 1

22 Introduction to Antennas (cont.) Dielectric Resonator Antenna (cont.) GPS antenna

23 Introduction to Antennas (cont.) Leaky-Wave Antenna y Slot π β = k 1 < k 0 0 ka 0 The wave is a fast wave. vp > c Air Rectangular waveguide x This allows the wave to radiate from the slot. Note: vp ω ω = > = c β k 0 3

24 Introduction to Antennas (cont.) Leaky-Wave Antenna (cont.) y k θ 0 b z β < k 0 k = k cosθ = β z 0 0 cos θ = β / k 0 0 A narrow beam is created at angle θ 0. 4

25 Antenna Radiation We consider here the radiation from an arbitrary antenna. S z r r ( r, θφ, ) x + - y "far field" r The far-field radiation acts like a plane wave going in the radial direction. 5

26 Antenna Radiation (cont.) How far do we have to go to be in the far field? Sphere of minimum diameter D that encloses the antenna. r r ( r, θφ, ) + - r > D λ 0 A derivation is given in the Antenna Engineering book: C. A. Balanis, Antenna Engineering, 4 th Ed., 016, Wiley. 6

27 Antenna Radiation (cont.) The far-field has the following form: z H y E x z S E = ˆ θ E + ˆ φe θ φ H = ˆ θ H + ˆ φh θ E H θ φ = η 0 φ TM z x E H y S E H φ θ = η 0 TE z Depending on the type of antenna, either or both polarizations may be radiated (e.g., a vertical wire antenna radiates only TM z polarization. 7

28 Antenna Radiation (cont.) The far-field Poynting vector is now calculated: 1 * S = E H 1 = ˆ + ˆ ˆ + ˆ 1 ˆ ( * * = r EH EH ) θ φ φ θ ( θ E E ) ( H H ) θ φ φ θ θ φ φ 1 E E r ˆ φ θ = Eθ + Eφ η0 η 0 1 E r ˆ θ = + η 0 0 * * E φ η E H E H θ φ φ θ = η 0 = η 0 8

29 Antenna Radiation (cont.) Hence we have ( ) 1 S = rˆ Eθ + Eφ η 0 or S E = rˆ η 0 Note: In the far field, the Poynting vector is pure real (no reactive power flow). 9

30 Radiation Pattern The far field always has the following form: jk r e = r 0 F (, θφ, ) E ( θφ, ) E r F E (, ) θφ Normalized far - field electric field In db: ( θφ, ) ( θ, φ ) F E db ( θφ, ) = 0log10 F E m m (, ) θ φ = direction of maximum radiation m m 30

31 Radiation Pattern (cont.) The far-field pattern is usually shown vs. the angle θ (for a fixed angle φ) in polar coordinates. z ( θφ, ) ( θ, φ ) F E db ( θφ, ) = 0log10 F E m m A pattern cut 30 θ φ = db -10 db 0 db θ m -30 db

32 Radiated Power The Poynting vector in the far field is (, θφ, ) S r F E ( θφ, ) 1 rˆ = η 0 r The total power radiated is then given by ππ ππ F E ( θφ, ) P ( ˆ rad = S r) r sinθdθdφ = sinθdθdφ η Hence we have ππ 1 F Prad = E ( θφ, ) sinθdθdφ η

33 Directivity The directivity of the antenna in the directions (θ, φ) is defined as D ( θφ, ) P S rad r ( θφ, ) ( π r ) / 4 r The directivity in a particular direction is the ratio of the power density radiated in that direction to the power density that would be radiated in that direction if the antenna were an isotropic radiator (i.e., one that radiates equally in all directions). In db, D ( θφ, ) = 10log D( θφ, ) db 10 Note: The directivity is sometimes referred to as the directivity with respect to an isotropic radiator. 33

34 Directivity (cont.) The directivity is now expressed in terms of the far field pattern. Hence we have D ( θφ, ) P S rad r ( θφ, ) ( π r ) / 4 r F E ( θφ, ) 1 η 0 r D( θφ, ) 4πr r ππ 1 F = η E ( ) θφ, sinθdθdφ Therefore, D ( θφ, ) = ππ 0 0 E ( ) ( θφ) F 4 πe, F θφ, sinθdθdφ 34

35 Directivity (cont.) Resonant half-wavelength dipole: Short dipole: D = 1.5 Feed z h l = h D = Short dipole ( ) = ˆsin F E θ θ θ y θm max = π / ( /, ) D= D = D π φ z θ Short dipole 60 0 db x h

36 Beamwidth The beamwidth measures how narrow the beam is. (The narrower the beamwidth, the higher the directivity). HPBW = half-power beamwidth 36

37 Sidelobes The sidelobe level measures how strong the sidelobes are. In this example the sidelobe level is about -13 db Main beam Sidelobe level Sidelobes 13dB 37

38 Gain and Efficiency The radiation efficiency of an antenna is defined as e r P rad P in P P rad in = = power radiated by antenna power input to antenna The gain of an antenna in the directions (θ, φ) is defined as G ( θφ, ) e D( θφ, ) r In db, we have G ( θφ, ) = 10log G( θφ, ) db 10 38

39 Gain and Efficiency (cont.) The gain tells us how strong the radiated power density is in a certain direction, for a given amount of input power. Recall that D ( θφ, ) P S rad r ( θφ, ) ( π r ) / 4 r Therefore, in the far field: ( θφ, ) /( 4 π ) ( θφ, ) S P r D r = rad ( θφ, ) /( 4 π ) ( θφ, ) Sr = ep r in r D r ( θφ, ) /( 4 π ) ( θφ, ) = in S P r G 39

40 Receive Antenna The Thévenin equivalent circuit of a wire antenna being used as a receive antenna is shown below. inc Pd incident power density W/m = inc E + - V Th Z Th = Z in 73[ ] ( ) Z = Ω resonant half - wavelength dipole in Z Th P inc d inc E = W/m η 0 V Th

41 Receive Antenna (cont.) The effective area determines the Thévenin voltage. Assume an optimum conjugate-matched load: P L = power absorbed by load Z Th V Th + - Z L = Z * Th P = A P inc L eff d A eff = effective area of antenna inc Pd incident power density W/m = 41

42 Receive Antenna (cont.) We have the following general formula*: Aeff λ0 θφ, = G θφ, 4π ( ) ( ) G ( θφ, ) = gain of antenna in the direction of the incident signal This assumes that the incoming signal is polarized in the optimum direction. *A poof is given in the Antenna Engineering book: C. A. Balanis, Antenna Engineering, 4 th Ed., 016, Wiley. 4

43 Receive Antenna (cont.) Effective area of a lossless resonant half-wave dipole antenna: Assuming the incident electric field is aligned along the wire and θ = 90 o : inc E l + - V Th Aeff Hence λ = 4π o o 0 ( 90, φ) G( 90, φ) λ0 = π ( l) = π ( l = λ / 0 ) Aeff ( ) 90, φ = 0.530l o 43

44 Receive Antenna (cont.) Example Find the receive power in wireless system shown below, assuming that the receiver is connected to an optimum conjugate-matched load. z f P in [ ] 10 [ W] [ ] = 1 GHz = r = 1 km ( λ 0 = [ cm] ) P in [ W] Transmit inc Pd W/m Receive o θ = 90 r o θ = 90 x P rad = P in Z L = Z = 73 [ Ω] * Th Assume lossless antennas (G = D =1.643) 44

45 Receive Antenna (cont.) P = A P inc L eff d Recall: A eff Gain of receive antenna Gain of transmit antenna λ P 4π 4πr o 0 inc rad ( 90, φ ) = 1.643, Pd = ( 1.643) Hence P L λ P 4π 4πr 0 rad = ( 1.643) The result is P L = [W] 45

46 Receive Antenna (cont.) Effective area of dish antenna 4π G( θφ, ) = A eff ( θφ, ) λ0 In the maximum gain direction: A e Aeff = Aphyeap phy ap = = physical area of dish aperture efficiency The aperture efficiency is usually less than 1 (less than 100%). 46

An Introduction to Antennas

An Introduction to Antennas May 11, 010 An Introduction to Antennas 1 Outline Antenna definition Main parameters of an antenna Types of antennas Antenna radiation (oynting vector) Radiation pattern Far-field distance, directivity,

More information

Antenna Fundamentals. Microwave Engineering EE 172. Dr. Ray Kwok

Antenna Fundamentals. Microwave Engineering EE 172. Dr. Ray Kwok Antenna Fundamentals Microwave Engineering EE 172 Dr. Ray Kwok Reference Antenna Theory and Design Warran Stutzman, Gary Thiele, Wiley & Sons (1981) Microstrip Antennas Bahl & Bhartia, Artech House (1980)

More information

The magnetic surface current density is defined in terms of the electric field at an aperture as follows: 2E n (6.1)

The magnetic surface current density is defined in terms of the electric field at an aperture as follows: 2E n (6.1) Chapter 6. Aperture antennas Antennas where radiation occurs from an open aperture are called aperture antennas. xamples include slot antennas, open-ended waveguides, rectangular and circular horn antennas,

More information

Half-Wave Dipole. Radiation Resistance. Antenna Efficiency

Half-Wave Dipole. Radiation Resistance. Antenna Efficiency Antennas Simple Antennas Isotropic radiator is the simplest antenna mathematically Radiates all the power supplied to it, equally in all directions Theoretical only, can t be built Useful as a reference:

More information

Antenna Fundamentals Basics antenna theory and concepts

Antenna Fundamentals Basics antenna theory and concepts Antenna Fundamentals Basics antenna theory and concepts M. Haridim Brno University of Technology, Brno February 2017 1 Topics What is antenna Antenna types Antenna parameters: radiation pattern, directivity,

More information

EMG4066:Antennas and Propagation Exp 1:ANTENNAS MMU:FOE. To study the radiation pattern characteristics of various types of antennas.

EMG4066:Antennas and Propagation Exp 1:ANTENNAS MMU:FOE. To study the radiation pattern characteristics of various types of antennas. OBJECTIVES To study the radiation pattern characteristics of various types of antennas. APPARATUS Microwave Source Rotating Antenna Platform Measurement Interface Transmitting Horn Antenna Dipole and Yagi

More information

Practical Antennas and. Tuesday, March 4, 14

Practical Antennas and. Tuesday, March 4, 14 Practical Antennas and Transmission Lines Goals Antennas are the interface between guided waves (from a cable) and unguided waves (in space). To understand the various properties of antennas, so as to

More information

What does reciprocity mean

What does reciprocity mean Antennas Definition of antenna: A device for converting electromagnetic radiation in space into electrical currents in conductors or vice-versa. Radio telescopes are antennas Reciprocity says we can treat

More information

Antenna Parameters. Ranga Rodrigo. University of Moratuwa. December 15, 2008

Antenna Parameters. Ranga Rodrigo. University of Moratuwa. December 15, 2008 Antenna Parameters Ranga Rodrigo University of Moratuwa December 15, 2008 Ranga Rodrigo (University of Moratuwa) Antenna Parameters December 15, 2008 1 / 47 Summary of Last Week s Lecture 90 o Radiation

More information

CHAPTER 5 THEORY AND TYPES OF ANTENNAS. 5.1 Introduction

CHAPTER 5 THEORY AND TYPES OF ANTENNAS. 5.1 Introduction CHAPTER 5 THEORY AND TYPES OF ANTENNAS 5.1 Introduction Antenna is an integral part of wireless communication systems, considered as an interface between transmission line and free space [16]. Antenna

More information

Topic 3. Fundamental Parameters of Antennas. Tamer Abuelfadl

Topic 3. Fundamental Parameters of Antennas. Tamer Abuelfadl Topic 3 Fundamental Parameters of Antennas Tamer Abuelfadl Electronics and Electrical Communications Department Faculty of Engineering Cairo University Tamer Abuelfadl (EEC, Cairo University) Topic 3 ELC

More information

ANTENNAS AND WAVE PROPAGATION EC602

ANTENNAS AND WAVE PROPAGATION EC602 ANTENNAS AND WAVE PROPAGATION EC602 B.Tech Electronics & Communication Engineering, Semester VI INSTITUTE OF TECHNOLOGY NIRMA UNIVERSITY 1 Lesson Planning (L-3,P-2,C-4) Chapter No. Name Hours 1. Basic

More information

UNIT Explain the radiation from two-wire. Ans: Radiation from Two wire

UNIT Explain the radiation from two-wire. Ans:   Radiation from Two wire UNIT 1 1. Explain the radiation from two-wire. Radiation from Two wire Figure1.1.1 shows a voltage source connected two-wire transmission line which is further connected to an antenna. An electric field

More information

Chapter 2. Fundamental Properties of Antennas. ECE 5318/6352 Antenna Engineering Dr. Stuart Long

Chapter 2. Fundamental Properties of Antennas. ECE 5318/6352 Antenna Engineering Dr. Stuart Long Chapter Fundamental Properties of Antennas ECE 5318/635 Antenna Engineering Dr. Stuart Long 1 IEEE Standards Definition of Terms for Antennas IEEE Standard 145-1983 IEEE Transactions on Antennas and Propagation

More information

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad ELECTRONICS AND COMMUNIACTION ENGINEERING QUESTION BANK

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad ELECTRONICS AND COMMUNIACTION ENGINEERING QUESTION BANK INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad - 500 04 ELECTRONICS AND COMMUNIACTION ENGINEERING QUESTION BANK Course Name : Antennas and Wave Propagation (AWP) Course Code : A50418 Class :

More information

Broadband Antenna. Broadband Antenna. Chapter 4

Broadband Antenna. Broadband Antenna. Chapter 4 1 Chapter 4 Learning Outcome At the end of this chapter student should able to: To design and evaluate various antenna to meet application requirements for Loops antenna Helix antenna Yagi Uda antenna

More information

Dr. John S. Seybold. November 9, IEEE Melbourne COM/SP AP/MTT Chapters

Dr. John S. Seybold. November 9, IEEE Melbourne COM/SP AP/MTT Chapters Antennas Dr. John S. Seybold November 9, 004 IEEE Melbourne COM/SP AP/MTT Chapters Introduction The antenna is the air interface of a communication system An antenna is an electrical conductor or system

More information

RADAR Antennas R A D A R R A D A R S Y S T E M S S Y S T E M S. Lecture DR Sanjeev Kumar Mishra. 2 max

RADAR Antennas R A D A R R A D A R S Y S T E M S S Y S T E M S. Lecture DR Sanjeev Kumar Mishra. 2 max Y T E M Y T E M anjeev Kumar Mishra Lecture 17-20 ntennas i p r t t ne L L L N kt BF PG 1 0 3 2 max 4 ) / ( 4 2 Y T E M ntenna: n antenna is an electromagnetic radiator, a sensor, a transducer and an impedance

More information

HHTEHHH THEORY ANALYSIS AND DESIGN. CONSTANTINE A. BALANIS Arizona State University

HHTEHHH THEORY ANALYSIS AND DESIGN. CONSTANTINE A. BALANIS Arizona State University HHTEHHH THEORY ANALYSIS AND DESIGN CONSTANTINE A. BALANIS Arizona State University JOHN WILEY & SONS, INC. New York Chichester Brisbane Toronto Singapore Contents Preface V CHAPTER 1 ANTENNAS 1.1 Introduction

More information

Antenna Theory. Introduction

Antenna Theory. Introduction 1 Introduction Antenna Theory Antennas are device that designed to radiate electromagnetic energy efficiently in a prescribed manner. It is the current distributions on the antennas that produce the radiation.

More information

Antenna Engineering Lecture 3: Basic Antenna Parameters

Antenna Engineering Lecture 3: Basic Antenna Parameters Antenna Engineering Lecture 3: Basic Antenna Parameters ELC 405a Fall 2011 Department of Electronics and Communications Engineering Faculty of Engineering Cairo University 2 Outline 1 Radiation Pattern

More information

EC ANTENNA AND WAVE PROPAGATION

EC ANTENNA AND WAVE PROPAGATION EC6602 - ANTENNA AND WAVE PROPAGATION FUNDAMENTALS PART-B QUESTION BANK UNIT 1 1. Define the following parameters w.r.t antenna: i. Radiation resistance. ii. Beam area. iii. Radiation intensity. iv. Directivity.

More information

KULLIYYAH OF ENGINEERING

KULLIYYAH OF ENGINEERING KULLIYYAH OF ENGINEERING DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING ANTENNA AND WAVE PROPAGATION LABORATORY (ECE 4103) EXPERIMENT NO 3 RADIATION PATTERN AND GAIN CHARACTERISTICS OF THE DISH (PARABOLIC)

More information

Final Examination. 22 April 2013, 9:30 12:00. Examiner: Prof. Sean V. Hum. All non-programmable electronic calculators are allowed.

Final Examination. 22 April 2013, 9:30 12:00. Examiner: Prof. Sean V. Hum. All non-programmable electronic calculators are allowed. UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING The Edward S. Rogers Sr. Department of Electrical and Computer Engineering ECE 422H1S RADIO AND MICROWAVE WIRELESS SYSTEMS Final Examination

More information

ANTENNA THEORY. Analysis and Design. CONSTANTINE A. BALANIS Arizona State University. JOHN WILEY & SONS New York Chichester Brisbane Toronto Singapore

ANTENNA THEORY. Analysis and Design. CONSTANTINE A. BALANIS Arizona State University. JOHN WILEY & SONS New York Chichester Brisbane Toronto Singapore ANTENNA THEORY Analysis and Design CONSTANTINE A. BALANIS Arizona State University JOHN WILEY & SONS New York Chichester Brisbane Toronto Singapore Contents Preface xv Chapter 1 Antennas 1 1.1 Introduction

More information

COUPLED SECTORIAL LOOP ANTENNA (CSLA) FOR ULTRA-WIDEBAND APPLICATIONS *

COUPLED SECTORIAL LOOP ANTENNA (CSLA) FOR ULTRA-WIDEBAND APPLICATIONS * COUPLED SECTORIAL LOOP ANTENNA (CSLA) FOR ULTRA-WIDEBAND APPLICATIONS * Nader Behdad, and Kamal Sarabandi Department of Electrical Engineering and Computer Science University of Michigan, Ann Arbor, MI,

More information

Dipole Antennas. Prof. Girish Kumar Electrical Engineering Department, IIT Bombay. (022)

Dipole Antennas. Prof. Girish Kumar Electrical Engineering Department, IIT Bombay. (022) Dipole Antennas Prof. Girish Kumar Electrical Engineering Department, IIT Bombay gkumar@ee.iitb.ac.in (022) 2576 7436 Infinitesimal Dipole An infinitesimally small current element is called the Hertz Dipole

More information

Introduction to Radar Systems. Radar Antennas. MIT Lincoln Laboratory. Radar Antennas - 1 PRH 6/18/02

Introduction to Radar Systems. Radar Antennas. MIT Lincoln Laboratory. Radar Antennas - 1 PRH 6/18/02 Introduction to Radar Systems Radar Antennas Radar Antennas - 1 Disclaimer of Endorsement and Liability The video courseware and accompanying viewgraphs presented on this server were prepared as an account

More information

Design of Linearly Polarized Rectangular Microstrip Patch Antenna for GPS Applications at MHz

Design of Linearly Polarized Rectangular Microstrip Patch Antenna for GPS Applications at MHz Design of Linearly Polarized Rectangular Microstrip Patch Antenna for GPS Applications at 1575.4MHz P. S. S. Pavan Ganesh Associate Professor, Sreyas Institute of Engineering and Technology, Hyderabad

More information

Traveling Wave Antennas

Traveling Wave Antennas Traveling Wave Antennas Antennas with open-ended wires where the current must go to zero (dipoles, monopoles, etc.) can be characterized as standing wave antennas or resonant antennas. The current on these

More information

Resonant Antennas: Wires and Patches

Resonant Antennas: Wires and Patches Resonant Antennas: Wires and Patches Dipole Antennas Antenna 48 Current distribution approximation Un-normalized pattern: and Antenna 49 Radiating power: For half-wave dipole and,, or at exact resonance.

More information

Chapter 6 Broadband Antenna. 1. Loops antenna 2. Heliksantenna 3. Yagi uda antenna

Chapter 6 Broadband Antenna. 1. Loops antenna 2. Heliksantenna 3. Yagi uda antenna Chapter 6 Broadband Antenna 1. Loops antenna 2. Heliksantenna 3. Yagi uda antenna 1 Design A broadband antenna should have acceptable performance (determined by its pattern, gain and/or feed-point impedance)

More information

UNIVERSITI MALAYSIA PERLIS

UNIVERSITI MALAYSIA PERLIS UNIVERSITI MALAYSIA PERLIS SCHOOL OF COMPUTER & COMMUNICATIONS ENGINEERING EKT 341 LABORATORY MODULE LAB 2 Antenna Characteristic 1 Measurement of Radiation Pattern, Gain, VSWR, input impedance and reflection

More information

LECTURE 4: Fundamental Antenna Parameters 1. Radiation Pattern Note:

LECTURE 4: Fundamental Antenna Parameters 1. Radiation Pattern Note: LECTURE 4: Fundamental Antenna Parameters (Radiation pattern. Pattern beamwidths. Radiation intensity. Directivity. Gain. Antenna efficiency and radiation efficiency. Frequency bandwidth. Input impedance

More information

1. Explain the basic geometry and elements of Yagi-Uda antenna.

1. Explain the basic geometry and elements of Yagi-Uda antenna. Benha University Faculty of Engineering- Shoubra Electrical Engineering Department Fourth Year (Communications & Electronics) Final-Term Exam Date: Tuesday 10/5/2016 ECE 424: Lab (4) Duration : 2 Hrs Answer

More information

Reflector Antenna, its Mount and Microwave. Absorbers for IIP Radiometer Experiments

Reflector Antenna, its Mount and Microwave. Absorbers for IIP Radiometer Experiments Reflector Antenna, its Mount and Microwave Absorbers for IIP Radiometer Experiments Nakasit Niltawach, and Joel T. Johnson May 8 th, 2003 1 Introduction As mentioned in [1], measurements are required for

More information

DESIGNING A PATCH ANTENNA FOR DOPPLER SYSTEMS

DESIGNING A PATCH ANTENNA FOR DOPPLER SYSTEMS DESIGNING A PATCH ANTENNA FOR DOPPLER SYSTEMS Doppler Requirements for Antennas Range Determines power consumption Defines frequency band R max = 4 P t GσA e 4π 2 S min Narrow Bandwidth Tolerance range

More information

Travelling Wave, Broadband, and Frequency Independent Antennas. EE-4382/ Antenna Engineering

Travelling Wave, Broadband, and Frequency Independent Antennas. EE-4382/ Antenna Engineering Travelling Wave, Broadband, and Frequency Independent Antennas EE-4382/5306 - Antenna Engineering Outline Traveling Wave Antennas Introduction Traveling Wave Antennas: Long Wire, V Antenna, Rhombic Antenna

More information

Continuous Arrays Page 1. Continuous Arrays. 1 One-dimensional Continuous Arrays. Figure 1: Continuous array N 1 AF = I m e jkz cos θ (1) m=0

Continuous Arrays Page 1. Continuous Arrays. 1 One-dimensional Continuous Arrays. Figure 1: Continuous array N 1 AF = I m e jkz cos θ (1) m=0 Continuous Arrays Page 1 Continuous Arrays 1 One-dimensional Continuous Arrays Consider the 2-element array we studied earlier where each element is driven by the same signal (a uniform excited array),

More information

SI TECHNICAL 2018 UNIT IV QUESTION BANK

SI TECHNICAL 2018 UNIT IV QUESTION BANK SI TECHNICAL 2018 UNIT IV QUESTION BANK 1. In what range of frequencies are most omnidirectional horizontally polarized antennas used? A. VHF, UHF B. VLF, LF C. SH, EHF D. MF, HF 2. If the current ratios

More information

Antenna & Propagation. Antenna Parameters

Antenna & Propagation. Antenna Parameters For updated version, please click on http://ocw.ump.edu.my Antenna & Propagation Antenna Parameters by Nor Hadzfizah Binti Mohd Radi Faculty of Electric & Electronics Engineering hadzfizah@ump.edu.my Chapter

More information

Antenna Theory EELE 5445

Antenna Theory EELE 5445 Antenna Theory EELE 5445 Lecture 6: Dipole Antenna Dr. Mohamed Ouda Electrical Engineering Department Islamic University of Gaza 2013 The dipole and the monopole The dipole and the monopole are arguably

More information

Newsletter 4.4. Antenna Magus version 4.4 released! Array synthesis reflective ground plane addition. July 2013

Newsletter 4.4. Antenna Magus version 4.4 released! Array synthesis reflective ground plane addition. July 2013 Newsletter 4.4 July 2013 Antenna Magus version 4.4 released! We are pleased to announce the new release of Antenna Magus Version 4.4. This release sees the addition of 5 new antennas: Horn-fed truncated

More information

Rectangular Patch Antenna to Operate in Flame Retardant 4 Using Coaxial Feeding Technique

Rectangular Patch Antenna to Operate in Flame Retardant 4 Using Coaxial Feeding Technique International Journal of Electronics Engineering Research. ISSN 0975-6450 Volume 9, Number 3 (2017) pp. 399-407 Research India Publications http://www.ripublication.com Rectangular Patch Antenna to Operate

More information

RADIATION PATTERNS. The half-power (-3 db) beamwidth is a measure of the directivity of the antenna.

RADIATION PATTERNS. The half-power (-3 db) beamwidth is a measure of the directivity of the antenna. RADIATION PATTERNS The radiation pattern is a graphical depiction of the relative field strength transmitted from or received by the antenna. Antenna radiation patterns are taken at one frequency, one

More information

UNIVERSITY OF UTAH ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT. ECE 5324/6324 ANTENNA THEORY AND DESIGN Spring 2013

UNIVERSITY OF UTAH ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT. ECE 5324/6324 ANTENNA THEORY AND DESIGN Spring 2013 UNIVERSITY OF UTAH ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT ECE 5324/6324 ANTENNA THEORY AND DESIGN Spring 2013 Instructor: O. P. Gandhi Office: MEB 4508 1. This is an engineering course which deals

More information

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING SUBJECT NAME:

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING SUBJECT NAME: Chendu College of Engineering & Technology (Approved by AICTE, New Delhi and Affiliated to Anna University) Zamin Endathur, Madurantakam, Kancheepuram, District 603311. DEPARTMENT OF ELECTRONICS & COMMUNICATION

More information

CHAPTER 5 ANALYSIS OF MICROSTRIP PATCH ANTENNA USING STACKED CONFIGURATION

CHAPTER 5 ANALYSIS OF MICROSTRIP PATCH ANTENNA USING STACKED CONFIGURATION 1 CHAPTER 5 ANALYSIS OF MICROSTRIP PATCH ANTENNA USING STACKED CONFIGURATION 5.1 INTRODUCTION Rectangular microstrip patch with U shaped slotted patch is stacked, Hexagonal shaped patch with meander patch

More information

Applied Electromagnetics Laboratory

Applied Electromagnetics Laboratory Department of ECE Overview of Present and Recent Research Projects http://www.egr.uh.edu/ael/ EM Faculty Ji Chen Ph.D. 1998 U. Illinois David Jackson Ph.D. 1985 UCLA Stuart Long Ph.D. 1974 Harvard Don

More information

S.R.M. Institute of Science & Technology Deemed University School of Electronics & Communication Engineering

S.R.M. Institute of Science & Technology Deemed University School of Electronics & Communication Engineering S.R.M. Institute of Science & Technology Deemed University School of Electronics & Communication Engineering Question Bank Subject Code : EC401 Subject Name : Antennas and Wave Propagation Year & Sem :

More information

Newsletter 2.0. Antenna Magus version 2.0 released! New Array synthesis tool. April 2010

Newsletter 2.0. Antenna Magus version 2.0 released! New Array synthesis tool. April 2010 Newsletter 2.0 April 2010 Antenna Magus version 2.0 released! We are very proud to announce the second major release of Antenna Magus, Version 2.0. Looking back over the past 11 months since release 1.0

More information

Aperture Antennas. Reflectors, horns. High Gain Nearly real input impedance. Huygens Principle

Aperture Antennas. Reflectors, horns. High Gain Nearly real input impedance. Huygens Principle Antennas 97 Aperture Antennas Reflectors, horns. High Gain Nearly real input impedance Huygens Principle Each point of a wave front is a secondary source of spherical waves. 97 Antennas 98 Equivalence

More information

Loop and Slot Antennas

Loop and Slot Antennas Loop and Slot Antennas Prof. Girish Kumar Electrical Engineering Department, IIT Bombay gkumar@ee.iitb.ac.in (022) 2576 7436 Loop Antenna Loop antennas can have circular, rectangular, triangular or any

More information

ANTENNA INTRODUCTION / BASICS

ANTENNA INTRODUCTION / BASICS ANTENNA INTRODUCTION / BASICS RULES OF THUMB: 1. The Gain of an antenna with losses is given by: 2. Gain of rectangular X-Band Aperture G = 1.4 LW L = length of aperture in cm Where: W = width of aperture

More information

Triangular Patch Antennas for Mobile Radio-Communications Systems

Triangular Patch Antennas for Mobile Radio-Communications Systems Triangular Patch Antennas for Mobile Radio-Communications Systems HECTOR FRAGA-ROSALES, MARIO REYES-AYALA, GENARO HERNANDEZ-VALDEZ, EDGAR ALEJANDRO ANDRADE-GONZALEZ, JOSE RAUL MIRANDA-TELLO, FELIPE ALEJANDRO

More information

Broadband aperture-coupled equilateral triangular microstrip array antenna

Broadband aperture-coupled equilateral triangular microstrip array antenna Indian Journal of Radio & Space Physics Vol. 38, June 2009, pp. 174-179 Broadband aperture-coupled equilateral triangular microstrip array antenna S N Mulgi $,*, G M Pushpanjali, R B Konda, S K Satnoor

More information

Performance Analysis of a Patch Antenna Array Feed For A Satellite C-Band Dish Antenna

Performance Analysis of a Patch Antenna Array Feed For A Satellite C-Band Dish Antenna Cyber Journals: Multidisciplinary Journals in Science and Technology, Journal of Selected Areas in Telecommunications (JSAT), November Edition, 2011 Performance Analysis of a Patch Antenna Array Feed For

More information

OSCILLATORS AND MIXERS RF Oscillators 605. Crystal Oscillators Microwave Oscillators 613

OSCILLATORS AND MIXERS RF Oscillators 605. Crystal Oscillators Microwave Oscillators 613 xvi 13 Contents OSCILLATORS AND MIXERS 604 13.1 RF Oscillators 605 General Analysis 606 Oscillators Using a Common Emitter BJT 607 Oscillators Using a Common Gate FET 609 Practical Considerations 610 Crystal

More information

CHAPTER 2 MICROSTRIP REFLECTARRAY ANTENNA AND PERFORMANCE EVALUATION

CHAPTER 2 MICROSTRIP REFLECTARRAY ANTENNA AND PERFORMANCE EVALUATION 43 CHAPTER 2 MICROSTRIP REFLECTARRAY ANTENNA AND PERFORMANCE EVALUATION 2.1 INTRODUCTION This work begins with design of reflectarrays with conventional patches as unit cells for operation at Ku Band in

More information

5 Design of Feed and Feed Network for Microstrip Antennas

5 Design of Feed and Feed Network for Microstrip Antennas 5 Design of Feed and Feed Network for Microstrip Antennas 5.1 Introduction The microstrip antenna can be excited either by a coaxial probe or by a microstrip line. It can also be excited indirectly using

More information

Antennas 1. Antennas

Antennas 1. Antennas Antennas Antennas 1! Grading policy. " Weekly Homework 40%. " Midterm Exam 30%. " Project 30%.! Office hour: 3:10 ~ 4:00 pm, Monday.! Textbook: Warren L. Stutzman and Gary A. Thiele, Antenna Theory and

More information

COMPACT HALF U-SLOT LOADED SHORTED RECTAN- GULAR PATCH ANTENNA FOR BROADBAND OPERA- TION

COMPACT HALF U-SLOT LOADED SHORTED RECTAN- GULAR PATCH ANTENNA FOR BROADBAND OPERA- TION Progress In Electromagnetics Research M, Vol. 9, 5 6, 009 COMPACT HALF U-SLOT LOADED SHORTED RECTAN- GULAR PATCH ANTENNA FOR BROADBAND OPERA- TION J. A. Ansari, N. P. Yadav, P. Singh, and A. Mishra Department

More information

Fundamentals of Antennas. Prof. Ely Levine

Fundamentals of Antennas. Prof. Ely Levine Fundamentals of Antennas Prof. Ely Levine levineel@zahav.net.il 1 Chapter 3 Wire Antennas 2 Types of Antennas 3 Isotropic Antenna Isotropic radiator is the simplest antenna mathematically Radiates all

More information

I J E E Volume 5 Number 1 January-June 2013 pp

I J E E Volume 5 Number 1 January-June 2013 pp I J E E Volume 5 Number 1 January-June 2013 pp. 21-25 Serials Publications, ISSN : 0973-7383 Various Antennas and Its Applications in Wireless Domain: A Review Paper P.A. Ambresh 1, P.M. Hadalgi 2 and

More information

ELEC4604. RF Electronics. Experiment 1

ELEC4604. RF Electronics. Experiment 1 ELEC464 RF Electronics Experiment ANTENNA RADATO N PATTERNS. ntroduction The performance of RF communication systems depend critically on the radiation characteristics of the antennae it employs. These

More information

Department of Electrical Engineering University of North Texas

Department of Electrical Engineering University of North Texas Name: Shabuktagin Photon Khan UNT ID: 10900555 Instructor s Name: Professor Hualiang Zhang Course Name: Antenna Theory and Design Course ID: EENG 5420 Email: khan.photon@gmail.com Department of Electrical

More information

Radiation Analysis of Phased Antenna Arrays with Differentially Feeding Networks towards Better Directivity

Radiation Analysis of Phased Antenna Arrays with Differentially Feeding Networks towards Better Directivity Radiation Analysis of Phased Antenna Arrays with Differentially Feeding Networks towards Better Directivity Manohar R 1, Sophiya Susan S 2 1 PG Student, Department of Telecommunication Engineering, CMR

More information

ELECTROMAGNETIC WAVES AND ANTENNAS

ELECTROMAGNETIC WAVES AND ANTENNAS Syllabus ELECTROMAGNETIC WAVES AND ANTENNAS - 83888 Last update 20-05-2015 HU Credits: 4 Degree/Cycle: 1st degree (Bachelor) Responsible Department: Applied Phyisics Academic year: 1 Semester: 2nd Semester

More information

You will need the following pieces of equipment to complete this experiment: Wilkinson power divider (3-port board with oval-shaped trace on it)

You will need the following pieces of equipment to complete this experiment: Wilkinson power divider (3-port board with oval-shaped trace on it) UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING The Edward S. Rogers Sr. Department of Electrical and Computer Engineering ECE422H1S: RADIO AND MICROWAVE WIRELESS SYSTEMS EXPERIMENT 1:

More information

Evangelos Kranakis, School of Computer Science, Carleton University, Ottawa 1. Antennae Basics

Evangelos Kranakis, School of Computer Science, Carleton University, Ottawa 1. Antennae Basics Evangelos Kranakis, School of Computer Science, Carleton University, Ottawa 1 Antennae Basics Evangelos Kranakis, School of Computer Science, Carleton University, Ottawa 2 Essentials Antennae Examples

More information

Newsletter 5.4. New Antennas. The profiled horns. Antenna Magus Version 5.4 released! May 2015

Newsletter 5.4. New Antennas. The profiled horns. Antenna Magus Version 5.4 released! May 2015 Newsletter 5.4 May 215 Antenna Magus Version 5.4 released! Version 5.4 sees the release of eleven new antennas (taking the total number of antennas to 277) as well as a number of new features, improvements

More information

S=E H ANTENNA RADIATION

S=E H ANTENNA RADIATION ANTENNA RADIATION Antennas radiate spherical waves that propagate in the radial direction for a coordinate system centered on the antenna. At large distances, spherical waves can be approx imated by plane

More information

BHARATHIDASAN ENGINEERING COLLEGE NATTARAMPALLI Frequently Asked Questions (FAQ) Unit 1

BHARATHIDASAN ENGINEERING COLLEGE NATTARAMPALLI Frequently Asked Questions (FAQ) Unit 1 BHARATHIDASAN ENGINEERING COLLEGE NATTARAMPALLI 635854 Frequently Asked Questions (FAQ) Unit 1 Degree / Branch : B.E / ECE Sem / Year : 3 rd / 6 th Sub Name : Antennas & Wave Propagation Sub Code : EC6602

More information

Design and Improved Performance of Rectangular Micro strip Patch Antenna for C Band Application

Design and Improved Performance of Rectangular Micro strip Patch Antenna for C Band Application RESEARCH ARTICLE OPEN ACCESS Design and Improved Performance of Rectangular Micro strip Patch Antenna for C Band Application Vinay Jhariya*, Prof. Prashant Jain** *(Department of Electronics & Communication

More information

Designing of Rectangular Microstrip Patch Antenna for C-Band Application

Designing of Rectangular Microstrip Patch Antenna for C-Band Application International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) Designing of Rectangular Microstrip Patch Antenna for C-Band Application Vinay Jhariya 1, Prof. Prashant Jain 2 1,2 Department of

More information

Performance Analysis of Different Ultra Wideband Planar Monopole Antennas as EMI sensors

Performance Analysis of Different Ultra Wideband Planar Monopole Antennas as EMI sensors International Journal of Electronics and Communication Engineering. ISSN 09742166 Volume 5, Number 4 (2012), pp. 435445 International Research Publication House http://www.irphouse.com Performance Analysis

More information

Inset Fed Microstrip Patch Antenna for X-Band Applications

Inset Fed Microstrip Patch Antenna for X-Band Applications Inset Fed Microstrip Patch Antenna for X-Band Applications Pradeep H S Dept.of ECE, Siddaganga Institute of Technology, Tumakuru, Karnataka. Abstract Microstrip antennas play an important role in RF Communication.

More information

Design and Optimization of Microstrip Patch Antenna for Satellite Applications

Design and Optimization of Microstrip Patch Antenna for Satellite Applications Design and Optimization of Microstrip Patch Antenna for Satellite Applications Budati Suresh Kumar, Assistant Professor, ECE Department, Chirala Engineering College, CHIRALA balaji2547@gmail.com ABSTRACT

More information

Microstrip Antennas Integrated with Horn Antennas

Microstrip Antennas Integrated with Horn Antennas 53 Microstrip Antennas Integrated with Horn Antennas Girish Kumar *1, K. P. Ray 2 and Amit A. Deshmukh 1 1. Department of Electrical Engineering, I.I.T. Bombay, Powai, Mumbai 400 076, India Phone: 91 22

More information

DESIGN AND SIMULATION OF DIFFERENT TYPES OF ANTENNA USING MATLAB

DESIGN AND SIMULATION OF DIFFERENT TYPES OF ANTENNA USING MATLAB DESIGN AND SIMULATION OF DIFFERENT TYPES OF ANTENNA USING MATLAB Amarjeet Singh Rathaur, Assist. Prof. Sanjay Jangra Electronics and Communication Engineering Department Advanced Institute of Technology

More information

A. A. Kishk and A. W. Glisson Department of Electrical Engineering The University of Mississippi, University, MS 38677, USA

A. A. Kishk and A. W. Glisson Department of Electrical Engineering The University of Mississippi, University, MS 38677, USA Progress In Electromagnetics Research, PIER 33, 97 118, 2001 BANDWIDTH ENHANCEMENT FOR SPLIT CYLINDRICAL DIELECTRIC RESONATOR ANTENNAS A. A. Kishk and A. W. Glisson Department of Electrical Engineering

More information

LE/ESSE Payload Design

LE/ESSE Payload Design LE/ESSE4360 - Payload Design 4.3 Communications Satellite Payload - Hardware Elements Earth, Moon, Mars, and Beyond Dr. Jinjun Shan, Professor of Space Engineering Department of Earth and Space Science

More information

ANTENNA INTRODUCTION / BASICS

ANTENNA INTRODUCTION / BASICS Rules of Thumb: 1. The Gain of an antenna with losses is given by: G 0A 8 Where 0 ' Efficiency A ' Physical aperture area 8 ' wavelength ANTENNA INTRODUCTION / BASICS another is:. Gain of rectangular X-Band

More information

COAXIAL / CIRCULAR HORN ANTENNA FOR A STANDARD

COAXIAL / CIRCULAR HORN ANTENNA FOR A STANDARD COAXIAL / CIRCULAR HORN ANTENNA FOR 802.11A STANDARD Petr Všetula Doctoral Degree Programme (1), FEEC BUT E-mail: xvsetu00@stud.feec.vutbr.cz Supervised by: Zbyněk Raida E-mail: raida@feec.vutbr.cz Abstract:

More information

Newsletter 2.3. Antenna Magus version 2.3 released! New antennas in Version 2.3. Potter horn. Circularly polarised rectangular-biquad antenna

Newsletter 2.3. Antenna Magus version 2.3 released! New antennas in Version 2.3. Potter horn. Circularly polarised rectangular-biquad antenna Newsletter 2.3 October 2010 Antenna Magus version 2.3 released! An update to Antenna Magus, version 2.3, is now available for download. This update features 10 new antennas, as opposed to the usual 6.

More information

Design and Development of a 2 1 Array of Slotted Microstrip Line Fed Shorted Patch Antenna for DCS Mobile Communication System

Design and Development of a 2 1 Array of Slotted Microstrip Line Fed Shorted Patch Antenna for DCS Mobile Communication System Wireless Engineering and Technology, 2013, 4, 59-63 http://dx.doi.org/10.4236/wet.2013.41009 Published Online January 2013 (http://www.scirp.org/journal/wet) 59 Design and Development of a 2 1 Array of

More information

EEM.Ant. Antennas and Propagation

EEM.Ant. Antennas and Propagation EEM.ant/0304/08pg/Req: None 1/8 UNIVERSITY OF SURREY Department of Electronic Engineering MSc EXAMINATION EEM.Ant Antennas and Propagation Duration: 2 Hours Spring 2003/04 READ THESE INSTRUCTIONS Answer

More information

Antennas & wave Propagation ASSIGNMENT-I

Antennas & wave Propagation ASSIGNMENT-I Shri Vishnu Engineering College for Women :: Bhimavaram Department of Electronics & Communication Engineering Antennas & wave Propagation 1. Define the terms: i. Antenna Aperture ii. Beam Width iii. Aperture

More information

CHAPTER 5 PRINTED FLARED DIPOLE ANTENNA

CHAPTER 5 PRINTED FLARED DIPOLE ANTENNA CHAPTER 5 PRINTED FLARED DIPOLE ANTENNA 5.1 INTRODUCTION This chapter deals with the design of L-band printed dipole antenna (operating frequency of 1060 MHz). A study is carried out to obtain 40 % impedance

More information

DESIGN OF PRINTED YAGI ANTENNA WITH ADDI- TIONAL DRIVEN ELEMENT FOR WLAN APPLICA- TIONS

DESIGN OF PRINTED YAGI ANTENNA WITH ADDI- TIONAL DRIVEN ELEMENT FOR WLAN APPLICA- TIONS Progress In Electromagnetics Research C, Vol. 37, 67 81, 013 DESIGN OF PRINTED YAGI ANTENNA WITH ADDI- TIONAL DRIVEN ELEMENT FOR WLAN APPLICA- TIONS Jafar R. Mohammed * Communication Engineering Department,

More information

Rectangular Microstrip Patch Antenna Design using IE3D Simulator

Rectangular Microstrip Patch Antenna Design using IE3D Simulator Research Article International Journal of Current Engineering and Technology E-ISSN 2277 416, P-ISSN 2347-5161 214 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Pallavi

More information

Broadband and High Efficiency Single-Layer Reflectarray Using Circular Ring Attached Two Sets of Phase-Delay Lines

Broadband and High Efficiency Single-Layer Reflectarray Using Circular Ring Attached Two Sets of Phase-Delay Lines Progress In Electromagnetics Research M, Vol. 66, 193 202, 2018 Broadband and High Efficiency Single-Layer Reflectarray Using Circular Ring Attached Two Sets of Phase-Delay Lines Fei Xue 1, *, Hongjian

More information

Chapter 3 Solution to Problems

Chapter 3 Solution to Problems Chapter 3 Solution to Problems 1. The telemetry system of a geostationary communications satellite samples 100 sensors on the spacecraft in sequence. Each sample is transmitted to earth as an eight-bit

More information

ANTENNA TUTORIAL 1. INTRODUCTION 2. CLASSIFICATION OF ANTENNAS

ANTENNA TUTORIAL 1. INTRODUCTION 2. CLASSIFICATION OF ANTENNAS ANTENNA TUTORIAL Phumzile Malindi, Department of Electrical Engineering, Walter Sisulu University, 19 Manchester Road, Chiselhurst, EAST LONDON, 501, South Africa pmalindi@webmail.co.za 1. INTRODUCTION

More information

The Shaped Coverage Area Antenna for Indoor WLAN Access Points

The Shaped Coverage Area Antenna for Indoor WLAN Access Points The Shaped Coverage Area Antenna for Indoor WLAN Access Points A.BUMRUNGSUK and P. KRACHODNOK School of Telecommunication Engineering, Institute of Engineering Suranaree University of Technology 111 University

More information

Printed Circuit Board Dipole Antennas and Dipole Antenna Array Operating at 1.8GHz

Printed Circuit Board Dipole Antennas and Dipole Antenna Array Operating at 1.8GHz Declaration I declare that this thesis is my own unaided work, and hereby certify that unless stated, all work contained within this paper is my own to the best of my knowledge. This thesis is being submitted

More information

DESIGN OF WIDEBAND TRIANGLE SLOT ANTENNAS WITH TUNING STUB

DESIGN OF WIDEBAND TRIANGLE SLOT ANTENNAS WITH TUNING STUB Progress In Electromagnetics Research, PIER 48, 233 248, 2004 DESIGN OF WIDEBAND TRIANGLE SLOT ANTENNAS WITH TUNING STUB A. A. Eldek, A. Z. Elsherbeni, and C. E. Smith Department of Electrical Engineering

More information

Antenna Theory and Design

Antenna Theory and Design Antenna Theory and Design Antenna Theory and Design Associate Professor: WANG Junjun 王珺珺 School of Electronic and Information Engineering, Beihang University wangjunjun@buaa.edu.cn 13426405497 Chapter

More information

HYBRID ARRAY ANTENNA FOR BROADBAND MILLIMETER-WAVE APPLICATIONS

HYBRID ARRAY ANTENNA FOR BROADBAND MILLIMETER-WAVE APPLICATIONS Progress In Electromagnetics Research, PIER 83, 173 183, 2008 HYBRID ARRAY ANTENNA FOR BROADBAND MILLIMETER-WAVE APPLICATIONS S. Costanzo, I. Venneri, G. Di Massa, and G. Amendola Dipartimento di Elettronica,

More information

The Basics of Patch Antennas, Updated

The Basics of Patch Antennas, Updated The Basics of Patch Antennas, Updated By D. Orban and G.J.K. Moernaut, Orban Microwave Products www.orbanmicrowave.com Introduction This article introduces the basic concepts of patch antennas. We use

More information