Note: For. interested in. Radiation. A field pattern. H and a phase

Size: px
Start display at page:

Download "Note: For. interested in. Radiation. A field pattern. H and a phase"

Transcription

1 Lecture-3 Antenna parameters: (Continued ) Radiated Power With this information, now we are in a position to calculate the total radiated power from an antenna. Mathematically it can be written as Fig. 15: Calculation of radiated power Note: For antennas, mostly we are interested in its far-fieldd radiation. So, the integration in the above equation is over a closed surface with the antenna inside and the surface is sufficiently far from antenna Radiation Pattern Radiation pattern is a graphical representation of the radiation properties of the antenna as a function of space coordinates. A field pattern is a graph that describess the relativee far field vales, E or H, with direction at a fixed distance from the antenna. A field pattern includes an magnitude (amplitude) pattern E or H and a phase pattern E or H. A power pattern is a graph that describess the relative (average) radiated power density P ave of the far-field with direction at a fixed distance from the antenna.

2 A typical antenna radiation pattern is shown in Fig. 16 (a). The characteristics to note down from this pattern are: (i) (ii) (iii) (iv) Main (major) lobe Minor lobe (includes side lobes and back lobe) Half-power beamwidth (HPBW) Beamwidth between first nulls (BWFN) Note: A radiation pattern shows only the relative values but not the absolute values of the field or power quantity. Hence the values are usually normalized (i.e., divided) by the maximum value. [In Fig. 16, mark the maximum of the main lobe that is 1) The size of the minor lobes is much smaller than that of the major lobe. In order to clearly visualize the minor lobes, sometimes the scales of the radiation pattern are expressed in db, as shown in Fig. 16 (b). The calculation procedure of the beamwidths from the radiation pattern is shown in Fig. 17. Note: By the reciprocity theorem, the radiation pattern of an antenna in the transmitting mode is same as those for the antenna in the receiving mode.

3 Main lobe maximum direction 1.0 Half-power Beamwidth (HPBW) Main lobe 0.5 Beamwidth between first nulls (BWFN) Minor lobes (a) Main lobe 0 db - 3 db - 10 db (b) Fig. 16: Antenna radiation pattern

4 Fig. 17: Calculation of beamwidths from the radiation pattern. Isotropic Radiation Pattern: It is the pattern of a point source. o Characteristics Completely non-directional antenna Radiates and receives equally well inn all directionss Radiation pattern is spherical o Exists only as a mathematical concept o Used as a referencee Omnidirection nal Radiation Pattern: It is the patternn of a Hertzian dipole. [see Fig. 18] o Along the ends of the dipole there is no radiation (nulls) o Maximum radiation is along the broadside direction o Sometimes used a reference

5 z x y (a) y z sin x 0 HPBW 90 (b) (c) Fig. 18: Omnidirectional radiation pattern. Example: The step-by-step procedure of drawing the radiation pattern of a Hertzian dipole is as follows:

6 Step 1 Step 2 Step 3 Step 4

7 Step Field Regions The space surrounding an antenna is usually divided into two regions: (i) near field field region. (See Fig. 19) region and ( ii) far Far field is defined as that region of the field of an antenna where the angular field distribution is independent of the distance from the antenna. This region is commonly taken to exist at distances greater than 2D 2 / from the antenna, wheree D is the overall dimension of the antenna. This region is also called as the Fraunhofer region. In this region, the field components are essentially transverse and the angular distribution is independent of the radial distance where the measurements are made. The field immediately surrounding the antenna and the far field region is known as the near field region. This region is again divided into two sub regions as (a) reactive near field and (b) radiating near field, according to their characteristics. (See Fig. 19).

8 D 2D D Reactive region Radiating region Near field region Far field region Fig. 19: Near field and far field regions of an antenna.

Antenna & Propagation. Antenna Parameters

Antenna & Propagation. Antenna Parameters For updated version, please click on http://ocw.ump.edu.my Antenna & Propagation Antenna Parameters by Nor Hadzfizah Binti Mohd Radi Faculty of Electric & Electronics Engineering hadzfizah@ump.edu.my Chapter

More information

Chapter 2. Fundamental Properties of Antennas. ECE 5318/6352 Antenna Engineering Dr. Stuart Long

Chapter 2. Fundamental Properties of Antennas. ECE 5318/6352 Antenna Engineering Dr. Stuart Long Chapter Fundamental Properties of Antennas ECE 5318/635 Antenna Engineering Dr. Stuart Long 1 IEEE Standards Definition of Terms for Antennas IEEE Standard 145-1983 IEEE Transactions on Antennas and Propagation

More information

UNIT Explain the radiation from two-wire. Ans: Radiation from Two wire

UNIT Explain the radiation from two-wire. Ans:   Radiation from Two wire UNIT 1 1. Explain the radiation from two-wire. Radiation from Two wire Figure1.1.1 shows a voltage source connected two-wire transmission line which is further connected to an antenna. An electric field

More information

ELEG 648 Radiation/Antennas I. Mark Mirotznik, Ph.D. Associate Professor The University of Delaware

ELEG 648 Radiation/Antennas I. Mark Mirotznik, Ph.D. Associate Professor The University of Delaware ELEG 648 Radiation/Antennas I Mark Mirotznik Ph.D. Associate Professor The University of Delaware A jk rr ' e ' r J r dv ' 4 r r ' F If we have magnetic sources jk rr ' e ' r M r dv ' 4 r r ' Field

More information

( ) 2 ( ) 3 ( ) + 1. cos! t " R / v p 1 ) H =! ˆ" I #l ' $ 2 ' 2 (18.20) * + ! ˆ& "I #l ' $ 2 ' , ( βr << 1. "l ' E! ˆR I 0"l ' cos& + ˆ& 0

( ) 2 ( ) 3 ( ) + 1. cos! t  R / v p 1 ) H =! ˆ I #l ' $ 2 ' 2 (18.20) * + ! ˆ& I #l ' $ 2 ' , ( βr << 1. l ' E! ˆR I 0l ' cos& + ˆ& 0 Summary Chapter 8. This last chapter treats the problem of antennas and radiation from antennas. We start with the elemental electric dipole and introduce the idea of retardation of potentials and fields

More information

EC ANTENNA AND WAVE PROPAGATION

EC ANTENNA AND WAVE PROPAGATION EC6602 - ANTENNA AND WAVE PROPAGATION FUNDAMENTALS PART-B QUESTION BANK UNIT 1 1. Define the following parameters w.r.t antenna: i. Radiation resistance. ii. Beam area. iii. Radiation intensity. iv. Directivity.

More information

THE ELECTROMAGNETIC FIELD THEORY. Dr. A. Bhattacharya

THE ELECTROMAGNETIC FIELD THEORY. Dr. A. Bhattacharya 1 THE ELECTROMAGNETIC FIELD THEORY Dr. A. Bhattacharya The Underlying EM Fields The development of radar as an imaging modality has been based on power and power density It is important to understand some

More information

Antenna Fundamentals Basics antenna theory and concepts

Antenna Fundamentals Basics antenna theory and concepts Antenna Fundamentals Basics antenna theory and concepts M. Haridim Brno University of Technology, Brno February 2017 1 Topics What is antenna Antenna types Antenna parameters: radiation pattern, directivity,

More information

Topic 3. Fundamental Parameters of Antennas. Tamer Abuelfadl

Topic 3. Fundamental Parameters of Antennas. Tamer Abuelfadl Topic 3 Fundamental Parameters of Antennas Tamer Abuelfadl Electronics and Electrical Communications Department Faculty of Engineering Cairo University Tamer Abuelfadl (EEC, Cairo University) Topic 3 ELC

More information

Antennas & wave Propagation ASSIGNMENT-I

Antennas & wave Propagation ASSIGNMENT-I Shri Vishnu Engineering College for Women :: Bhimavaram Department of Electronics & Communication Engineering Antennas & wave Propagation 1. Define the terms: i. Antenna Aperture ii. Beam Width iii. Aperture

More information

It is clear in Figures a and b that in some very specific directions there are zeros, or nulls, in the pattern indicating no radiation.

It is clear in Figures a and b that in some very specific directions there are zeros, or nulls, in the pattern indicating no radiation. Unit 2 - Point Sources and Arrays Radiation pattern: The radiation pattern of antenna is a representation (pictorial or mathematical) of the distribution of the power out-flowing (radiated) from the antenna

More information

Antennas 1. Antennas

Antennas 1. Antennas Antennas Antennas 1! Grading policy. " Weekly Homework 40%. " Midterm Exam 30%. " Project 30%.! Office hour: 3:10 ~ 4:00 pm, Monday.! Textbook: Warren L. Stutzman and Gary A. Thiele, Antenna Theory and

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUB.NAME : ANTENNAS & WAVE PROPAGATION SUB CODE : EC 1352 YEAR : III SEMESTER : VI UNIT I: ANTENNA FUNDAMENTALS

More information

YAGI-UDA DESIGN OF U.H.F BAND AERIAL TO SUIT LOCAL TV STATIONS

YAGI-UDA DESIGN OF U.H.F BAND AERIAL TO SUIT LOCAL TV STATIONS YAGI-UDA DESIGN OF U.H.F BAND AERIAL TO SUIT LOCAL TV STATIONS PROJECT INDEX: PRJ 079 Presented By: GITAU SIMON WAWERU F17/8261/2004 Supervisor: Mr. S.L OGABA Examiner: Mr. OMBURA Objective The main objective

More information

S=E H ANTENNA RADIATION

S=E H ANTENNA RADIATION ANTENNA RADIATION Antennas radiate spherical waves that propagate in the radial direction for a coordinate system centered on the antenna. At large distances, spherical waves can be approx imated by plane

More information

Continuous Arrays Page 1. Continuous Arrays. 1 One-dimensional Continuous Arrays. Figure 1: Continuous array N 1 AF = I m e jkz cos θ (1) m=0

Continuous Arrays Page 1. Continuous Arrays. 1 One-dimensional Continuous Arrays. Figure 1: Continuous array N 1 AF = I m e jkz cos θ (1) m=0 Continuous Arrays Page 1 Continuous Arrays 1 One-dimensional Continuous Arrays Consider the 2-element array we studied earlier where each element is driven by the same signal (a uniform excited array),

More information

UNIT-3. Ans: Arrays of two point sources with equal amplitude and opposite phase:

UNIT-3. Ans: Arrays of two point sources with equal amplitude and opposite phase: `` UNIT-3 1. Derive the field components and draw the field pattern for two point source with spacing of λ/2 and fed with current of equal n magnitude but out of phase by 180 0? Ans: Arrays of two point

More information

Antenna Engineering Lecture 3: Basic Antenna Parameters

Antenna Engineering Lecture 3: Basic Antenna Parameters Antenna Engineering Lecture 3: Basic Antenna Parameters ELC 405a Fall 2011 Department of Electronics and Communications Engineering Faculty of Engineering Cairo University 2 Outline 1 Radiation Pattern

More information

ANTENNA THEORY. Analysis and Design. CONSTANTINE A. BALANIS Arizona State University. JOHN WILEY & SONS New York Chichester Brisbane Toronto Singapore

ANTENNA THEORY. Analysis and Design. CONSTANTINE A. BALANIS Arizona State University. JOHN WILEY & SONS New York Chichester Brisbane Toronto Singapore ANTENNA THEORY Analysis and Design CONSTANTINE A. BALANIS Arizona State University JOHN WILEY & SONS New York Chichester Brisbane Toronto Singapore Contents Preface xv Chapter 1 Antennas 1 1.1 Introduction

More information

HHTEHHH THEORY ANALYSIS AND DESIGN. CONSTANTINE A. BALANIS Arizona State University

HHTEHHH THEORY ANALYSIS AND DESIGN. CONSTANTINE A. BALANIS Arizona State University HHTEHHH THEORY ANALYSIS AND DESIGN CONSTANTINE A. BALANIS Arizona State University JOHN WILEY & SONS, INC. New York Chichester Brisbane Toronto Singapore Contents Preface V CHAPTER 1 ANTENNAS 1.1 Introduction

More information

Millimetre-wave Phased Array Antennas for Mobile Terminals

Millimetre-wave Phased Array Antennas for Mobile Terminals Millimetre-wave Phased Array Antennas for Mobile Terminals Master s Thesis Alberto Hernández Escobar Aalborg University Department of Electronic Systems Fredrik Bajers Vej 7B DK-9220 Aalborg Contents

More information

Antenna Theory. Introduction

Antenna Theory. Introduction 1 Introduction Antenna Theory Antennas are device that designed to radiate electromagnetic energy efficiently in a prescribed manner. It is the current distributions on the antennas that produce the radiation.

More information

Dr. John S. Seybold. November 9, IEEE Melbourne COM/SP AP/MTT Chapters

Dr. John S. Seybold. November 9, IEEE Melbourne COM/SP AP/MTT Chapters Antennas Dr. John S. Seybold November 9, 004 IEEE Melbourne COM/SP AP/MTT Chapters Introduction The antenna is the air interface of a communication system An antenna is an electrical conductor or system

More information

KINGS COLLEGE OF ENGINEERING. DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING Academic Year (Even Sem) QUESTION BANK (AUTT-R2008)

KINGS COLLEGE OF ENGINEERING. DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING Academic Year (Even Sem) QUESTION BANK (AUTT-R2008) KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING Academic Year 2012-2013(Even Sem) QUESTION BANK (AUTT-R2008) SUBJECT CODE /NAME: EC 1352 / ANTENNEA AND WAVE PROPAGATION

More information

RADAR Antennas R A D A R R A D A R S Y S T E M S S Y S T E M S. Lecture DR Sanjeev Kumar Mishra. 2 max

RADAR Antennas R A D A R R A D A R S Y S T E M S S Y S T E M S. Lecture DR Sanjeev Kumar Mishra. 2 max Y T E M Y T E M anjeev Kumar Mishra Lecture 17-20 ntennas i p r t t ne L L L N kt BF PG 1 0 3 2 max 4 ) / ( 4 2 Y T E M ntenna: n antenna is an electromagnetic radiator, a sensor, a transducer and an impedance

More information

Antenna Parameters. Ranga Rodrigo. University of Moratuwa. December 15, 2008

Antenna Parameters. Ranga Rodrigo. University of Moratuwa. December 15, 2008 Antenna Parameters Ranga Rodrigo University of Moratuwa December 15, 2008 Ranga Rodrigo (University of Moratuwa) Antenna Parameters December 15, 2008 1 / 47 Summary of Last Week s Lecture 90 o Radiation

More information

ANTENNAS AND WAVE PROPAGATION EC602

ANTENNAS AND WAVE PROPAGATION EC602 ANTENNAS AND WAVE PROPAGATION EC602 B.Tech Electronics & Communication Engineering, Semester VI INSTITUTE OF TECHNOLOGY NIRMA UNIVERSITY 1 Lesson Planning (L-3,P-2,C-4) Chapter No. Name Hours 1. Basic

More information

Array antennas introduction

Array antennas introduction Array antennas introduction José Manuel Inclán Alonso chema@gr.ssr.upm.es Universidad Politécnica de Madrid (Technical University of Madrid, UPM) Outline Array antennas definition Arrays types Depending

More information

ANTENNA INTRODUCTION / BASICS

ANTENNA INTRODUCTION / BASICS ANTENNA INTRODUCTION / BASICS RULES OF THUMB: 1. The Gain of an antenna with losses is given by: 2. Gain of rectangular X-Band Aperture G = 1.4 LW L = length of aperture in cm Where: W = width of aperture

More information

Principles of Radiation and Antennas

Principles of Radiation and Antennas Principles of Radiation and Antennas Prof. Tzong-Lin Wu EMC Laboratory Department of Electrical Engineering National Taiwan University Prof. Tzong-Lin Wu / NTUEE 1 How antenna radiate: a single accelerated

More information

BHARATHIDASAN ENGINEERING COLLEGE NATTARAMPALLI Frequently Asked Questions (FAQ) Unit 1

BHARATHIDASAN ENGINEERING COLLEGE NATTARAMPALLI Frequently Asked Questions (FAQ) Unit 1 BHARATHIDASAN ENGINEERING COLLEGE NATTARAMPALLI 635854 Frequently Asked Questions (FAQ) Unit 1 Degree / Branch : B.E / ECE Sem / Year : 3 rd / 6 th Sub Name : Antennas & Wave Propagation Sub Code : EC6602

More information

24. Antennas. What is an antenna. Types of antennas. Reciprocity

24. Antennas. What is an antenna. Types of antennas. Reciprocity 4. Antennas What is an antenna Types of antennas Reciprocity Hertzian dipole near field far field: radiation zone radiation resistance radiation efficiency Antennas convert currents to waves An antenna

More information

ECE 4370: Antenna Engineering TEST 1 (Fall 2011)

ECE 4370: Antenna Engineering TEST 1 (Fall 2011) Name: GTID: ECE 4370: Antenna Engineering TEST 1 (Fall 2011) Please read all instructions before continuing with the test. This is a closed notes, closed book, closed friend, open mind test. On your desk

More information

Chapter 4 The RF Link

Chapter 4 The RF Link Chapter 4 The RF Link The fundamental elements of the communications satellite Radio Frequency (RF) or free space link are introduced. Basic transmission parameters, such as Antenna gain, Beamwidth, Free-space

More information

Exercise 2-1. Beamwidth Measurement EXERCISE OBJECTIVE

Exercise 2-1. Beamwidth Measurement EXERCISE OBJECTIVE Exercise 2-1 Beamwidth Measurement EXERCISE OBJECTIVE When you have completed this exercise, you will be able to evaluate the -3 db beamwidth of the Phased Array Antenna. You will use a reference cylindrical

More information

The Benefits of BEC s Antenna Design

The Benefits of BEC s Antenna Design The Benefits of BEC s Antenna Design Overview The explosive growth of wireless data communications is fast emerging with high peak data rates, which require superior antenna performance and design to support

More information

Antenna Arrays. EE-4382/ Antenna Engineering

Antenna Arrays. EE-4382/ Antenna Engineering Antenna Arrays EE-4382/5306 - Antenna Engineering Outline Introduction Two Element Array Rectangular-to-Polar Graphical Solution N-Element Linear Array: Uniform Spacing and Amplitude Theory of N-Element

More information

CONTENTS. Note Concerning the Numbering of Equations, Figures, and References; Notation, xxi. A Bridge from Mathematics to Engineering in Antenna

CONTENTS. Note Concerning the Numbering of Equations, Figures, and References; Notation, xxi. A Bridge from Mathematics to Engineering in Antenna CONTENTS Note Concerning the Numbering of Equations, Figures, and References; Notation, xxi Introduction: Theory, 1 A Bridge from Mathematics to Engineering in Antenna Isolated Antennas 1. Free Oscillations,

More information

Introduction to Radar Systems. Radar Antennas. MIT Lincoln Laboratory. Radar Antennas - 1 PRH 6/18/02

Introduction to Radar Systems. Radar Antennas. MIT Lincoln Laboratory. Radar Antennas - 1 PRH 6/18/02 Introduction to Radar Systems Radar Antennas Radar Antennas - 1 Disclaimer of Endorsement and Liability The video courseware and accompanying viewgraphs presented on this server were prepared as an account

More information

MICROWAVE ENGINEERING MCQs

MICROWAVE ENGINEERING MCQs MICROWAVE ENGINEERING MCQs 1) If an antenna draws 12 A current and radiates 4 kw, then what will be its radiation resistance? a. 22.22 ohm b. 27.77 ohm c. 33.33 ohm d. 39.77 ohm 2) Which mode of radiation

More information

Antennas 101 Don t Be a 0.97 db Weakling! Ward Silver NØAX

Antennas 101 Don t Be a 0.97 db Weakling! Ward Silver NØAX Antennas 101 Don t Be a 0.97 db Weakling! Ward Silver NØAX Overview Antennas 101 2 Overview Basic Antennas: Ground Plane / Dipole How Gain and Nulls are Formed How Phased Arrays Work How Yagis Work (simplified)

More information

LECTURE 4: Fundamental Antenna Parameters 1. Radiation Pattern Note:

LECTURE 4: Fundamental Antenna Parameters 1. Radiation Pattern Note: LECTURE 4: Fundamental Antenna Parameters (Radiation pattern. Pattern beamwidths. Radiation intensity. Directivity. Gain. Antenna efficiency and radiation efficiency. Frequency bandwidth. Input impedance

More information

Antenna & Wave Propagation (Subject Code: 7EC1)

Antenna & Wave Propagation (Subject Code: 7EC1) COMPUCOM INSTITUTE OF TECHNOLOGY & MANAGEMENT, JAIPUR (DEPARTMENT OF ELECTRONICS & COMMUNICATION) Notes Antenna & Wave Propagation (Subject Code: 7EC1) Prepared By: Raj Kumar Jain Class: B. Tech. IV Year,

More information

ELEC 425 Interference Control in Electronics Lecture 7(a) Introduction to Antennas: Terminology

ELEC 425 Interference Control in Electronics Lecture 7(a) Introduction to Antennas: Terminology Dr. Gregory J. Mazzaro Fall 017 ELEC 45 Interference Control in Electronics Lecture 7(a) Introduction to Antennas: Terminology Chapter 9 THE CITADEL, THE MILITARY COLLEGE OF SOUTH CAROLINA 171 Moultrie

More information

UNIT Write short notes on travelling wave antenna? Ans: Travelling Wave Antenna

UNIT Write short notes on travelling wave antenna? Ans:   Travelling Wave Antenna UNIT 4 1. Write short notes on travelling wave antenna? Travelling Wave Antenna Travelling wave or non-resonant or aperiodic antennas are those antennas in which there is no reflected wave i.e., standing

More information

ANTENNA INTRODUCTION / BASICS

ANTENNA INTRODUCTION / BASICS Rules of Thumb: 1. The Gain of an antenna with losses is given by: G 0A 8 Where 0 ' Efficiency A ' Physical aperture area 8 ' wavelength ANTENNA INTRODUCTION / BASICS another is:. Gain of rectangular X-Band

More information

5/4/2005 Antenna Pattern present 1/1. C. Antenna Pattern

5/4/2005 Antenna Pattern present 1/1. C. Antenna Pattern 5/4/2005 Antenna Pattern present 1/1 C. Antenna Pattern Radiation Intensity is dependent on both the antenna and the radiated power. We can normalize the Radiation Intensity function to construct a result

More information

Antennas and Propagation

Antennas and Propagation CMPE 477 Wireless and Mobile Networks Lecture 3: Antennas and Propagation Antennas Propagation Modes Line of Sight Transmission Fading in the Mobile Environment Introduction An antenna is an electrical

More information

BASICS OF ANTENNAS Lecture Note 1

BASICS OF ANTENNAS Lecture Note 1 BASICS OF ANTENNAS Lecture Note 1 INTRODUCTION Antennas are devices that are capable of launching RF (radio frequency) energy into space and detect it as well. How well an antenna is able to launch RF

More information

RECOMMENDATION ITU-R S.1528

RECOMMENDATION ITU-R S.1528 Rec. ITU-R S.158 1 RECOMMENDATION ITU-R S.158 Satellite antenna radiation patterns for non-geostationary orbit satellite antennas operating in the fixed-satellite service below 30 GHz (Question ITU-R 31/4)

More information

Characteristics of HF Coastal Radars

Characteristics of HF Coastal Radars Function Characteristics System 1 Maximum operational (measurement) range** Characteristics of HF Coastal Radars 5 MHz Long-range oceanographic 160-220 km average during (daytime)* System 2 System 3 System

More information

ANT5: Space and Line Current Radiation

ANT5: Space and Line Current Radiation In this lecture, we study the general case of radiation from z-directed spatial currents. The far-field radiation equations that result from this treatment form some of the foundational principles of all

More information

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad ELECTRONICS AND COMMUNIACTION ENGINEERING QUESTION BANK

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad ELECTRONICS AND COMMUNIACTION ENGINEERING QUESTION BANK INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad - 500 04 ELECTRONICS AND COMMUNIACTION ENGINEERING QUESTION BANK Course Name : Antennas and Wave Propagation (AWP) Course Code : A50418 Class :

More information

THE EFFECT OF RANGE LENGTH ON THE MEASUREMENT OF TRP

THE EFFECT OF RANGE LENGTH ON THE MEASUREMENT OF TRP THE EFFECT OF RANGE LENGTH ON THE MEASUREMENT OF James D. Huff Carl W. Sirles The Howland Company, Inc. 4540 Atwater Court, Suite 107 Buford, Georgia 30518 Abstract Total Radiated Power () and Total Isotropic

More information

Half-Wave Dipole. Radiation Resistance. Antenna Efficiency

Half-Wave Dipole. Radiation Resistance. Antenna Efficiency Antennas Simple Antennas Isotropic radiator is the simplest antenna mathematically Radiates all the power supplied to it, equally in all directions Theoretical only, can t be built Useful as a reference:

More information

Radiation and Antennas

Radiation and Antennas Chapter 9 Radiation and Antennas. Basic Formulations 2. Hertzian Dipole Antenna 3. Linear Antennas An antenna is a device to transmit or receive electromagnetic power more efficiently with a more directive

More information

Practical Antennas and. Tuesday, March 4, 14

Practical Antennas and. Tuesday, March 4, 14 Practical Antennas and Transmission Lines Goals Antennas are the interface between guided waves (from a cable) and unguided waves (in space). To understand the various properties of antennas, so as to

More information

Antenna Design Seminar

Antenna Design Seminar Antenna Design Seminar What we are going to cover This seminar will cover the design concepts of a variety of broadcast antennas that relates to the design of TV and FM antennas. We will first look at

More information

Yagi-Uda (Beam) Antenna

Yagi-Uda (Beam) Antenna Yagi-Uda (Beam) Antenna Gary A. Thiele KD8ZWS (Ex W8RBW) Co-author of Antenna Theory & Design John Wiley & Sons, 1981, 1998, 2013 Yagi-Uda (Beam) Antennas Outline Preliminary Remarks Part I Brief history

More information

Q.P. Code : [ TURN OVER]

Q.P. Code : [ TURN OVER] Q.P. Code : 587801 8ADF85B2CAF8DDC703193679392A86308ADF85B2CAF8DDC703193679392A86308ADF85B2CAF8DDC703193679392A86308ADF85B2CAF8DDC703193679392A86308ADF85B2CAF8DDC70 6308ADF85B2CAF8DDC703193679392A86308ADF85B2CAF8DDC703193679392A86308ADF85B2CAF8DDC703193679392A86308ADF85B2CAF8DDC703193679392A86308ADF85B2CAF8DDC703

More information

Antenna Fundamentals. Microwave Engineering EE 172. Dr. Ray Kwok

Antenna Fundamentals. Microwave Engineering EE 172. Dr. Ray Kwok Antenna Fundamentals Microwave Engineering EE 172 Dr. Ray Kwok Reference Antenna Theory and Design Warran Stutzman, Gary Thiele, Wiley & Sons (1981) Microstrip Antennas Bahl & Bhartia, Artech House (1980)

More information

Linear Wire Antennas. EE-4382/ Antenna Engineering

Linear Wire Antennas. EE-4382/ Antenna Engineering Linear Wire Antennas EE-438/5306 - Antenna Engineering Outline Introduction Infinitesimal Dipole Small Dipole Finite Length Dipole Half-Wave Dipole Ground Effect Constantine A. Balanis, Antenna Theory:

More information

Unit 4. Antenna Theory

Unit 4. Antenna Theory Unit 4. Antenna Theory A person, who needs to convey a thought, an idea or a doubt, can do so by voice communication. The following illustration shows two individuals communicating with each other. Here,

More information

Travelling Wave, Broadband, and Frequency Independent Antennas. EE-4382/ Antenna Engineering

Travelling Wave, Broadband, and Frequency Independent Antennas. EE-4382/ Antenna Engineering Travelling Wave, Broadband, and Frequency Independent Antennas EE-4382/5306 - Antenna Engineering Outline Traveling Wave Antennas Introduction Traveling Wave Antennas: Long Wire, V Antenna, Rhombic Antenna

More information

11/8/2007 Antenna Pattern notes 1/1

11/8/2007 Antenna Pattern notes 1/1 11/8/27 ntenna Pattern notes 1/1 C. ntenna Pattern Radiation Intensity is dependent on both the antenna and the radiated power. We can normalize the Radiation Intensity function to construct a result that

More information

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING SUBJECT NAME:

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING SUBJECT NAME: Chendu College of Engineering & Technology (Approved by AICTE, New Delhi and Affiliated to Anna University) Zamin Endathur, Madurantakam, Kancheepuram, District 603311. DEPARTMENT OF ELECTRONICS & COMMUNICATION

More information

DMI COLLEGE OF ENGINEERING, CHENNAI EC ANTENNAS AND WAVE PROPAGATION PART A (2 MARKS)

DMI COLLEGE OF ENGINEERING, CHENNAI EC ANTENNAS AND WAVE PROPAGATION PART A (2 MARKS) 1. Define an antenna. DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING EC6602 - ANTENNAS AND WAVE PROPAGATION UNIT I : FUNDAMENTALS OF RADIATION PART A (2 MARKS) Antenna is a transition device or

More information

Section 2.4 General Sinusoidal Graphs

Section 2.4 General Sinusoidal Graphs Section. General Graphs Objective: any one of the following sets of information about a sinusoid, find the other two: ) the equation ) the graph 3) the amplitude, period or frequency, phase displacement,

More information

ANT6: The Half-Wave Dipole Antenna

ANT6: The Half-Wave Dipole Antenna In this lecture, we simplify the space radiating current analysis to include the special (but very important) case of the general wire antenna. Concentrating on results for the half-wave dipole, we demonstrate

More information

Introduction Antenna Ranges Radiation Patterns Gain Measurements Directivity Measurements Impedance Measurements Polarization Measurements Scale

Introduction Antenna Ranges Radiation Patterns Gain Measurements Directivity Measurements Impedance Measurements Polarization Measurements Scale Chapter 17 : Antenna Measurement Introduction Antenna Ranges Radiation Patterns Gain Measurements Directivity Measurements Impedance Measurements Polarization Measurements Scale Model Measurements 1 Introduction

More information

25. Antennas II. Radiation patterns. Beyond the Hertzian dipole - superposition. Directivity and antenna gain. More complicated antennas

25. Antennas II. Radiation patterns. Beyond the Hertzian dipole - superposition. Directivity and antenna gain. More complicated antennas 25. Antennas II Radiation patterns Beyond the Hertzian dipole - superposition Directivity and antenna gain More complicated antennas Impedance matching Reminder: Hertzian dipole The Hertzian dipole is

More information

EMG4066:Antennas and Propagation Exp 1:ANTENNAS MMU:FOE. To study the radiation pattern characteristics of various types of antennas.

EMG4066:Antennas and Propagation Exp 1:ANTENNAS MMU:FOE. To study the radiation pattern characteristics of various types of antennas. OBJECTIVES To study the radiation pattern characteristics of various types of antennas. APPARATUS Microwave Source Rotating Antenna Platform Measurement Interface Transmitting Horn Antenna Dipole and Yagi

More information

Rec. ITU-R F RECOMMENDATION ITU-R F *

Rec. ITU-R F RECOMMENDATION ITU-R F * Rec. ITU-R F.162-3 1 RECOMMENDATION ITU-R F.162-3 * Rec. ITU-R F.162-3 USE OF DIRECTIONAL TRANSMITTING ANTENNAS IN THE FIXED SERVICE OPERATING IN BANDS BELOW ABOUT 30 MHz (Question 150/9) (1953-1956-1966-1970-1992)

More information

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203. DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING QUESTION BANK SUBJECT : EC6602 ANTENNA AND WAVE PROPOGATION SEM / YEAR : VI / III

More information

Keywords: cylindrical near-field acquisition, mechanical and electrical errors, uncertainty, directivity.

Keywords: cylindrical near-field acquisition, mechanical and electrical errors, uncertainty, directivity. UNCERTAINTY EVALUATION THROUGH SIMULATIONS OF VIRTUAL ACQUISITIONS MODIFIED WITH MECHANICAL AND ELECTRICAL ERRORS IN A CYLINDRICAL NEAR-FIELD ANTENNA MEASUREMENT SYSTEM S. Burgos, M. Sierra-Castañer, F.

More information

Radiation characteristics of a dipole antenna in free space

Radiation characteristics of a dipole antenna in free space Department of Electrical and Electronic Engineering (EEE), Bangladesh University of Engineering and Technology (BUET). EEE 434: Microwave Engineering Laboratory Experiment No.: A1 Radiation characteristics

More information

Set No.1. Code No: R

Set No.1. Code No: R Set No.1 IV B.Tech. I Semester Regular Examinations, November -2008 RADAR SYSTEMS ( Common to Electronics & Communication Engineering and Electronics & Telematics) Time: 3 hours Max Marks: 80 Answer any

More information

Radiation from Antennas

Radiation from Antennas Radiation from Antennas Ranga Rodrigo University of Moratuwa November 20, 2008 Ranga Rodrigo (University of Moratuwa) Radiation from Antennas November 20, 2008 1 / 32 Summary of Last Week s Lecture Radiation

More information

AC Theory and Electronics

AC Theory and Electronics AC Theory and Electronics An Alternating Current (AC) or Voltage is one whose amplitude is not constant, but varies with time about some mean position (value). Some examples of AC variation are shown below:

More information

ANTENNAS & WAVE PROPAGATION

ANTENNAS & WAVE PROPAGATION ANTENNAS & WAVE PROPAGATION R13 III B Tech I SEMESTER 1 III Year I SEMESTER T P C 3+1 0 3 ANTENNAS AND WAVE PROPAGATION OBJECTIVES UNIT I ANTENNA FUNDAMENTALS: Introduction, Radiation Mechanism single

More information

SATELLITE TRACKING THROUGH THE ANALYSIS OF RADIATION PATTERNS

SATELLITE TRACKING THROUGH THE ANALYSIS OF RADIATION PATTERNS 1 SATELLITE TRACKING THROUGH THE ANALYSIS OF RADIATION PATTERNS David Olivera Mezquita Abstract This paper describes the process of tracking the trajectory of a satellite by analyzing the radiation pattern

More information

Notes 21 Introduction to Antennas

Notes 21 Introduction to Antennas ECE 3317 Applied Electromagnetic Waves Prof. David R. Jackson Fall 018 Notes 1 Introduction to Antennas 1 Introduction to Antennas Antennas An antenna is a device that is used to transmit and/or receive

More information

Principles of Radiation and Antennas

Principles of Radiation and Antennas C H A P T E R 1 0 Principles of Radiation and Antennas In Chapters 3, 4, 6, 7, 8, and 9, we studied the principles and applications of propagation and transmission of electromagnetic waves. The remaining

More information

Vertical or horizontal antenna for limited space

Vertical or horizontal antenna for limited space Vertical or horizontal antenna for limited space If you have very limited space for a DX antenna, you may consider vertical, because it has low angle of radiation. But vertical polarization involves high

More information

Dhayalini Ramamoorthy. January Master s Thesis in Electronics

Dhayalini Ramamoorthy. January Master s Thesis in Electronics FACULTY OF ENGINEERING AND SUSTAINABLE DEVELOPMENT. Impact of Mutual Coupling among Antenna Arrays on the Performance of the Multipath Simulator System Dhayalini Ramamoorthy January 2014 Master s Thesis

More information

THE SINUSOIDAL WAVEFORM

THE SINUSOIDAL WAVEFORM Chapter 11 THE SINUSOIDAL WAVEFORM The sinusoidal waveform or sine wave is the fundamental type of alternating current (ac) and alternating voltage. It is also referred to as a sinusoidal wave or, simply,

More information

1. What are the applications of loop antenna? (May2011) 2. Define Pattern Multiplication (May2011)

1. What are the applications of loop antenna? (May2011) 2. Define Pattern Multiplication (May2011) UNIT-II WIRE ANTENNAS AND ANTENNA ARRAYS 1. What are the applications of loop antenna? (May2011) 2. Define Pattern Multiplication (May2011) 3. A uniform linear array contains 50 isotropic radiation with

More information

Multimedia Training Kit

Multimedia Training Kit Multimedia Training Kit Antennas and Cables Alberto Escudero Pascual, IT+46 Goals Focus on explaining the losses in the link budget equation Introduce a set of types of antennas and cables How to make

More information

HF Wire Antennas with Gain

HF Wire Antennas with Gain Learning Unit 5 HF Wire Antennas with Gain Objectives and Overview: Take the student to the next step beyond the half-wave dipole and introduce wire antennas with enhanced directivity and gain. The concept

More information

Comparative Study of Radiation Pattern of Some Different Type Antennas

Comparative Study of Radiation Pattern of Some Different Type Antennas International Journal of Physics and Applications. ISSN 974-313 Volume 6, Number 2 (214), pp. 19-114 International Research Publication House http://www.irphouse.com Comparative Study of Radiation Pattern

More information

School of Electrical Engineering. EI2400 Applied Antenna Theory Lecture 10: Leaky wave antennas

School of Electrical Engineering. EI2400 Applied Antenna Theory Lecture 10: Leaky wave antennas School of Electrical Engineering EI2400 Applied Antenna Theory Lecture 10: Leaky wave antennas Leaky wave antenna (I) It is an antenna which is made of a waveguide (or transmission line) which leaks progressively

More information

Electronically Steerable planer Phased Array Antenna

Electronically Steerable planer Phased Array Antenna Electronically Steerable planer Phased Array Antenna Amandeep Kaur Department of Electronics and Communication Technology, Guru Nanak Dev University, Amritsar, India Abstract- A planar phased-array antenna

More information

advancing information transport systems

advancing information transport systems BICSInews advancing information transport systems January/February 2007 PRESIDENT S MESSAGE 3 EXECUTIVE DIRECTOR MESSAGE 4 BICSI UPDATE 41-42 COURSE SCHEDULE 43-44 STANDARDS REPORT 45-46 Volume 28, Number

More information

RF AND MICROWAVE ENGINEERING

RF AND MICROWAVE ENGINEERING RF AND MICROWAVE ENGINEERING FUNDAMENTALS OF WIRELESS COMMUNICATIONS Frank Gustrau Dortmund University of Applied Sciences and Arts, Germany WILEY A John Wiley & Sons, Ltd., Publication Preface List of

More information

IMPROVEMENT OF YAGI UDA ANTENNA RADIATION PATTERN

IMPROVEMENT OF YAGI UDA ANTENNA RADIATION PATTERN International Journal of Mechanical Engineering and Technology (IJMET) Volume 8, Issue 7, July 2017, pp. 636 641, Article ID: IJMET_08_07_071 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=8&itype=7

More information

AN ALTERNATIVE METHOD FOR DIFFERENCE PATTERN FORMATION IN MONOPULSE ANTENNA

AN ALTERNATIVE METHOD FOR DIFFERENCE PATTERN FORMATION IN MONOPULSE ANTENNA Progress In Electromagnetics Research Letters, Vol. 42, 45 54, 213 AN ALTERNATIVE METHOD FOR DIFFERENCE PATTERN FORMATION IN MONOPULSE ANTENNA Jafar R. Mohammed * Communication Engineering Department,

More information

The concept of transmission loss for radio links

The concept of transmission loss for radio links Recommendation ITU-R P.341-6 (09/2016) The concept of transmission loss for radio links P Series Radiowave propagation ii Rec. ITU-R P.341-6 Foreword The role of the Radiocommunication Sector is to ensure

More information

Using EZNEC To Compare Antennas Part 2. Bill Leonard N0CU

Using EZNEC To Compare Antennas Part 2. Bill Leonard N0CU Using EZNEC To Compare Antennas Part 2 Bill Leonard N0CU Topics How polarization affects antenna performance How ground type affects antenna performance Example 1: 48 Shunt Fed Tower as 40M Vertical Initially,

More information

Antenna Theory. Wire Antennas

Antenna Theory. Wire Antennas Antenna Theory Wire Antennas Monopole Antenna Long Wire or Traveling wave Antennas Yagi Uda Antenna Prof. D. Kannadassan Reference: C. A. Balanis, J.D. Krauss Monopole antenna Image theory, an intro A

More information

Satellite Sub-systems

Satellite Sub-systems Satellite Sub-systems Although the main purpose of communication satellites is to provide communication services, meaning that the communication sub-system is the most important sub-system of a communication

More information