JBC, JBCG & JBCV. Phase & Ground O/C. Directional overcurrent protection of feeders and transmission lines. GE Multilin 1. Protection and Control

Size: px
Start display at page:

Download "JBC, JBCG & JBCV. Phase & Ground O/C. Directional overcurrent protection of feeders and transmission lines. GE Multilin 1. Protection and Control"

Transcription

1 JBC, JBCG & JBCV hase & Ground O/C JBC relay JBCG relay JBCV relay irectional overcurrent protection of feeders and transmission lines. Features and Benefits Mechanical targets inverse time/current characteristics rawout case Applications irectional phase fault protection (JBC) irectional ground fault protection (JBCG) istinguish phase faults from overloads/power swings (JBCV) rotection and Control Time overcurrent Instantaneous overcurrent Voltage-restrained phase overcurrent GE Multilin

2 ALICATION The JBC, JBCG and JBCV relays consist of three units, an instantaneous power-directional unit (bottom) of the induction-cup type, a time overcurrent unit (middle) of the induction-disk type, and an instantaneous-overcurrent unit (top) of the induction-cup type. The directional-unit contacts control the operation of both the instantaneous and the time-overcurrent units (directional control). In this application, the instantaneous unit provides high-speed protection for close-in high-current faults. hase Faults JBC The JBC relays are frequently applied for phase-fault protection of a single line. Typical external connections of current and potential transformers are shown in Figure. With this connection, the current (at unity-power-factor load) leads the polarizing potential by 90 degrees. ince the directional unit has a 4 degrees characteristic, its maximum torque will occur when the fault current (balanced -phase fault) lags its unity-power-factor position by 4 degrees. Typical internal connections are shown in Figure. Ground Faults JBCG The JBCG relay, with both time and instantaneous units directionally controlled, is designed for protection against ground faults and is therefore of lower operating current range. The relays used for such protection usually have a low-range operating coil which is rated either or A and A is also available. The directional unit of the JBCG is dual polarized and may be polarized by current alone, voltage alone, or by both simultaneously. This dual polarization is desirable on applications where both current and potential polarizing sources are available and there is a possibility that one or the other source may be temporarily lost. Typical internal connections are shown in Figure. hase Faults JBCV The JBCV relay is applied for phase-fault protection when it is necessary to distinguish between fault conditions and overload or power swings. The voltage restraint feature of the relay makes this distinction possible. When the generation at a given station is apt to vary from time to time, it is possible that the maximum load current may exceed the minimum fault current. When this occurs the JBC relay will not distinguish between a heavy load with maximum generation and a fault with minimum generation. This is a typical application for the JBCV relay. When a fault occurs with minimum generation, the restraint torque in the directional unit collapses rapidly as the voltage drops, thus permitting the relay to trip at the low value of fault current. On the other hand, the relay is prevented from tripping on heavy-load currents with maximum generation as the directional unit will not pick up due to the system voltage being maintained. Long or heavily loaded lines, that are operating near the stability limit, are subject to severe power swings. These power swings appear to the relay as traveling faults. ince the voltage is maintained near normal during a power swing, the JBCV relay is less likely to trip than would a relay without voltage restraint. General Inverse Time Characteristics are preferred where fault current magnitude depends largely upon system generating capacity at time of fault. Very-inverse and Extremelyinverse Time Characteristics are preferred where fault current magnitude is dependent mainly upon location of fault relative to relay and only slightly upon system generation setup. Target seal-in-units are provided for the time and instantaneous overcurrent units and are rated 0./.0 A, or 0.6/.0 A. Table. irectional Instantaneous Unit Ratings Col. Range 0-80 Table. Non-irectional Instantaneous Unit Ratings Range etting ick-up Range Connection and Range 6- Low (eries) 6-0 ➀ 0. High (arallel) 0- ➀ 9.6 CONTACT ec Rating Contin. sec Rating Rating The current-closing rating of the induction unit contacts is 0 A for voltages not exceeding V. Their current-carrying rating is limited by the tap rating of the seal-in unit. Available ettings Contin. Current Rating eries -8 arallel eries arallel ➀ This range is approximate, which means that 6-0 and 0- might actually be 6-8 and 8-. However, there is at least a A overlap between the maximum Low setting and the minimum High setting. : 0., 0.6, 0.7, 0.8,,.,.,,.,, 4 :.,,.,, 4,, 6, 7, 8, 0, :,.,, 4,, 6, 7, 8, 0,, 6

3 Connection iagrams Fig.. Typical external connections for three single-phase JBC relays for directional phase-fault protection of a single line A-C BU H H X X C C OC OC OC C TRI BU 7 8 ( + ) NOTE: RELAY OERATE FOR a FAULT IN IRECTION OF TC ARROW. ( - ) 67 - IRECTIONAL OVERCURRENT RELAY -TIME OVERCURRENT UNIT -INTANTANEOU OVER- CURRENT UNIT -IRECTIONAL UNIT TC - TRI COIL MILAR CIRCUIT FOR OTHER TWO RELAY OC-IRECTIONAL OERATING COIL C-IRECTIONAL OLARIZING COIL -EAL-IN WITH TARGET - OWER CIRCUIT BREAKER a - AUXILIARY WITCH, CLOE WHEN BREAKER I CLOE Fig.. Internal connections for JBCM and JBCM relays (07A674-0) C C C4 RE JUMER LEA WOUN HAING COIL BOT. C 4 C C 6 OER 7 C 8 8 R 9 0 C OT. OL C - INTANT. OVERCURRENT UNIT (TI) - TIME OVERCURRENT UNIT (MI) - IRECTIONAL UNIT (BOT) - EAL-IN UNIT = HORT FINGER Table. Time overcurrent unit taps and ratings Tap Range Characteristics ec Rating Continuous Rating Minimum Tap Maximum Tap Inverse () 70.6 Very inverse () 40 4 Extremely inverse (77). 0 Very inverse () 0 0. Extremely inverse (77) 9. 0 Inverse () 8 0 Fig.. Internal connections for JBCGM and JBCGM relays (07A69-0) C C RE JUMER LEA WOUN HAING COIL C BOT. C4 C C 8 C C OER C CURR. C4 OL. THYRITE TRANF. 9 C 0 4 OT. OL - INTANT. OVERCURRENT UNIT (TI) - TIME OVERCURRENT UNIT (MI) - IRECTIONAL UNIT (BOT) - EAL-IN UNIT = HORT FINGER

4 election Guide Minimum.U. Greater Than Full Load Frequency Time O/C ir. Inst. Approx. Wt. Unit Unit Non-ir. Tripping Case in lbs (kg) Inst. Unit Contacts Inverse Time Very Extremely ize Inverse Time Inverse Time Net hip JBC, HAE-TYE, 0 V, 0./.0 A TARGET AN EAL-IN UNIT JBCMA JBC77MA JBCMA (.4) (.7) JBCMYA N.O MYA (.) JBCMA JBC77MA JBCMA (.4) JBCMA JBC4MA JBC78MA JBCMA JBC4MA JBC78MA JBCG, GROUN-TYE, 0 V, 0./.0 A TARGET AN EAL-IN UNIT JBCGMA JBCGMA JBCG77MA 0-80 MA MA MA MA MA N.O M6A M6A MA M6A JBCGMYA JBCGMYA MYA MYA N.O MYA M4YA MYA JBCGMA JBCGMA JBCG77MA 0-80 M4A M4A M4A M7A M7A N.O M8A M8A M7A M8A JBCGMA JBCG4MA JBCG78MA 0-80 MA MA MA MA MA M6A M6A MA M6A JBCGMA JBCG4MA JBCG78MA 0-80 M4A M4A M4A M7A M7A M8A M8A M7A M8A (.4) 6 (6.) (.7) (.7) (.) (.6) (.) (.) (.) 4

5 Frequency Time O/C ir. Inst. Approx. Wt. Unit Unit Non-ir. Tripping Case in lbs (kg) Inst. Unit Contacts Inverse Time Very Extremely ize Inverse Time Inverse Time Net hip JBCG, GROUN-TYE, 0 V, 0.6/.0 A TARGET AN EAL-IN UNIT JBCGM9A M0A MA (.4) (.7) M4A JBCGMYA N.O M6YA JBCGM9YA M0YA (6.) (.6) M7YA M8YA JBCGMA MA N.O MA (.4) (.7) M6A election Guide hase-type Voltage Restrained Freq. Time O/C Unit ir. Inst. Unit Non-ir. Inst. Unit ir..u. at Rated Volts Minimum.U. Less Than Full Load Inverse Time Very Inverse Time Extremely Inverse Time JBCV, HAE-TYE, (ir. Unit with Voltage Restraint), 0 V, 0./.0 TARGET AN EAL-IN UNIT JBCVMA JBCV77MA MA MA JBCVMA N.O. MA JBCVMA M4A Case ize Approx. Wt. in lbs (kg) Net hip JBCVYA (6.) (.6) Tripping Contacts JBCV4MA JBCV78MA MA MA JBCVMA MA JBCVMA M4A Frequency Time O/C ir. Inst. Approx. Wt. in lbs Unit Unit C Aux. Tripping Case (kg) (V) Contacts Inverse Time Very Extremely ize Inverse Time Inverse Time Net hip JBC, HAE-TYE, 0 V, 0./.0 A TARGET AN EAL-IN UNIT JBCA JBC77A JBCA N.O JBCA JBC77A 4 JBCA (.4) (.7) JBCA JBCA (.) (.)

6 JBCG6 & JBCG6 Application These ground directional overcurrent relays are primarily for use in the transferred tripping schemes for highspeed protection of transmission lines. The basic schemes are:. irect underreaching. ermissive underreaching. ermissive overreaching The JBCG6 and the JBCG6 relays are similar respectively to the JBCG and the JBCG relays. However, the JBCG6 and the JBCG6 relays differ in the arrangement of the seal-in unit contacts and in the location of the directional unit contacts. Both contacts of the seal-in unit are connected to separate relay terminals, and the directional unit is arranged so that it can be used independently. election Guide 0 V, Hz (Continuous) 0.6/.0 A Target and eal-in Unit Time O/C Unit ir. Inst. Unit Tripping Contacts 0-80 MA MA MA N.O M4A MA M4A Approx. Wt. in lbs (kg) Case ize Inverse Time Very Inverse Time Net hip JBCG6MA JBCG6MA (.4) 6

Synchronism Check Equipment

Synchronism Check Equipment MULTILIN GER-2622A GE Power Management Synchronism Check Equipment SYNCHRONISM CHECK EQUIPMENT K. Winick INTRODUCTION Synchronism check equipment is that kind of equipment that is used to check whether

More information

U I. Time Overcurrent Relays. Basic equation. More or less approximates thermal fuse. » Allow coordination with fuses 9/24/2018 ECE525.

U I. Time Overcurrent Relays. Basic equation. More or less approximates thermal fuse. » Allow coordination with fuses 9/24/2018 ECE525. Time Overcurrent Relays More or less approximates thermal fuse» Allow coordination with fuses Direction of Current nduced Torque Restraining Spring Reset Position Time Dial Setting Disk Basic equation

More information

COPYRIGHTED MATERIAL. Index

COPYRIGHTED MATERIAL. Index Index Note: Bold italic type refers to entries in the Table of Contents, refers to a Standard Title and Reference number and # refers to a specific standard within the buff book 91, 40, 48* 100, 8, 22*,

More information

Transmission Line Protection Objective. General knowledge and familiarity with transmission protection schemes

Transmission Line Protection Objective. General knowledge and familiarity with transmission protection schemes Transmission Line Protection Objective General knowledge and familiarity with transmission protection schemes Transmission Line Protection Topics Primary/backup protection Coordination Communication-based

More information

Overcurrent Protective Relays

Overcurrent Protective Relays Power System Protection Overcurrent Protective Relays Dr.Professor Mohammed Tawfeeq Lazim Alzuhairi 99 Power system protection Dr.Mohammed Tawfeeq Overcurrent Protective Relays Overcurrent relays Overcurrent

More information

Transmission Lines and Feeders Protection Pilot wire differential relays (Device 87L) Distance protection

Transmission Lines and Feeders Protection Pilot wire differential relays (Device 87L) Distance protection Transmission Lines and Feeders Protection Pilot wire differential relays (Device 87L) Distance protection 133 1. Pilot wire differential relays (Device 87L) The pilot wire differential relay is a high-speed

More information

Transmission Protection Overview

Transmission Protection Overview Transmission Protection Overview 2017 Hands-On Relay School Daniel Henriod Schweitzer Engineering Laboratories Pullman, WA Transmission Line Protection Objective General knowledge and familiarity with

More information

Busbars and lines are important elements

Busbars and lines are important elements CHAPTER CHAPTER 23 Protection of Busbars and Lines 23.1 Busbar Protection 23.2 Protection of Lines 23.3 Time-Graded Overcurrent Protection 23.4 Differential Pilot-Wire Protection 23.5 Distance Protection

More information

Relay Types and Applications Dr. Sasidharan Sreedharan

Relay Types and Applications Dr. Sasidharan Sreedharan O&M of Protection System and Relay Coordination Relay Types and Applications Dr. Sasidharan Sreedharan www.sasidharan.webs.com Detailed Schedule 2 SIMPLE RELAY Magnitude Rate of Change Phase Angle Direction

More information

Types CDG 11 and CDG 16 Inverse Time Overcurrent and Earth Fault Relay

Types CDG 11 and CDG 16 Inverse Time Overcurrent and Earth Fault Relay Types CDG 11 and CDG 16 Inverse Time Overcurrent and Earth Fault Relay Types CDG 11 and CDG 16 Inverse Time Overcurrent and Earth Fault Relay Relay withdrawn from case Application The type CDG 11 relay

More information

Unit Protection Differential Relays

Unit Protection Differential Relays Unit Protection PROF. SHAHRAM MONTASER KOUHSARI Current, pu Current, pu Protection Relays - BASICS Note on CT polarity dots Through-current: must not operate Internal fault: must operate The CT currents

More information

Protective Relays Digitrip 3000

Protective Relays Digitrip 3000 New Information Technical Data Effective: May 1999 Page 1 Applications Provides reliable 3-phase and ground overcurrent protection for all voltage levels. Primary feeder circuit protection Primary transformer

More information

www. ElectricalPartManuals. com Type CGR Ratio Ground Relay Descriptive Bulletin Page 1

www. ElectricalPartManuals. com Type CGR Ratio Ground Relay Descriptive Bulletin Page 1 November, 1981 New nformation Mailed to: E,D,C/211, 219/DB Westinghouse Electric Corporation Relay-nstrument Division Coral Springs, FL 65 Page 1 Type CGR Ratio Ground Relay "" Page 2 Application Three

More information

Directional STANDARDS: Overcurrent Relaying

Directional STANDARDS: Overcurrent Relaying A CABLE Technicians TESTING Approach to Directional STANDARDS: Overcurrent Relaying Understanding O V E R V I E W and O F Testing T H E Directional Relays 1 Moderator n Ron Spataro AVO Training Institute

More information

Power systems Protection course

Power systems Protection course Al-Balqa Applied University Power systems Protection course Department of Electrical Energy Engineering 1 Part 5 Relays 2 3 Relay Is a device which receive a signal from the power system thought CT and

More information

Table 1 Various IRD models and their associated time/current characteristics Time/Current Characteristics. Definite Time Moderately Inverse Time

Table 1 Various IRD models and their associated time/current characteristics Time/Current Characteristics. Definite Time Moderately Inverse Time IRD SCOPE This test procedure covers the testing and maintenance of Westinghouse IRD relays. The Westinghouse Protective Relay Division was purchased by ABB, and new relays carry the ABB label. Refer to

More information

Power System Protection Part VII Dr.Prof.Mohammed Tawfeeq Al-Zuhairi. Differential Protection (Unit protection)

Power System Protection Part VII Dr.Prof.Mohammed Tawfeeq Al-Zuhairi. Differential Protection (Unit protection) Differential Protection (Unit protection) Differential Protection Differential protection is the best technique in protection. In this type of protection the electrical quantities entering and leaving

More information

BE1-67N GROUND DIRECTIONAL OVERCURRENT RELAY FEATURES ADDITIONAL INFORMATION. FUNCTIONS AND FEATURES Pages 2-4. APPLICATIONS Page 2

BE1-67N GROUND DIRECTIONAL OVERCURRENT RELAY FEATURES ADDITIONAL INFORMATION. FUNCTIONS AND FEATURES Pages 2-4. APPLICATIONS Page 2 BE1-67N GROUND DIRECTIONAL OVERCURRENT RELAY The BE1-67N Ground Directional Overcurrent Relay provides ground fault protection for transmission and distribution lines by sensing the direction and magnitude

More information

This webinar brought to you by the Relion product family Advanced protection and control IEDs from ABB

This webinar brought to you by the Relion product family Advanced protection and control IEDs from ABB This webinar brought to you by the Relion product family Advanced protection and control IEDs from ABB Relion. Thinking beyond the box. Designed to seamlessly consolidate functions, Relion relays are smarter,

More information

1 INTRODUCTION 1.1 PRODUCT DESCRIPTION

1 INTRODUCTION 1.1 PRODUCT DESCRIPTION GEK-00682D INTRODUCTION INTRODUCTION. PRODUCT DESCRIPTION The MDP Digital Time Overcurrent Relay is a digital, microprocessor based, nondirectional overcurrent relay that protects against phase-to-phase

More information

POWER SYSTEM ANALYSIS TADP 641 SETTING OF OVERCURRENT RELAYS

POWER SYSTEM ANALYSIS TADP 641 SETTING OF OVERCURRENT RELAYS POWER SYSTEM ANALYSIS TADP 641 SETTING OF OVERCURRENT RELAYS Juan Manuel Gers, PhD Protection coordination principles Relay coordination is the process of selecting settings that will assure that the relays

More information

MULTI FUNCTION OVER CURRENT AND EARTH FAULT RELAY[50/51X3,50/51N]

MULTI FUNCTION OVER CURRENT AND EARTH FAULT RELAY[50/51X3,50/51N] DOG-M51D Feature The multi-ocr is a microprocessor based digital type protective relay that has 3 phases overcurrent and ground overcurrent element which are provided with inverse, very inverse, extremely

More information

Type KLF Generator Field Protection-Loss of Field Relay

Type KLF Generator Field Protection-Loss of Field Relay Supersedes DB 41-745B pages 1-4, dated June, 1989 Mailed to: E, D, C/41-700A ABB Power T&D Company Inc. Relay Division Coral Springs, FL Allentown, PA For Use With Delta Connected Potential Transformers

More information

Phase and neutral overcurrent protection

Phase and neutral overcurrent protection Phase and neutral overcurrent protection Page 1 ssued June 1999 Changed since July 1998 Data subject to change without notice (SE970165) Features Two-phase or three-phase time-overcurrent and earth fault

More information

PRC Generator Relay Loadability. Guidelines and Technical Basis Draft 5: (August 2, 2013) Page 1 of 76

PRC Generator Relay Loadability. Guidelines and Technical Basis Draft 5: (August 2, 2013) Page 1 of 76 PRC-025-1 Introduction The document, Power Plant and Transmission System Protection Coordination, published by the NERC System Protection and Control Subcommittee (SPCS) provides extensive general discussion

More information

ABB Power T&D Company Inc. Relay Division Coral Springs, FL Allentown, PA

ABB Power T&D Company Inc. Relay Division Coral Springs, FL Allentown, PA Jlllll,.'1.1. September, 1990 Supersedes 41971, pages 1 4, dated August, 1989 Mailed to: E, D, C41100A, 41900A ABB Power T&D Company Inc. Relay Division Coral Springs, FL Allentown, PA For Phase and Ground

More information

PROTECTION of electricity distribution networks

PROTECTION of electricity distribution networks PROTECTION of electricity distribution networks Juan M. Gers and Edward J. Holmes The Institution of Electrical Engineers Contents Preface and acknowledgments x 1 Introduction 1 1.1 Basic principles of

More information

Transformer Protection

Transformer Protection Transformer Protection Nature of transformer faults TXs, being static, totally enclosed and oil immersed develop faults only rarely but consequences large. Three main classes of faults. 1) Faults in Auxiliary

More information

NERC Requirements for Setting Load-Dependent Power Plant Protection: PRC-025-1

NERC Requirements for Setting Load-Dependent Power Plant Protection: PRC-025-1 NERC Requirements for Setting Load-Dependent Power Plant Protection: PRC-025-1 Charles J. Mozina, Consultant Beckwith Electric Co., Inc. www.beckwithelectric.com I. Introduction During the 2003 blackout,

More information

6CARRIER-CURRENT-PILOT AND MICROWAVE-PILOT RELAYS

6CARRIER-CURRENT-PILOT AND MICROWAVE-PILOT RELAYS 6CARRIER-CURRENT-PILOT AND MICROWAVE-PILOT RELAYS Chapter 5 introduced the subject of pilot relaying, gave the fundamental principles involved, and described some typical wire-pilot relaying equipments.

More information

RAIDK, RAIDG, RAPDK and RACIK Phase overcurrent and earth-fault protection assemblies based on single phase measuring elements

RAIDK, RAIDG, RAPDK and RACIK Phase overcurrent and earth-fault protection assemblies based on single phase measuring elements RAIDK, RAIDG, RAPDK and RACIK Phase overcurrent and earth-fault protection assemblies based on single phase measuring elements User s Guide General Most faults in power systems can be detected by applying

More information

www. ElectricalPartManuals. com Westinghouse HRU Instantaneous Overcurrent Relay with Harmonic Restraint Descriptive Bulletin Page 1

www. ElectricalPartManuals. com Westinghouse HRU Instantaneous Overcurrent Relay with Harmonic Restraint Descriptive Bulletin Page 1 Westinghouse Appl ication The H R U harmonic restraint relay is a high speed relay used for the supervision of differential, overcurrent. or pilot relays. It is applied in various transformer protection

More information

889 Advanced Generator Protection Technical Note

889 Advanced Generator Protection Technical Note GE Grid Solutions 8 Series 889 Advanced Generator Protection Technical Note GE Publication Number: GET-20056 Copyright 2017 GE Multilin Inc. Overview The Multilin 889 is part of the 8 Series platform that

More information

Generator Protection GENERATOR CONTROL AND PROTECTION

Generator Protection GENERATOR CONTROL AND PROTECTION Generator Protection Generator Protection Introduction Device Numbers Symmetrical Components Fault Current Behavior Generator Grounding Stator Phase Fault (87G) Field Ground Fault (64F) Stator Ground Fault

More information

Power System Stability. Course Notes PART-1

Power System Stability. Course Notes PART-1 PHILADELPHIA UNIVERSITY ELECTRICAL ENGINEERING DEPARTMENT Power System Stability Course Notes PART-1 Dr. A.Professor Mohammed Tawfeeq Al-Zuhairi September 2012 1 Power System Stability Introduction Dr.Mohammed

More information

Line Protection Roy Moxley Siemens USA

Line Protection Roy Moxley Siemens USA Line Protection Roy Moxley Siemens USA Unrestricted Siemens AG 2017 siemens.com/digitalgrid What is a Railroad s Biggest Asset? Rolling Stock Share-holders Relationships Shipping Contracts Employees (Engineers)

More information

A NEW DIRECTIONAL OVER CURRENT RELAYING SCHEME FOR DISTRIBUTION FEEDERS IN THE PRESENCE OF DG

A NEW DIRECTIONAL OVER CURRENT RELAYING SCHEME FOR DISTRIBUTION FEEDERS IN THE PRESENCE OF DG A NEW DIRECTIONAL OVER CURRENT RELAYING SCHEME FOR DISTRIBUTION FEEDERS IN THE PRESENCE OF DG CHAPTER 3 3.1 INTRODUCTION In plain radial feeders, the non-directional relays are used as they operate when

More information

PRC Generator Relay Loadability. Guidelines and Technical Basis Draft 4: (June 10, 2013) Page 1 of 75

PRC Generator Relay Loadability. Guidelines and Technical Basis Draft 4: (June 10, 2013) Page 1 of 75 PRC-025-1 Introduction The document, Power Plant and Transmission System Protection Coordination, published by the NERC System Protection and Control Subcommittee (SPCS) provides extensive general discussion

More information

Protection Basics Presented by John S. Levine, P.E. Levine Lectronics and Lectric, Inc GE Consumer & Industrial Multilin

Protection Basics Presented by John S. Levine, P.E. Levine Lectronics and Lectric, Inc GE Consumer & Industrial Multilin Protection Basics Presented by John S. Levine, P.E. Levine Lectronics and Lectric, Inc. 770 565-1556 John@L-3.com 1 Protection Fundamentals By John Levine 2 Introductions Tools Outline Enervista Launchpad

More information

Transformer Protection Principles

Transformer Protection Principles Transformer Protection Principles 1. Introduction Transformers are a critical and expensive component of the power system. Due to the long lead time for repair of and replacement of transformers, a major

More information

Power System Protection Manual

Power System Protection Manual Power System Protection Manual Note: This manual is in the formative stage. Not all the experiments have been covered here though they are operational in the laboratory. When the full manual is ready,

More information

Height: inches Width: inches Depth: inches, inches. Listings/Certification UL 1053 ANSI C37-90 IEC 255. General Description

Height: inches Width: inches Depth: inches, inches. Listings/Certification UL 1053 ANSI C37-90 IEC 255. General Description 1rcJll Cutler-Hammer New nformation Applications Provides reliable 3-phase and ground overcurrent protection for all voltage levels. Primary feeder circuit protection Primary transformer protection Backup

More information

BUS2000 Busbar Differential Protection System

BUS2000 Busbar Differential Protection System BUS2000 Busbar Differential Protection System Differential overcurrent system with percentage restraint protection 1 Typical Busbar Arrangements Single Busbar Double Busbar with Coupler Breaker and a Half

More information

Transformer Fault Categories

Transformer Fault Categories Transformer Fault Categories 1. Winding and terminal faults 2. Sustained or uncleared external faults 3. Abnormal operating conditions such as overload, overvoltage and overfluxing 4. Core faults 1 (1)

More information

DATA SHEET Differential current relays, RMC-131D ANSI code 87

DATA SHEET Differential current relays, RMC-131D ANSI code 87 DATA SHEET Differential current relays, RMC-131D ANSI code 87 Measurement of 3-phase currents Non-stabilised measurement Timer-controlled tripping Extra change-over relay contact for signalling DEIF A/S

More information

Current and voltage measuring relays RXIK 1, RXEEB 1 and RXIB 24

Current and voltage measuring relays RXIK 1, RXEEB 1 and RXIB 24 Current and voltage measuring relays RXIK 1, RXEEB 1 and RXIB 24 RXIK 1 (RXIK_1.tif) RXEEB 1 (RXEEB_1.tif) RXIB 24 (RXIB_24.tif) Features RXIK low current relay, 50-60 Hz and dc High sensitivity 0,5-2

More information

ARC FLASH PPE GUIDELINES FOR INDUSTRIAL POWER SYSTEMS

ARC FLASH PPE GUIDELINES FOR INDUSTRIAL POWER SYSTEMS The Electrical Power Engineers Qual-Tech Engineers, Inc. 201 Johnson Road Building #1 Suite 203 Houston, PA 15342-1300 Phone 724-873-9275 Fax 724-873-8910 www.qualtecheng.com ARC FLASH PPE GUIDELINES FOR

More information

GEI-98328J. INSTRUCTiONS DIRECTIONAL DISTANCE (REACTANCE RELAY) TYPES. GCX51A Forms 11 and up. GCXS1B Forms 11 and up GENERAL ELECTRIC

GEI-98328J. INSTRUCTiONS DIRECTIONAL DISTANCE (REACTANCE RELAY) TYPES. GCX51A Forms 11 and up. GCXS1B Forms 11 and up GENERAL ELECTRIC GENERAL ELECTRIC DIRECTIONAL DISTANCE (REACTANCE RELAY) GCXS1B Forms 11 and up GCX51A Forms 11 and up TYPES INSTRUCTiONS GEI-98328J ACCEPTANCE TESTS 15 2 Other Checks and Tests 18 APPENDIX I 48 LIST OF

More information

Phase Comparison Relaying

Phase Comparison Relaying MULTILIN GER-2681B GE Power Management Phase Comparison Relaying PHASE COMPARISON RELAYING INTRODUCTION Phase comparison relaying is a kind of differential relaying that compares the phase angles of the

More information

INSPECTION 1. Take the cover off the relay, taking care to not shake or jar the relay or other relays around it.

INSPECTION 1. Take the cover off the relay, taking care to not shake or jar the relay or other relays around it. CEH51A SCOPE This test procedure covers the testing and maintenance of the GE CEH51A loss of excitation relay. Refer to IL GEK-27887 for testing support information and component level identification.

More information

DIAC Type 66K. DIGITAL OVERCURRENT RELAY Instruction Manual. GE Power Management

DIAC Type 66K. DIGITAL OVERCURRENT RELAY Instruction Manual. GE Power Management g GE Power Management DIAC Type K DIGITAL OVERCURRENT RELAY Instruction Manual DIAC K Revision: SPDV0.A0 Manual P/N: GEK-0C Copyright 000 GE Power Management GE Power Management Anderson Avenue, Markham,

More information

Using a Multiple Analog Input Distance Relay as a DFR

Using a Multiple Analog Input Distance Relay as a DFR Using a Multiple Analog Input Distance Relay as a DFR Dennis Denison Senior Transmission Specialist Entergy Rich Hunt, M.S., P.E. Senior Field Application Engineer NxtPhase T&D Corporation Presented at

More information

Sequence Networks p. 26 Sequence Network Connections and Voltages p. 27 Network Connections for Fault and General Unbalances p. 28 Sequence Network

Sequence Networks p. 26 Sequence Network Connections and Voltages p. 27 Network Connections for Fault and General Unbalances p. 28 Sequence Network Preface p. iii Introduction and General Philosophies p. 1 Introduction p. 1 Classification of Relays p. 1 Analog/Digital/Numerical p. 2 Protective Relaying Systems and Their Design p. 2 Design Criteria

More information

POWER SYSTEM ANALYSIS TADP 641 SETTING EXAMPLE FOR OVERCURRENT RELAYS

POWER SYSTEM ANALYSIS TADP 641 SETTING EXAMPLE FOR OVERCURRENT RELAYS POWER SYSTEM ANALYSIS TADP 641 SETTING EXAMPLE FOR OVERCURRENT RELAYS Juan Manuel Gers, PhD Example - Single Line Example 1 - Data Calculate the following: 1. The three phase short circuit levels on busbars

More information

200ADM-P. Current Injection System with Phase Shift A 3.000s 2.000A 50.00Hz 0.0. Features

200ADM-P. Current Injection System with Phase Shift A 3.000s 2.000A 50.00Hz 0.0. Features CT ratio Power Harmonics ac+dc 200ADM-P Current Injection System with Phase Shift Features 0-200A output current True RMS metering with 1 cycle capture Variable auxiliary AC voltage/current output with

More information

GE Multilin technical note

GE Multilin technical note GE Digital Energy Multilin GE Multilin technical note GE Multilin releases fast and dependable short circuit protection enhanced for performance under CT saturation GE publication number: GER-4329 GE Multilin

More information

Electrical Protection System Design and Operation

Electrical Protection System Design and Operation ELEC9713 Industrial and Commercial Power Systems Electrical Protection System Design and Operation 1. Function of Electrical Protection Systems The three primary aims of overcurrent electrical protection

More information

Power System Protection. Dr. Lionel R. Orama Exclusa, PE Week 3

Power System Protection. Dr. Lionel R. Orama Exclusa, PE Week 3 Power System Protection Dr. Lionel R. Orama Exclusa, PE Week 3 Operating Principles: Electromagnetic Attraction Relays Readings-Mason Chapters & 3 Operating quantities Electromagnetic attraction Response

More information

DISTRIBUTION DEVICE COORDINATION

DISTRIBUTION DEVICE COORDINATION DISTRIBUTION DEVICE COORDINATION Kevin Damron & Calvin Howard Avista Utilities Presented March th, 08 At the 5 th Annual Hands-On Relay School Washington State University Pullman, Washington TABLE OF CONTENTS

More information

70 TH ANNUAL CONFERENCE FOR PROTECTIVE RELAY ENGINEERS TEXAS A&M UNIVERSITY COLLEGE STATION, TEXAS APRIL 3 APRIL 6, 2017

70 TH ANNUAL CONFERENCE FOR PROTECTIVE RELAY ENGINEERS TEXAS A&M UNIVERSITY COLLEGE STATION, TEXAS APRIL 3 APRIL 6, 2017 70 TH ANNUAL CONFERENCE FOR PROTECTIVE RELAY ENGINEERS TEXAS A&M UNIVERSITY COLLEGE STATION, TEXAS APRIL 3 APRIL 6, 2017 MICROPROCESSOR RELAY DIRECTIONAL CHANGE DURING CURRENT REVERSAL MICHEAL DAVIS, JR,

More information

Power Plant and Transmission System Protection Coordination of-field (40) and Out-of. of-step Protection (78)

Power Plant and Transmission System Protection Coordination of-field (40) and Out-of. of-step Protection (78) Power Plant and Transmission System Protection Coordination Loss-of of-field (40) and Out-of of-step Protection (78) System Protection and Control Subcommittee Protection Coordination Workshop Phoenix,

More information

Relaying 101. by: Tom Ernst GE Grid Solutions

Relaying 101. by: Tom Ernst GE Grid Solutions Relaying 101 by: Tom Ernst GE Grid Solutions Thomas.ernst@ge.com Relaying 101 The abridged edition Too Much to Cover Power system theory review Phasor domain representation of sinusoidal waveforms 1-phase

More information

Overcurrent and Overload Protection of AC Machines and Power Transformers

Overcurrent and Overload Protection of AC Machines and Power Transformers Exercise 2 Overcurrent and Overload Protection of AC Machines and Power Transformers EXERCISE OBJECTIVE When you have completed this exercise, you will understand the relationship between the power rating

More information

Switch-on-to-Fault Schemes in the Context of Line Relay Loadability

Switch-on-to-Fault Schemes in the Context of Line Relay Loadability Attachment C (Agenda Item 3b) Switch-on-to-Fault Schemes in the Context of Line Relay Loadability North American Electric Reliability Council A Technical Document Prepared by the System Protection and

More information

Protection Introduction

Protection Introduction 1.0 Introduction Protection 2 There are five basic classes of protective relays: Magnitude relays Directional relays Ratio (impedance) relays Differential relays Pilot relays We will study each of these.

More information

Siemens AG Allows easy and consistent configuration with one series of overload relays (for small to large loads)

Siemens AG Allows easy and consistent configuration with one series of overload relays (for small to large loads) Overview Features Benefits 3RU11 3RB20/3RB21 3RB22/3RB23 Sizes Are coordinated with the dimensions, connections S00...S3 S00... S12 S00... S12 and technical characteristics of the other devices in the

More information

Relay operating principles

Relay operating principles 2 Relay operating principles 2.1 Introduction Since the purpose of power system protection is to detect faults or abnormal operating conditions, relays must be able to evaluate a wide variety of parameters

More information

Distance Protection for Distribution Feeders. Presented By: Yordan Kyosev, P.Eng. & Curtis Ruff, P.Eng.

Distance Protection for Distribution Feeders. Presented By: Yordan Kyosev, P.Eng. & Curtis Ruff, P.Eng. Distance Protection for Distribution Feeders Presented By: Yordan Kyosev, P.Eng. & Curtis Ruff, P.Eng. Why use distance protection for distribution feeders? Distance protection is mainly used for protecting

More information

Transformer Protection

Transformer Protection Transformer Protection Transformer Protection Outline Fuses Protection Example Overcurrent Protection Differential Relaying Current Matching Phase Shift Compensation Tap Changing Under Load Magnetizing

More information

PJM Manual 07:: PJM Protection Standards Revision: 2 Effective Date: July 1, 2016

PJM Manual 07:: PJM Protection Standards Revision: 2 Effective Date: July 1, 2016 PJM Manual 07:: PJM Protection Standards Revision: 2 Effective Date: July 1, 2016 Prepared by System Planning Division Transmission Planning Department PJM 2016 Table of Contents Table of Contents Approval...6

More information

Distance Element Performance Under Conditions of CT Saturation

Distance Element Performance Under Conditions of CT Saturation Distance Element Performance Under Conditions of CT Saturation Joe Mooney Schweitzer Engineering Laboratories, Inc. Published in the proceedings of the th Annual Georgia Tech Fault and Disturbance Analysis

More information

NERC Protection Coordination Webinar Series June 9, Phil Tatro Jon Gardell

NERC Protection Coordination Webinar Series June 9, Phil Tatro Jon Gardell Power Plant and Transmission System Protection Coordination GSU Phase Overcurrent (51T), GSU Ground Overcurrent (51TG), and Breaker Failure (50BF) Protection NERC Protection Coordination Webinar Series

More information

PD300. Transformer, generator and motor protection Data sheet

PD300. Transformer, generator and motor protection Data sheet PD300 Transformer, generator and motor protection Data sheet DSE_PD300_eng_AO No part of this publication may be reproduced by whatever means without the prior written permission of Ingeteam T&D. One of

More information

g GE POWER MANAGEMENT

g GE POWER MANAGEMENT 745 FREQUENTLY ASKED QUESTIONS 1 I get a communication error with the relay when I try to store a setpoint. This error can occur for several different reasons. First of all, verify that the address is

More information

Catalogue 1SFC en, Edition 3 November 2003 Supersedes Catalogue 1SFC en, Edition 2 November Arc Guard System TVOC

Catalogue 1SFC en, Edition 3 November 2003 Supersedes Catalogue 1SFC en, Edition 2 November Arc Guard System TVOC Catalogue 1SFC 266006-en, Edition 3 November 2003 Supersedes Catalogue 1SFC 266006-en, Edition 2 November 2000 Arc Guard System TVOC System units The two units of the are used as below: Approvals 1. with

More information

R10. IV B.Tech I Semester Regular/Supplementary Examinations, Nov/Dec SWITCH GEAR AND PROTECTION. (Electrical and Electronics Engineering)

R10. IV B.Tech I Semester Regular/Supplementary Examinations, Nov/Dec SWITCH GEAR AND PROTECTION. (Electrical and Electronics Engineering) R10 Set No. 1 Code No: R41023 1. a) Explain how arc is initiated and sustained in a circuit breaker when the CB controls separates. b) The following data refers to a 3-phase, 50 Hz generator: emf between

More information

Bus Protection Fundamentals

Bus Protection Fundamentals Bus Protection Fundamentals Terrence Smith GE Grid Solutions 2017 Texas A&M Protective Relay Conference Bus Protection Requirements High bus fault currents due to large number of circuits connected: CT

More information

AC Magnetic Starters (GE)

AC Magnetic Starters (GE) AC Magnetic Starters (GE) Description of Operation With Local or Remote Start-Stop Selector Switch (LVR) Control Starting Stopping Restarting Turning the selector switch to START energizes M and starts

More information

A Tutorial on the Application and Setting of Collector Feeder Overcurrent Relays at Wind Electric Plants

A Tutorial on the Application and Setting of Collector Feeder Overcurrent Relays at Wind Electric Plants A Tutorial on the Application and Setting of Collector Feeder Overcurrent Relays at Wind Electric Plants Martin Best and Stephanie Mercer, UC Synergetic, LLC Abstract Wind generating plants employ several

More information

Notes 1: Introduction to Distribution Systems

Notes 1: Introduction to Distribution Systems Notes 1: Introduction to Distribution Systems 1.0 Introduction Power systems are comprised of 3 basic electrical subsystems. Generation subsystem Transmission subsystem Distribution subsystem The subtransmission

More information

PTE-100-C. Current and Voltage Relay testing unit to 250A

PTE-100-C. Current and Voltage Relay testing unit to 250A PTE-100-C Current and Voltage Relay testing unit to 250A PTE-100-C CHARACTERISTICS Variable current output up to 250 A. Variable AC voltage output up to 250V. Variable DC voltage output up to 350V. Variable

More information

Addendum to Instructions for Installation, Operation and Maintenance of Digitrip 3000 Protective Relays

Addendum to Instructions for Installation, Operation and Maintenance of Digitrip 3000 Protective Relays Dual-Source Power Supply Addendum to I.B. 17555 Addendum to Instructions for Installation, Operation and Maintenance of Digitrip 3000 Protective Relays Table of Contents Page 1.0 Introduction...1 2.0 General

More information

INSTRUCTIONS. GE Protection and Control. 205 Great Valley Parkway Malvern, PA GE K-45307K TRANSFORMER DIFFERENTIAL RELAYS WITH

INSTRUCTIONS. GE Protection and Control. 205 Great Valley Parkway Malvern, PA GE K-45307K TRANSFORMER DIFFERENTIAL RELAYS WITH INSTRUCTIONS 205 Great Valley Parkway Malvern, PA 19355-1337 GE Protection and Control GE K-45307K TRANSFORMER DIFFERENTIAL RELAYS WITH PERCENTAGE AN!) HARMONIC RESTRAINT TYPES STD15C and STD16C I Determination

More information

Functional Range. IWE - Earth Fault Relay. C&S Protection & Control Ltd.

Functional Range. IWE - Earth Fault Relay. C&S Protection & Control Ltd. Functional Range - Earth Fault Relay C&S Protection & Control Ltd. 2 Contents Page No. 1. Application 2. Operating Principle. Current Transformer Connections 5. Connections, Contact Arrangement and Setting

More information

Capacitor protection relay

Capacitor protection relay Capacitor Protection Relay FEATURES Capacitor unbalance protection Line current unbalance protection Overvoltage protection Overheating protection Ground fault protection Overcurrent protection Undercurrent

More information

CDV 22, 62. Voltage Controlled Overcurrent Relay GRID PROTECTION

CDV 22, 62. Voltage Controlled Overcurrent Relay GRID PROTECTION PROTECTION CDV 22, 62 Voltage Controlled Overcurrent Relay CDV22 relay is used for overload and fault protection for ac generators when the sustained short circuit current is less than the full load current.

More information

Stabilized Differential Relay SPAD 346. Product Guide

Stabilized Differential Relay SPAD 346. Product Guide Issued: July 1998 Status: Updated Version: D/21.03.2006 Data subject to change without notice Features Integrated three-phase differential relay, three-phase overcurrent relay and multiconfigurable earth-fault

More information

Application and Commissioning Manual for Numerical Over Current Protection Relays Type MIT 121/131 CONTENTS PAGE APPLICATION 2-4 INSTALLATION 5-11

Application and Commissioning Manual for Numerical Over Current Protection Relays Type MIT 121/131 CONTENTS PAGE APPLICATION 2-4 INSTALLATION 5-11 Application and Commissioning Manual for Numerical Over Current Protection Relays Type MIT 121/131 CONTENTS PAGE APPLICATION 2-4 INSTALLATION 5-11 COMMISSIONING 12-16 DRAWINGS 17-18 1 1. INTRODUCTION APPLICATION

More information

Impact of transient saturation of Current Transformer during cyclic operations Analysis and Diagnosis

Impact of transient saturation of Current Transformer during cyclic operations Analysis and Diagnosis 1 Impact of transient saturation of Current Transformer during cyclic operations Analysis and Diagnosis BK Pandey, DGM(OS-Elect) Venkateswara Rao Bitra, Manager (EMD Simhadri) 1.0 Introduction: Current

More information

KILOVAC EV200 Series Contactor With 1 Form X (SPST-NO) Contacts Rated 500+ Amps, Vdc

KILOVAC EV200 Series Contactor With 1 Form X (SPST-NO) Contacts Rated 500+ Amps, Vdc Product Facts Designed to be the smallest, lightest weight, lowest cost sealed contactor in the industry with its current rating (500+A carry, 2000A interrupt at 320VDC) Built-in coil economizer only 1.7W

More information

Module 3. DC to DC Converters. Version 2 EE IIT, Kharagpur 1

Module 3. DC to DC Converters. Version 2 EE IIT, Kharagpur 1 Module 3 DC to DC Converters Version 2 EE IIT, Kharagpur 1 Lesson 2 Commutation of Thyristor-Based Circuits Part-II Version 2 EE IIT, Kharagpur 2 This lesson provides the reader the following: (i) (ii)

More information

POWER SYSTEM II LAB MANUAL

POWER SYSTEM II LAB MANUAL POWER SYSTEM II LAB MANUAL (CODE : EE 692) JIS COLLEGE OF ENGINEERING (An Autonomous Institution) Electrical Engineering Department Kalyani, Nadia POWER SYSTEM II CODE : EE 692 Contacts :3P Credits : 2

More information

ISO Rules Part 500 Facilities Division 502 Technical Requirements Section Aggregated Generating Facilities Technical Requirements

ISO Rules Part 500 Facilities Division 502 Technical Requirements Section Aggregated Generating Facilities Technical Requirements Division 502 Technical Applicability 1(1) Section 502.1 applies to: Expedited Filing Draft August 22, 2017 the legal owner of an aggregated generating facility directly connected to the transmission system

More information

OPERATING, METERING AND EQUIPMENT PROTECTION REQUIREMENTS FOR PARALLEL OPERATION OF LARGE-SIZE GENERATING FACILITIES GREATER THAN 25,000 KILOWATTS

OPERATING, METERING AND EQUIPMENT PROTECTION REQUIREMENTS FOR PARALLEL OPERATION OF LARGE-SIZE GENERATING FACILITIES GREATER THAN 25,000 KILOWATTS OPERATING, METERING AND EQUIPMENT PROTECTION REQUIREMENTS FOR PARALLEL OPERATION OF LARGE-SIZE GENERATING FACILITIES GREATER THAN 25,000 KILOWATTS AND MEDIUM-SIZE FACILITIES (5,000-25,000KW) CONNECTED

More information

NERC Protection Coordination Webinar Series June 30, Dr. Murty V.V.S. Yalla

NERC Protection Coordination Webinar Series June 30, Dr. Murty V.V.S. Yalla Power Plant and Transmission System Protection ti Coordination Loss-of-Field (40) and Out-of of-step Protection (78) NERC Protection Coordination Webinar Series June 30, 2010 Dr. Murty V.V.S. Yalla Disclaimer

More information

Relay Coordination in the Protection of Radially- Connected Power System Network

Relay Coordination in the Protection of Radially- Connected Power System Network Relay Coordination in the Protection of Radially- Connected Power System Network Zankhana Shah Electrical Department, Kalol institute of research centre, Ahemedabad-Mehshana Highway, kalol, India 1 zankhu.shah@gmail.com

More information

PROTECTION SIGNALLING

PROTECTION SIGNALLING PROTECTION SIGNALLING 1 Directional Comparison Distance Protection Schemes The importance of transmission system integrity necessitates high-speed fault clearing times and highspeed auto reclosing to avoid

More information

Motor Protective Relay

Motor Protective Relay Digital Electric& Electronics System Motor Protective Relay Motor Protective Relay 3E, E Motor Protective Relay MPR(E,3E) DEESYS TOTAL PRODUCTS GUIDE 13 MOTOR PROTECTIVE RELAY Static type Motor-Relay MOTOR

More information

O V E R V I E W O F T H E

O V E R V I E W O F T H E A CABLE Technicians TESTING Approach to Generator STANDARDS: Protection O V E R V I E W O F T H E 1 Moderator n Ron Spataro AVO Training Institute Marketing Manager 2 Q&A n Send us your questions and comments

More information

Type VDG 13 Undervoltage Relay

Type VDG 13 Undervoltage Relay Type VDG 13 Undervoltage Relay Type VDG 13 Undervoltage Relay VDG 13 relay withdrawn from case Features l Identical time/voltage characteristics on all taps. l Frequency compensated. l Simple construction,

More information