Initial Results from the National Ignition Campaign on NIF

Size: px
Start display at page:

Download "Initial Results from the National Ignition Campaign on NIF"

Transcription

1 Initial Results from the National Ignition Campaign on NIF Presentation to 23 rd IAEA Fusion Energy Conference October 10-16, 2010 Daejeon, Republic of Korea John Lindl for the National Ignition Campaign Team NIF Programs Chief Scientist

2 The National Ignition Campaign (NIC) on NIF is an International effort

3 Summary Based on our current understanding, following a successful tuning campaign, we will have a high probability of ignition and yields of 5-10 MJ or more with ~1.3 MJ of laser energy using a CH capsule Initial hohlraum energetics experiments put us into the hohlraum temperature range for ignition experiments at ev The laser, diagnostic, target fabrication and other infrastructure capabilities needed for the ignition campaign are now in place. We have carried out the first THD cryo-layered implosion Ignition experiments in lay the ground work for target performance which meets IFE requirements

4 The National Ignition Facility

5 One of two laser bays looking toward the switchyard and target chamber NIF recently delivered 1.3 MJ of 3 light to the target chamber in an ignition pulse meeting ignition power balance requirements

6 Composite view of the NIF target area with the floors at different levels photo-shopped out of the picture

7 Thirty types of diagnostic systems are planned for the National Ignition Campaign One of two Dante soft X-ray Spectrometers One of NIF s 48 quads of beams on the 10 meter diameter target chamber

8 Inside of the NIF chamber: NIF is taking advantage of decades of ICF research to field a sophisticated array of diagnostics systems currently collecting more than 300 channels of Optical, X-ray, and Nuclear data Optics Inspection Camera Streaked X-ray Detector with pinhole snout Target Positioner Static X-ray Imager Near Backscatter Imager Scatter Plate

9 Cryogenic fuel layers will be formed in a new target positioner (cryo-tarpos) recently installed on NIF 1 cm A multi-laboratory effort in fabrication has given NIF the production capability for targets with unprecedented precision

10 On NIF we use a hohlraum driven implosion to generate the R & T needed for ignition (CH or Be) 1000 g/cm g/cm 2

11 Ignition requirements can be specified as a generalized Lawson criterion equivalent to the Ignition Threshold Factor (ITFX) discussed later T avg-thd (kev) Expected performance of NIC CH capsule at 1.3 MJ Gain Omega Cryo Implosions R Total (g/cm 2 ) We have developed an ignition campaign to achieve the compressed fuel R and temperature required to achieve ignition and burn

12 The hohlraum for the initial ignition experiments will be have a Au wall and He gas fill LEH unlined, diameter 3101 μm Window thickness 0.5 ± 0.05 μm Gas fill 100% He 0.96 ±0.02 mg/cc Inner Length ± 20 μm Au Hohlraum wall Inner diameter 5440 μm All dimensions are at cryo temperature.

13 We will begin the ignition campaign with a CH capsule (190) (68) CH at 1.3 MJ and 400 TW 1108 m Tube 10 m OD SiO 2 CH+Ge Hole 5m D 0% g/cc 0.5% g/cc 1.0% g/cc 0.5% g/cc 0% g/cc Amorphous material with no crystal structure issues Large data base from Nova and Omega Reduced Facility impact relative to Be All of the diagnostics and infrastructure needed for optimizing ignition implosions are essentially independent of capsule ablator If the pre-ignition campaign is completed successfully, and all requirements are met, calculations predict this target has an 80% probability of yield >1 MJ on any given shot and an expected mean yield 7.5 MJ

14 Achieving ignition requires constraining or adjusting multiple lower level parameters that roll up to set the ignition conditions Investment in NIF, targets and diagnostics establishes the capabilities to achieve ignition The energetics / capsule tuning campaign sets the key implosion input parameters using surrogate non-layered targets The THD layered implosions optimize the quality of the imploded fuel 1D quantities, e.g: Peak Laser Power Foot Laser Power Shock timing 3D quantities, e.g: Ice Perturbations Capsule Roughness Intrinsic Asymmetry Laser Power Balance >150 actionable parameters Velocity Hot spot Shape Entropy Mix Primary Implosion Inputs T Hot spot R Total R Primary Compressed fuel outputs DT experiments, alpha physics Ignition

15 We expect the 1.3 MJ CH target to have a high probability of ignition following the experimental campaign Performance in ensemble of 2D simulations varying 1D and 2D input parameters Input design metric: ITF Experimentally observable metric: ITFX DT yield [MJ] Expected Performance DT yield [MJ] v ITF = I o v ITF 11.2 R Kwtd hotspot R hotspot 4 Mclean M DT Velocity Entropy Shape Mix 0.5 ITFX ITFX = C cliff Y THD dsf Equivalent to a 3D generalized Lawson Criterion based on yield and neutron down scattered fraction Betti et al.

16 We have more completely mapped out the lower performance part of ITF and ITFX by including a wider range of variability which will typify early experiments Input design metric: ITF Experimentally observable metric: ITFX DT yield [MJ] Expected mean ITF Modified statistics to study failure modes DT yield [MJ] Expected mean ITFX v ITF = I o v ITF 11.2 R Kwtd hotspot R hotspot 4 Mclean M DT Velocity Entropy Shape Mix 0.5 ITFX ITFX = C cliff Y THD dsf Equivalent to a 3D generalized Lawson Criterion based on yield and neutron down scattered fraction Betti et al. 16

17 To compensate for physics uncertainties, the implosion optimization campaign will set 14 laser and 3 target parameters which are sufficient to optimize V, adiabat, mix and shape Adiabat Power & timing R Velocity V Peak power, Beam smoothing (9 laser parameters to set strength and timing of 4 shocks ) Dopant level and ablator thickness R Be +Cu (2 laser + 1 target parameters to set velocity and ablated mass) Relative power at foot & peak Wavelength separation Length M Mix (2 target parameters) (3 laser + 1 target parameters) Shape S

18 Implosion optimization will use an array of measurement techniques demonstrated on Omega employing 6 surrogate targets and ~30 different diagnostics A Adiabat FFLEX (hot electrons) VISAR SOP (shocks) FABS/ NBI (laser coupling) Velocity DANTE (T R ) Shell velocity V RadChem (THD targets) M Mix DANTE (Drive spectrum) GXD (shape of gas filled surrogate implosion) Shape S

19 Initial hohlraum experiments were carried out at 20 ºK using non-layered surrogate capsules with a low density gas fill (symcaps) Temperature: 20 K Hohlraum pressure: 420 torr Capsule pressure: 2634 torr < 20 nm of ice built up << 100 nm (specification)

20 The symmetry of the hohlraum drive up to the peak of the pulse is measured using low yield gas-filled capsules SymCap Target 60 μm HHe 4 or DHHe 3 Gas-filled low yield (< 1e12) capsule Emission pattern of 5-10 kev x-rays are detected NIF data from 2009 Infers time-integrated symmetry, P 2 and P 4 Diagnostic is an x-ray framing camera with multiple imaging pinholes mounted in a diagnostic instrument manipulator (DIM)

21 The NIF Gated X-ray Detectors (GXD), are advanced versions of diagnostics fielded on Nova and Omega The GXD is a key diagnostic for obtaining implosion symmetry and implosion velocity 200ps T o ns ns CCD Power Supply MCP Pulser Electronics 70 ps duration images ns ns Embedded Computer MCP Module CCD Camera P0 = 100 m P2/P0 = /-.008 P4/P0 = /-0.10

22 Symmetry: requires a controlled energy balance between the inner and outer beams We use a plasma-optical-switch, & transfer energy from outer to inner beams by increasing = inners outers The beams transfer energy to one another via Brillouin scattering from ion waves NIC 09 9 kev Capsule emission 10 0 Outer k ion-wave Inner Symmetry: Must be round enough at high convergence to get dense & ignite X(μm) P2/P0 [%] [Å]

23 Coupling: Stimulated scatter within the hohlraum can lead to energy loss: incoming laser reflects back out Coupling: LPI must be low enough, so that enough energy is available for drive SBS of outer cone beams in gold bubble : Laser reflects off of ion wave SRS of inner cone beams in fill-gas & ablator blow-off: Laser reflects off of electron plasma wave Besides reflecting the incident power, that plasma wave also makes hot electrons

24 The Dec MJ shot provided excellent Coupling, Drive, & Symmetry Coupling: ~ 90% of incident laser stayed inside the hohlraum Drive: ~ 285 ev which is already quite close to that needed for ignition Tr (ev) Symmetry: To within ~ 10% of round, and tunable via S. Glenzer et al., Science 327, 1228 (2010) N. Meezan et. al. PoP 17, (2010 P. Michel et. al. PoP 17, (2010)

25 The hohlraum to-do list for the NIC campaign Hot-e s: High energy Bremsstrahlung from hohlraum wall is within spec. But how many hot-e s get to capsule? Drive: Bang times ~200 ps later than predictions. Is it a diagnostic or physics issue? Action: Image with 50 kev GXI Symmetry: Explore schemes that maintain it while: Action: measure velocity and add new bang time measurements (GRH) Increasing coupling & drive Decreasing hotelectrons Actions: Deploy third wavelength ( 3 ) to optimize cross beam energy transfer, Re-optimize hohlraum geometry

26 We will use low Deuterium fraction (THD) low yield cryo implosions to minimize surrogacy and systematic errors before carrying out high yield implosions THD targets address the unique physics issues of cryo-layered targets and are the most challenging step in the implosion optimization campaign Solid THD layer Inner surface ice roughness Interface instability Diagnostics of the imploded fuel will allow us to assess the likelihood of ignition with DT We will explore the tradeoff of velocity and mix

27 THD targets study the hydrodynamic phase of hot spot formation and fuel assembly 15 Hot spot formation and trajectory in R, T DT <T> hot spot (kev) 10 5 Time -heating Ignition and burn THD Hydro assembly R hot spot (g/cm 2 )

28 Cryogenic fuel layers are imaged with x rays from 3 directions through slots in the hohlraum and through the laser entrance hole X-ray image of ice layer CH shell Capsule viewing window structure Ge-doped layer 150 μm 10-m fill line 70 μm ice 70 m ice X-ray images from 3 orthogonal directions Temperature: 18K ±0.001K control Target position stability for X-ray imaging : < 2 m p-p

29 The recently installed CryoTarpos supports formation of cryogenic fuel layers outside the chamber prior to insertion into target chamber center at shot time Cryogenic fuel layers will be formed in a new target positioner (cryo-tarpos) recently installed on NIF

30 Cryogenic fuel layers will be formed in a new target positioner (cryo-tarpos) recently installed on NIF Inserting the target on the tip of the target postitioner Cryo-shroud retracted

31 The first THD cryo-layered shot was successfully carried out on September 29, 2010 Target for the first cryo layered shot mounted on cryo target positioner

32 The main purpose of first cryo-layered experiment was to demonstrate the ability to integrate all the laser, target, and diagnostics capabilities needed for a successful experiment A wide range of new diagnostics was fielded on the first THD shot Several neutron time of flight (NTOF) detectors for yield, ion temperature and fuel R A magnetic recoil detector for yield and fuel R Zirconium and copper activation detectors for yield A Cherenkov gamma reaction history (GRH) diagnostic for bang time A hardened Gated X-ray Detector (hgxi) for implosion shape in the presence of the neutron yields of THD targets On the September 29 shot, essentially all the diagnostics obtained high quality data which is currently being analyzed, the target in the cryo-tarpos had a high-quality layer which was successfully inserted into the chamber, and the laser energy was within 2% of the request

33 This hohlraum and laser for the THD shot behaved as expected based on earlier experiments and calculations The hohlraum x-ray drive for the 1 st THD experiment was consistent with earlier non-layered symcap shots The laser energy delivered was about 2% above the requested 1.06 MJ T RAD (ev) Power (TW/beam) 2 1 Individual outer beam power Individual inner beam power Absorbed Energy (MJ) Time (ns) Based on hohlraum results to date, we expect to achieve Tr ~300 ev with ~1.3 MJ into the ignition scale hohlraum. Routine operations at 1.3 MJ is scheduled for early CY2011

34 The GXD obtained high quality images which indicate we need to further improve capsule surface features from dust and other assembly artifacts A sequence of frames from GXD shows a jet of material passing through and cooling the hot spot as the implosion reaches peak emission 21.1 ns 21.3 ns 21.3 ns 70 m In the coming year, we will adjust symmetry, implosion velocity, shock timing, and mix to optimize the fuel assembly in THD targets in preparation for 50/50 DT experiments

35 Ignition experiments in lay the ground work for target performance which meets IFE requirements Yields versus laser energy for NIF geometry hohlraums Potential NIF performance at 2 based on stored 1 energy Yield (MJ) Expected NIF performance at 2 with optimized conversion crystals and lenses Expected NIF performance at 3 Tr(eV) 300 ev 270 ev 250 ev ev Yield and gain consistent with an optimized DPSSL IFE system Laser energy (MJ)

36 Summary Based on our current understanding, following a successful tuning campaign, we will have a high probability of ignition and yields of 5-10 MJ or more with ~1.3 MJ of laser energy using a CH capsule Initial hohlraum energetics experiments put us into the hohlraum temperature range for ignition experiments at ev The laser, diagnostic, target fabrication and other infrastructure capabilities needed for the ignition campaign are now in place. We have carried out the first THD cryo-layered implosion Ignition experiments in lay the ground work for target performance which meets IFE requirements

37

Direct-Drive Implosions Using Cryogenic D2 Fuel

Direct-Drive Implosions Using Cryogenic D2 Fuel Direct-Drive Implosions Using Cryogenic D2 Fuel Distance (μm) 200 View from H11 +zω 0.0 2.6 0.5 400 600 1.0 800 1.5 1000 1200 2.4 2.2 Time (ms) 0 2.0 1.8 1.6 1.4 1.2 1.0 Y-TED 0.8 2.0 0.6 200 400 600 800

More information

Evaluation of Confocal Microscopy. for Measurement of the Roughness of Deuterium Ice. Ryan Menezes. Webster Schroeder High School.

Evaluation of Confocal Microscopy. for Measurement of the Roughness of Deuterium Ice. Ryan Menezes. Webster Schroeder High School. Evaluation of Confocal Microscopy for Measurement of the Roughness of Deuterium Ice Webster Schroeder High School Webster, NY Advisor: Dr. David Harding Senior Scientist Laboratory for Laser Energetics

More information

High Energy Density Physics in the NNSA

High Energy Density Physics in the NNSA NATIONAL NUCLEAR SECURITY ADMINISTRATION OFFICE OF DEFENSE PROGRAMS High Energy Density Physics in the NNSA Presented to: National Academy of Sciences Board on Physics and Astronomy Spring Meeting Washington,

More information

Determination and Correction of Optical Distortion in Cryogenic Target Characterization

Determination and Correction of Optical Distortion in Cryogenic Target Characterization Determination and Correction of Optical Distortion in Cryogenic Target Characterization Francis White McQuaid Jesuit High School Rochester, NY Advisors: Dana Edgell, Mark Wittman Laboratory for Laser Energetics

More information

NIF Target Diagnostic Automated Analysis: Operations & Calibrations

NIF Target Diagnostic Automated Analysis: Operations & Calibrations NIF Target Diagnostic Automated Analysis: Operations & Calibrations Presentation to 14 th International Conference on Accelerator & Large Experimental Physics Control Systems (ICALEPCS) October 6-11, 2013

More information

Progress in the science and technology of direct drive laser fusion with the KrF laser

Progress in the science and technology of direct drive laser fusion with the KrF laser Progress in the science and technology of direct drive laser fusion with the KrF laser Fusion Power Associates Meeting 1 December 2010 Presented by: Steve Obenschain Plasma Physics Division U.S. Naval

More information

NIF Neutron Bang Time Detector Development on OMEGA

NIF Neutron Bang Time Detector Development on OMEGA NIF Neutron Bang Time Detector Development on OMEGA 2400 2200 NBT2 scintillator bang time (ps) 2000 1800 1600 1400 1200 rms = 54 ps 1000 1000 1200 1400 1600 1800 2000 2200 2400 V. Yu. Glebov University

More information

High Rep-Rate KrF Laser Development and Intense Pulse Interaction Experiments for IFE*

High Rep-Rate KrF Laser Development and Intense Pulse Interaction Experiments for IFE* High Rep-Rate KrF Laser Development and Intense Pulse Interaction Experiments for IFE* Y. Owadano, E. Takahashi, I. Okuda, I. Matsushima, Y. Matsumoto, S. Kato, E. Miura and H.Yashiro 1), K. Kuwahara 2)

More information

The KrF alternative for fast ignition inertial fusion

The KrF alternative for fast ignition inertial fusion The KrF alternative for fast ignition inertial fusion IstvánB Földes 1, Sándor Szatmári 2 Students: A. Barna, R. Dajka, B. Gilicze, Zs. Kovács 1 Wigner Research Centre of the Hungarian Academy of Sciences,

More information

Laser-Produced Sn-plasma for Highvolume Manufacturing EUV Lithography

Laser-Produced Sn-plasma for Highvolume Manufacturing EUV Lithography Panel discussion Laser-Produced Sn-plasma for Highvolume Manufacturing EUV Lithography Akira Endo * Extreme Ultraviolet Lithography System Development Association Gigaphoton Inc * 2008 EUVL Workshop 11

More information

Development of dual MCP x-ray imager for 40 ~ 200 kev region

Development of dual MCP x-ray imager for 40 ~ 200 kev region Development of dual MCP x-ray imager for 40 ~ 200 kev region National ICF Diagnostics Working Group Meeting - October 6-8, 2015 N. Izumi, G. N. Hall, A. C. Carpenter, F. V. Allen, J. G. Cruz, B. Felker,

More information

AN OVERVIEW OF THE TARGET FABRICATION OPERATIONS AT LAWRENCE LIVERMORE NATIONAL LABORATORY

AN OVERVIEW OF THE TARGET FABRICATION OPERATIONS AT LAWRENCE LIVERMORE NATIONAL LABORATORY AN OVERVIEW OF THE TARGET FABRICATION OPERATIONS AT LAWRENCE LIVERMORE NATIONAL LABORATORY R. L. Hibbard, M. J. Bono Lawrence Livermore National Laboratory 1. 0 Introduction The Target Engineering team

More information

High-Yield Bang Time Detector for the OMEGA Laser

High-Yield Bang Time Detector for the OMEGA Laser High-Yield Bang Time Detector for the OMEGA Laser Introduction The time interval from the beginning of the laser pulse to the peak of neutron emission (bang time) is an important parameter in inertial

More information

Inertial Confinement Fusion & Antimatter Catalyzed Fusion for Space Propulsion

Inertial Confinement Fusion & Antimatter Catalyzed Fusion for Space Propulsion Inertial Confinement Fusion & Antimatter Catalyzed Fusion for Space Propulsion K F Long The Tau Zero Foundation UK Space Conference 2009 http://www.tauzero.aero 1 Contents Introduction The Physics of Fusion

More information

A NEW MULTI-POINT, MULTI-PULSE THOMSON SCATTERING SYSTEM FOR THE MST RFP

A NEW MULTI-POINT, MULTI-PULSE THOMSON SCATTERING SYSTEM FOR THE MST RFP A NEW MULTI-POINT, MULTI-PULSE THOMSON SCATTERING SYSTEM FOR THE MST RFP D. J. HOLLY, P. ANDREW, and D. J. DEN HARTOG Department of Physics, University of Wisconsin Madison, 1150 University Avenue, Madison,

More information

Kirkpatrick-Baez Microscope for NIF

Kirkpatrick-Baez Microscope for NIF Kirkpatrick-Baez Microscope for NIF Diagnostic Workshop, Los Alamos 2015 L. A. Pickworth & the KBO team LLNL-PRES-XXXXXX This work was performed under the auspices of the U.S. Department of Energy by Lawrence

More information

Far field intensity distributions of an OMEGA laser beam were measured with

Far field intensity distributions of an OMEGA laser beam were measured with Experimental Investigation of the Far Field on OMEGA with an Annular Apertured Near Field Uyen Tran Advisor: Sean P. Regan Laboratory for Laser Energetics Summer High School Research Program 200 1 Abstract

More information

Update on IFE Research at LLNL

Update on IFE Research at LLNL Update on IFE Research at LLNL Wayne Meier, Ryan Abbott, John Barnard, Andy Bayramian, Camille Bibeau, Debbie Callahan, Alex Friedman, Mike Key, Jeff Latkowski, Steve Payne, John Perkins, Susana Reyes,

More information

Partial Replication of Storms/Scanlan Glow Discharge Radiation

Partial Replication of Storms/Scanlan Glow Discharge Radiation Partial Replication of Storms/Scanlan Glow Discharge Radiation Rick Cantwell and Matt McConnell Coolescence, LLC March 2008 Introduction The Storms/Scanlan paper 1 presented at the 8 th international workshop

More information

THE NATIONAL IGNITION FACILITY: STATUS AND PLANS FOR LASER FUSION AND HIGH-ENERGY-DENSITY EXPERIMENTAL STUDIES

THE NATIONAL IGNITION FACILITY: STATUS AND PLANS FOR LASER FUSION AND HIGH-ENERGY-DENSITY EXPERIMENTAL STUDIES TUAI001 THE NATIONAL IGNITION FACILITY: STATUS AND PLANS FOR LASER FUSION AND HIGH-ENERGY-DENSITY EXPERIMENTAL STUDIES E.I. Moses LLNL, Livermore, CA 94550, USA Abstract The National Ignition Facility

More information

High-resolution Penumbral Imaging on the NIF

High-resolution Penumbral Imaging on the NIF High-resolution Penumbral Imaging on the NIF October 6, 21 Benjamin Bachmann T. Hilsabeck (GA), J. Field, A. MacPhee, N. Masters, C. Reed (GA), T. Pardini, B. Spears, L. BenedeB, S. Nagel, N. Izumi, V.

More information

Recent Developments in Ultra-High Speed and Large Area Photomultiplier Tubes

Recent Developments in Ultra-High Speed and Large Area Photomultiplier Tubes Recent Developments in Ultra-High Speed and Large Area Photomultiplier Tubes 1, Tom Conneely and Jon Howorth Photek Ltd 26 Castleham Road, St Leonards-on-Sea, East Sussex, TN38 0NR UK E-mail: james.milnes@photek.co.uk

More information

Diagnosing Cross-Beam Energy Transfer Using Beamlets of Unabsorbed Light from Direct-Drive Implosions

Diagnosing Cross-Beam Energy Transfer Using Beamlets of Unabsorbed Light from Direct-Drive Implosions Diagnosing Cross-Beam Energy Transfer Using Beamlets of Unabsorbed Light from Direct-Drive Implosions Image of 351-nm light from OMEGA implosions Gated Camera D. H. Edgell University of Rochester Laboratory

More information

1.0-MJ CH-Foam Ignition Targets on the NIF Using 1-D MultiFM SSD with 0.5 THz of Bandwidth

1.0-MJ CH-Foam Ignition Targets on the NIF Using 1-D MultiFM SSD with 0.5 THz of Bandwidth -MJ CH-Foam Ignition Targets on the NIF Using 1-D MultiFM SSD with.5 THz of Bandwidth -MJ CH-foam target; end of acceleration 4 1-D SSD, 1.8 Å 1-D MultiFM, 6 Å (1/2 THz) 2-D SSD, 11 Å Density (g/cm 3 )

More information

Effective Figure Captions for Technical Documents

Effective Figure Captions for Technical Documents Figure and Figure Caption Basics Effective Figure Captions for Technical Documents Permission from the US Naval Research Laboratory, Plasma Physics Division, and the Nike KrF Laser Program for use of their

More information

Ultra-stable flashlamp-pumped laser *

Ultra-stable flashlamp-pumped laser * SLAC-PUB-10290 September 2002 Ultra-stable flashlamp-pumped laser * A. Brachmann, J. Clendenin, T.Galetto, T. Maruyama, J.Sodja, J. Turner, M. Woods Stanford Linear Accelerator Center, 2575 Sand Hill Rd.,

More information

STUDIES OF INTERACTION OF PARTIALLY COHERENT LASER RADIATION WITH PLASMA

STUDIES OF INTERACTION OF PARTIALLY COHERENT LASER RADIATION WITH PLASMA STUDIES OF INTERACTION OF PARTIALLY COHERENT LASER RADIATION WITH PLASMA Alexander N. Starodub Deputy Director N.G.Basov Institute of Quantum Radiophysics of P.N.Lebedev Physical Institute of the RAS Leninsky

More information

Dust Measurements With The DIII-D Thomson system

Dust Measurements With The DIII-D Thomson system Dust Measurements With The DIII-D Thomson system The DIII-D Thomson scattering system, consisting of eight ND:YAG lasers and 44 polychromator detection boxes, has recently been used to observe the existence

More information

A Framed Monochromatic X-Ray Microscope for ICF

A Framed Monochromatic X-Ray Microscope for ICF A Framed Monochromatic X-Ray Microscope for ICF The Laser Fusion Experiments Groups from the Laboratory for Laser Energetics (LLE) and the Los Alamos National Laboratory (LANL) have jointly developed an

More information

Design and implementation of Dilation X-ray Imager for NIF "DIXI"

Design and implementation of Dilation X-ray Imager for NIF DIXI LLNL-CONF-644165 Design and implementation of Dilation X-ray Imager for NIF "DIXI" M. J. Ayers, S. R. Nagel, B. Felker, P. M. Bell, D. K. Bradley, K. Piston, J. Parker, Z. Lamb, J. D. Kilkenny, T. J. Hilsabeck,

More information

membrane sample EUV characterization

membrane sample EUV characterization membrane sample EUV characterization Christian Laubis, PTB Outline PTB's synchrotron radiation lab Scatter from structures Scatter from random rough surfaces Measurement geometries SAXS Lifetime testing

More information

X-ray generation by femtosecond laser pulses and its application to soft X-ray imaging microscope

X-ray generation by femtosecond laser pulses and its application to soft X-ray imaging microscope X-ray generation by femtosecond laser pulses and its application to soft X-ray imaging microscope Kenichi Ikeda 1, Hideyuki Kotaki 1 ' 2 and Kazuhisa Nakajima 1 ' 2 ' 3 1 Graduate University for Advanced

More information

1. Title of CRP: Elements of Power Plant Design for Inertial Fusion Energy

1. Title of CRP: Elements of Power Plant Design for Inertial Fusion Energy Proposal for a Coordinated Research Project (CRP) 1. Title of CRP: Elements of Power Plant Design for Inertial Fusion Energy The proposed duration is approximately five years, starting in late 2000 and

More information

II. PHASE I: TECHNOLOGY DEVELOPMENT Phase I has five tasks that are to be carried out in parallel.

II. PHASE I: TECHNOLOGY DEVELOPMENT Phase I has five tasks that are to be carried out in parallel. Krypton Fluoride Laser Development-the Path to an IRE John Sethian Naval Research Laboratory I. INTRODUCTION We have proposed a program to develop a KrF laser system for Inertial Fusion Energy. Although

More information

CU-LASP Test Facilities! and Instrument Calibration Capabilities"

CU-LASP Test Facilities! and Instrument Calibration Capabilities CU-LASP Test Facilities! and Instrument Calibration Capabilities" Ginger Drake Calibration Group Manager 303-492-5899 Ginger.Drake@lasp.colorado.edu Thermal Vacuum Test Facilities" 2 Multiple Optical Beam

More information

Toroidal Rotation and Ion Temperature Validations in KSTAR Plasmas

Toroidal Rotation and Ion Temperature Validations in KSTAR Plasmas Toroidal Rotation and Ion Temperature Validations in KSTAR Plasmas S. G. Lee 1, H. H. Lee 1, W. H. Ko 1, J. W. Yoo 2, on behalf of the KSTAR team and collaborators 1 NFRI, Daejeon, Korea 2 UST, Daejeon,

More information

NIST EUVL Metrology Programs

NIST EUVL Metrology Programs NIST EUVL Metrology Programs S.Grantham, C. Tarrio, R.E. Vest, Y. Barad, S. Kulin, K. Liu and T.B. Lucatorto National Institute of Standards and Technology (NIST) Gaithersburg, MD USA L. Klebanoff and

More information

Japan Update. EUVA (Extreme Ultraviolet Lithography System Development Association) Koichi Toyoda. SOURCE TWG 2 March, 2005 San Jose

Japan Update. EUVA (Extreme Ultraviolet Lithography System Development Association) Koichi Toyoda. SOURCE TWG 2 March, 2005 San Jose 1 Japan Update EUVA (Extreme Ultraviolet Lithography System Development Association) Koichi Toyoda SOURCE TWG 2 March, 2005 San Jose Outline 2 EUVA LPP at Hiratsuka R&D Center GDPP at Gotenba Branch Lab.

More information

Penumbral imaging with multi-penumbral-apertures and its heuristic reconstruction for nuclear reaction region diagnostics

Penumbral imaging with multi-penumbral-apertures and its heuristic reconstruction for nuclear reaction region diagnostics Journal of Physics: Conference Series Penumbral imaging with multi-penumbral-apertures and its heuristic reconstruction for nuclear reaction region diagnostics To cite this article: Tatsuki Ueda et al

More information

Overview and Initial Results of the ETE Spherical Tokamak

Overview and Initial Results of the ETE Spherical Tokamak Overview and Initial Results of the ETE Spherical Tokamak L.A. Berni, E. Del Bosco, J.G. Ferreira, G.O. Ludwig, R.M. Oliveira, C.S. Shibata, L.F.F.P.W. Barbosa, W.A. Vilela Instituto Nacional de Pesquisas

More information

Development of scalable laser technology for EUVL applications

Development of scalable laser technology for EUVL applications Development of scalable laser technology for EUVL applications Tomáš Mocek, Ph.D. Chief Scientist & Project Leader HiLASE Centre CZ.1.05/2.1.00/01.0027 Lasers for real-world applications Laser induced

More information

Investigating the Causes of and Possible Remedies for Sensor Damage in Digital Cameras Used on the OMEGA Laser Systems.

Investigating the Causes of and Possible Remedies for Sensor Damage in Digital Cameras Used on the OMEGA Laser Systems. Investigating the Causes of and Possible Remedies for Sensor Damage in Digital Cameras Used on the OMEGA Laser Systems Krysta Boccuzzi Our Lady of Mercy High School Rochester, NY Advisor: Eugene Kowaluk

More information

Simulations Guided Efforts to Understand MCP Performance

Simulations Guided Efforts to Understand MCP Performance University of Chicago Simulations Guided Efforts to Understand MCP Performance M. Wetstein, B. Adams, M. Chollet, A. Elagin, A. Vostrikov, R. Obaid, B. Hayhurst V. Ivanov, Z. Insepov, Q. Peng, A. Mane,

More information

Supplementary Figure 1

Supplementary Figure 1 Supplementary Figure 1 Technical overview drawing of the Roadrunner goniometer. The goniometer consists of three main components: an inline sample-viewing microscope, a high-precision scanning unit for

More information

Performance of the MCP-PMTs of the TOP counter in the first beam operation of the Belle II experiment

Performance of the MCP-PMTs of the TOP counter in the first beam operation of the Belle II experiment Performance of the MCP-PMTs of the TOP counter in the first beam operation of the Belle II experiment K. Matsuoka (KMI, Nagoya Univ.) on behalf of the Belle II TOP group 5th International Workshop on New

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:10.1038/nature10864 1. Supplementary Methods The three QW samples on which data are reported in the Letter (15 nm) 19 and supplementary materials (18 and 22 nm) 23 were grown

More information

Working in Visible NHMFL

Working in Visible NHMFL Working in Visible Optics @ NHMFL NHMFL Summer School 05-19-2016 Stephen McGill Optical Energy Range Energy of Optical Spectroscopy Range SCM3 Optics Facility Energy Range of Optical Spectroscopy SCM3

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figure 1. Modal simulation and frequency response of a high- frequency (75- khz) MEMS. a, Modal frequency of the device was simulated using Coventorware and shows

More information

A novel High Average Power High Brightness Soft X-ray Source using a Thin Disk Laser System for optimized Laser Produced Plasma Generation

A novel High Average Power High Brightness Soft X-ray Source using a Thin Disk Laser System for optimized Laser Produced Plasma Generation A novel High Average Power High Brightness Soft X-ray Source using a Thin Disk Laser System for optimized Laser Produced Plasma Generation I. Mantouvalou, K. Witte, R. Jung, J. Tümmler, G. Blobel, H. Legall,

More information

Progress towards Actinic Patterned Mask Inspection. Oleg Khodykin

Progress towards Actinic Patterned Mask Inspection. Oleg Khodykin Progress towards Actinic Patterned Mask Inspection Oleg Khodykin Outline Status (technical) of EUV Actinic Reticle Inspection program Xe based LPP source as bright and reliable solution Requirements Choice

More information

ModBox-FE-125ps-10mJ. Performance Highlights FEATURES APPLICATIONS. Electrical & Optical Pulse Diagrams

ModBox-FE-125ps-10mJ. Performance Highlights FEATURES APPLICATIONS. Electrical & Optical Pulse Diagrams The System-FE-1064nm is set to generate short shaped pulses with high extinction ratio at 1064.1 nm. It allows dynamic extinction ratio up to 55 db with user adjustable pulse duration, repetition rate

More information

On-line spectrometer for FEL radiation at

On-line spectrometer for FEL radiation at On-line spectrometer for FEL radiation at FERMI@ELETTRA Fabio Frassetto 1, Luca Poletto 1, Daniele Cocco 2, Marco Zangrando 3 1 CNR/INFM Laboratory for Ultraviolet and X-Ray Optical Research & Department

More information

NEW LASER ULTRASONIC INTERFEROMETER FOR INDUSTRIAL APPLICATIONS B.Pouet and S.Breugnot Bossa Nova Technologies; Venice, CA, USA

NEW LASER ULTRASONIC INTERFEROMETER FOR INDUSTRIAL APPLICATIONS B.Pouet and S.Breugnot Bossa Nova Technologies; Venice, CA, USA NEW LASER ULTRASONIC INTERFEROMETER FOR INDUSTRIAL APPLICATIONS B.Pouet and S.Breugnot Bossa Nova Technologies; Venice, CA, USA Abstract: A novel interferometric scheme for detection of ultrasound is presented.

More information

APRAD SOR Excimer group -Progress Report 2011-

APRAD SOR Excimer group -Progress Report 2011- APRAD SOR Excimer group -Progress Report 011- The DPP EUV source activity During 011 the work on the DPP (Discharge Produced Plasma) source of Extreme Ultraviolet (EUV) radiation has been devoted to a

More information

New Detectors for X-Ray Metal Thickness Measuring

New Detectors for X-Ray Metal Thickness Measuring ECNDT 2006 - Poster 132 New Detectors for X-Ray Metal Thickness Measuring Boris V. ARTEMIEV, Alexander I. MASLOV, Association SPEKTR- GROUP, Moscow, Russia Abstract. X-ray thickness measuring instruments

More information

Extreme Light Infrastucture (ELI) Science and Technology at the ultra-intense Frontier. Bruno Le Garrec

Extreme Light Infrastucture (ELI) Science and Technology at the ultra-intense Frontier. Bruno Le Garrec SPIE Photonics West 2.2.2014 Extreme Light Infrastucture (ELI) Science and Technology at the ultra-intense Frontier Bruno Le Garrec bruno.legarrec@eli-beams.eu On behalf of Georg Korn, Bedrich Rus and

More information

S.M. Lidia, G. Bazouin, P.A. Seidl Accelerator and Fusion Research Division Lawrence Berkeley National Laboratory Berkeley, CA USA

S.M. Lidia, G. Bazouin, P.A. Seidl Accelerator and Fusion Research Division Lawrence Berkeley National Laboratory Berkeley, CA USA S.M. Lidia, G. Bazouin, P.A. Seidl Accelerator and Fusion Research Division Lawrence Berkeley National Laboratory Berkeley, CA USA The Heavy Ion Fusion Sciences Virtual National Laboratory 1 NDCX Increased

More information

Development of a fast EUV movie camera for Caltech spheromak jet experiments

Development of a fast EUV movie camera for Caltech spheromak jet experiments P1.029 Development of a fast EUV movie camera for Caltech spheromak jet experiments K. B. Chai and P. M. Bellan ` California Institute of Technology kbchai@caltech.edu Caltech Spheromak gun 2 Target: study

More information

Plasma Sheath Velocity and Pinch Phenomenal Measurements in TPF-II Plasma Focus Device

Plasma Sheath Velocity and Pinch Phenomenal Measurements in TPF-II Plasma Focus Device Plasma Sheath Velocity and Pinch Phenomenal Measurements in TPF-II Plasma Focus Device Arlee Tamman PE wave : Center of Excellence in Plasma Science and Electromagnetic Wave Walailak University, THAILAND

More information

ABSTRACT. Supported by U.S. DoE grant No. DE-FG02-96ER54375

ABSTRACT. Supported by U.S. DoE grant No. DE-FG02-96ER54375 ABSTRACT A CCD imaging system is currently being developed for T e (,t) and bolometric measurements on the Pegasus Toroidal Experiment. Soft X-rays (E

More information

Case Study: Custom CCD for X-ray Free Electron Laser Experiment

Case Study: Custom CCD for X-ray Free Electron Laser Experiment Introduction The first XFEL (X-ray Free Electron Laser) experiments are being constructed around the world. These facilities produce femto-second long bursts of the most intense coherent X-rays ever to

More information

Commissioning of Thomson Scattering on the Pegasus Toroidal Experiment

Commissioning of Thomson Scattering on the Pegasus Toroidal Experiment Commissioning of Thomson Scattering on the Pegasus Toroidal Experiment D.J. Schlossberg, R.J. Fonck, L.M. Peguero, G.R. Winz University of Wisconsin-Madison 55 th Annual Meeting of the APS Division of

More information

Observation of amplification of a 1ps pulse by SRS of a 1 ns pulse in a plasma with conditions relevant to pulse compression

Observation of amplification of a 1ps pulse by SRS of a 1 ns pulse in a plasma with conditions relevant to pulse compression UCRL-CONF-216926 Observation of amplification of a 1ps pulse by SRS of a 1 ns pulse in a plasma with conditions relevant to pulse compression R. K. Kirkwood, E. Dewald, S. C. Wilks, N. Meezan, C. Niemann,

More information

Photon Diagnostics. FLASH User Workshop 08.

Photon Diagnostics. FLASH User Workshop 08. Photon Diagnostics FLASH User Workshop 08 Kai.Tiedtke@desy.de Outline What kind of diagnostic tools do user need to make efficient use of FLASH? intensity (New GMD) beam position intensity profile on the

More information

Photonic Crystal Slot Waveguide Spectrometer for Detection of Methane

Photonic Crystal Slot Waveguide Spectrometer for Detection of Methane Photonic Crystal Slot Waveguide Spectrometer for Detection of Methane Swapnajit Chakravarty 1, Wei-Cheng Lai 2, Xiaolong (Alan) Wang 1, Che-Yun Lin 2, Ray T. Chen 1,2 1 Omega Optics, 10306 Sausalito Drive,

More information

Electron Beam Diagnosis Using K-edge Absorp8on of Laser-Compton Photons

Electron Beam Diagnosis Using K-edge Absorp8on of Laser-Compton Photons LLNL-PRES-740689 Electron Beam Diagnosis Using K-edge Absorp8on of Laser-Compton Photons Y. Hwang 1, D. J. Gibson 2, R. A. Marsh 2, T. Tajima 1, C. P. J. Barty 1 1 University of California, Irvine 2 Lawrence

More information

Today s Outline - January 25, C. Segre (IIT) PHYS Spring 2018 January 25, / 26

Today s Outline - January 25, C. Segre (IIT) PHYS Spring 2018 January 25, / 26 Today s Outline - January 25, 2018 C. Segre (IIT) PHYS 570 - Spring 2018 January 25, 2018 1 / 26 Today s Outline - January 25, 2018 HW #2 C. Segre (IIT) PHYS 570 - Spring 2018 January 25, 2018 1 / 26 Today

More information

Proton core imaging of the nuclear burn in inertial confinement fusion implosions

Proton core imaging of the nuclear burn in inertial confinement fusion implosions REVIEW OF SCIENTIFIC INSTRUMENTS 77, 043503 2006 Proton core imaging of the nuclear burn in inertial confinement fusion implosions J. L. DeCiantis, F. H. Séguin, a J. A. Frenje, V. Berube, M. J. Canavan,

More information

National Science Foundation Center for Lasers and Plasmas for Advanced Manufacturing. Mool C. Gupta Applied Research Center Old Dominion University

National Science Foundation Center for Lasers and Plasmas for Advanced Manufacturing. Mool C. Gupta Applied Research Center Old Dominion University National Science Foundation Center for Lasers and Plasmas for Advanced Manufacturing Mool C. Gupta Applied Research Center Old Dominion University National Science Foundation Center - Center Mission -

More information

Water-Window Microscope Based on Nitrogen Plasma Capillary Discharge Source

Water-Window Microscope Based on Nitrogen Plasma Capillary Discharge Source 2015 International Workshop on EUV and Soft X-Ray Sources Water-Window Microscope Based on Nitrogen Plasma Capillary Discharge Source T. Parkman 1, M. F. Nawaz 2, M. Nevrkla 2, M. Vrbova 1, A. Jancarek

More information

X-Ray Transport, Diagnostic, & Commissioning Plans. LCLS Diagnostics and Commissioning Workshop

X-Ray Transport, Diagnostic, & Commissioning Plans. LCLS Diagnostics and Commissioning Workshop X-Ray Transport, Diagnostic, & Commissioning Plans LCLS Diagnostics and Commissioning Workshop *This work was performed under the auspices of the U.S. Department of Energy by the University of California,

More information

X-Ray Diagnostic Developments in the Perspective of DEMO

X-Ray Diagnostic Developments in the Perspective of DEMO X-Ray Diagnostic Developments in the Perspective of DEMO D. Pacella 1, A. Romano 1, L. Gabellieri 1, F. Causa 1, F. Murtas 2, G. Claps 2, W. Choe 3, S.H. Lee 3, S. Jang 3, J. Jang 3, J. Hong 3, T. Jeon

More information

Characterization of a High-Energy X-ray Compound Refractive Lens

Characterization of a High-Energy X-ray Compound Refractive Lens Characterization of a High-Energy X-ray Compound Refractive Lens Stewart Laird Advisor: Dr. Jim Knauer Laboratory for Laser Energetics University of Rochester Summer High School Research Program 25 Traditionally,

More information

Supplementary Figure S1. Schematic representation of different functionalities that could be

Supplementary Figure S1. Schematic representation of different functionalities that could be Supplementary Figure S1. Schematic representation of different functionalities that could be obtained using the fiber-bundle approach This schematic representation shows some example of the possible functions

More information

Detection and application of Doppler and motional Stark features in the DNB emission spectrum in the high magnetic field of the Alcator C-Mod tokamak

Detection and application of Doppler and motional Stark features in the DNB emission spectrum in the high magnetic field of the Alcator C-Mod tokamak Detection and application of Doppler and motional Stark features in the DNB emission spectrum in the high magnetic field of the Alcator C-Mod tokamak I. O. Bespamyatnov a, W. L. Rowan a, K. T. Liao a,

More information

Introduction To NDT. BY: Omid HEIDARY

Introduction To NDT. BY: Omid HEIDARY Introduction To NDT BY: Omid HEIDARY NDT Methods Penetrant Testing Magnetic Particle Testing Eddy Current Testing Ultrasonic Testing Radiographic Testing Acoustic Emission Infrared Testing Visual Testing

More information

NIF&PS News January 2014

NIF&PS News January 2014 NIF&PS News January 2014 NIF Update NIF s Energy Yield Continues to Climb; Alpha Heating Yield Exceeds 50 Percent The NIF/Weapons and Complex Integration (WCI) collaboration conducted a high-energy, highneutron-yield

More information

LaBr 3 :Ce, the latest crystal for nuclear medicine

LaBr 3 :Ce, the latest crystal for nuclear medicine 10th Topical Seminar on Innovative Particle and Radiation Detectors 1-5 October 2006 Siena, Italy LaBr 3 :Ce, the latest crystal for nuclear medicine Roberto Pani On behalf of SCINTIRAD Collaboration INFN

More information

photolithographic techniques (1). Molybdenum electrodes (50 nm thick) are deposited by

photolithographic techniques (1). Molybdenum electrodes (50 nm thick) are deposited by Supporting online material Materials and Methods Single-walled carbon nanotube (SWNT) devices are fabricated using standard photolithographic techniques (1). Molybdenum electrodes (50 nm thick) are deposited

More information

Scintillation Counters

Scintillation Counters PHY311/312 Detectors for Nuclear and Particle Physics Dr. C.N. Booth Scintillation Counters Unlike many other particle detectors, which exploit the ionisation produced by the passage of a charged particle,

More information

PHYS 1112L - Introductory Physics Laboratory II

PHYS 1112L - Introductory Physics Laboratory II PHYS 1112L - Introductory Physics Laboratory II Laboratory Advanced Sheet Thin Lenses 1. Objectives. The objectives of this laboratory are a. to be able to measure the focal length of a converging lens.

More information

Development of Photon Detectors at UC Davis Daniel Ferenc Eckart Lorenz Alvin Laille Physics Department, University of California Davis

Development of Photon Detectors at UC Davis Daniel Ferenc Eckart Lorenz Alvin Laille Physics Department, University of California Davis Development of Photon Detectors at UC Davis Daniel Ferenc Eckart Lorenz Alvin Laille Physics Department, University of California Davis Work supported partly by DOE, National Nuclear Security Administration

More information

Instruction manual and data sheet ipca h

Instruction manual and data sheet ipca h 1/15 instruction manual ipca-21-05-1000-800-h Instruction manual and data sheet ipca-21-05-1000-800-h Broad area interdigital photoconductive THz antenna with microlens array and hyperhemispherical silicon

More information

combustion diagnostics

combustion diagnostics 3. Instrumentation t ti for optical combustion diagnostics Equipment for combustion laser diagnostics 1) Laser/Laser system 2) Optics Lenses Polarizer Filters Mirrors Etc. 3) Detector CCD-camera Spectrometer

More information

Lens & Mirror Making Best lenses and mirrors are both made by grinding the surface Start with a mirror or lens blank For mirrors only surface needs

Lens & Mirror Making Best lenses and mirrors are both made by grinding the surface Start with a mirror or lens blank For mirrors only surface needs Lens & Mirror Making Best lenses and mirrors are both made by grinding the surface Start with a mirror or lens blank For mirrors only surface needs to be good Typical mirror want pyrex (eg BK7) Then need

More information

LUCX - THZ PROGRAM: OVERVIEW AND PROSPECTS

LUCX - THZ PROGRAM: OVERVIEW AND PROSPECTS LUCX - THZ PROGRAM: OVERVIEW AND PROSPECTS A. Aryshev On behalf of QB group and THz collaboration 14 Outline THz project overview LUCX activity LUCX Projects Overview THz program LUCX Laser system LUCX

More information

DCS laser for Thomson scattering diagnostic applications

DCS laser for Thomson scattering diagnostic applications DCS laser for Thomson scattering diagnostic applications Authors Jason Zweiback 10/6/2015 jzweiback@logostech.net 1 Summary Motivation DCS laser Laser for Thomson scattering diagnostics 2 What is the Dynamic

More information

Unpolarized Cluster, Jet and Pellet Targets

Unpolarized Cluster, Jet and Pellet Targets Unpolarized Cluster, Jet and Pellet Targets Intense Electron Beams Workshop Cornell University, June 17-19, 2015 Institut für Kernphysik Typical Requirements on Internal Targets Target material: H 2, D

More information

R. Lebert 1, K. Bergmann 2, O. Rosier 3, W. Neff 2, R. Poprawe 2

R. Lebert 1, K. Bergmann 2, O. Rosier 3, W. Neff 2, R. Poprawe 2 R. Lebert 1, K. Bergmann 2, O. Rosier 3, W. Neff 2, R. Poprawe 2 1 AIXUV GmbH, Steinbachstrasse 15, D-52074 Aachen, Germany 2 Fraunhofer Institut für Lasertechnik 3 Lehrstuhl für Lasertechnik, RWTH Aachen

More information

Terahertz control of nanotip photoemission

Terahertz control of nanotip photoemission Terahertz control of nanotip photoemission L. Wimmer, G. Herink, D. R. Solli, S. V. Yalunin, K. E. Echternkamp, and C. Ropers Near-infrared pulses of 800 nm wavelength, 50 fs duration and at 1 khz repetition

More information

Neutron Detection With Bubble Chambers

Neutron Detection With Bubble Chambers Neutron Detection With Bubble Chambers H (mrad) = (0) (0.4) (0.8) (1.6) (2.36) 50 nm 50 nm 50 nm 50 nm 50 nm M. C. Ghilea, et al. University of Rochester Laboratory for Laser Energetics 47th Annual Meeting

More information

POWER DETECTORS. How they work POWER DETECTORS. Overview

POWER DETECTORS. How they work POWER DETECTORS. Overview G E N T E C - E O POWER DETECTORS Well established in this field for over 30 years Gentec Electro-Optics has been a leader in the field of laser power and energy measurement. The average power density

More information

Historical. McPherson 15 Mount

Historical. McPherson 15 Mount McPherson 15 Mount Normal incidence designs include the McPherson 15 (classical 1.0 meter focal length) and modern NIM units. The latter features smaller included angles, longer focal lengths (e.g. 3,

More information

Measurements of MeV Photon Flashes in Petawatt Laser Experiments

Measurements of MeV Photon Flashes in Petawatt Laser Experiments UCRL-JC-131359 PREPRINT Measurements of MeV Photon Flashes in Petawatt Laser Experiments M. J. Moran, C. G. Brown, T. Cowan, S. Hatchett, A. Hunt, M. Key, D.M. Pennington, M. D. Perry, T. Phillips, C.

More information

Demonstration of exponential growth and saturation at VUV wavelengths at the TESLA Test Facility Free-Electron Laser. P. Castro for the TTF-FEL team

Demonstration of exponential growth and saturation at VUV wavelengths at the TESLA Test Facility Free-Electron Laser. P. Castro for the TTF-FEL team Demonstration of exponential growth and saturation at VUV wavelengths at the TESLA Test Facility Free-Electron Laser P. Castro for the TTF-FEL team 100 nm 1 Å FEL radiation TESLA Test Facility at DESY

More information

Nano Beam Position Monitor

Nano Beam Position Monitor Introduction Transparent X-ray beam monitoring and imaging is a new enabling technology that will become the gold standard tool for beam characterisation at synchrotron radiation facilities. It allows

More information

LINEAR INDUCTION ACCELERATOR WITH MAGNETIC STEERING FOR INERTIAL FUSION TARGET INJECTION

LINEAR INDUCTION ACCELERATOR WITH MAGNETIC STEERING FOR INERTIAL FUSION TARGET INJECTION LINEAR INDUCTION ACCELERATOR WITH MAGNETIC STEERING FOR INERTIAL FUSION TARGET INJECTION Ronald Petzoldt,* Neil Alexander, Lane Carlson, Eric Cotner, Dan Goodin and Robert Kratz General Atomics, 3550 General

More information

The absorption of the light may be intrinsic or extrinsic

The absorption of the light may be intrinsic or extrinsic Attenuation Fiber Attenuation Types 1- Material Absorption losses 2- Intrinsic Absorption 3- Extrinsic Absorption 4- Scattering losses (Linear and nonlinear) 5- Bending Losses (Micro & Macro) Material

More information

erosita mirror calibration:

erosita mirror calibration: erosita mirror calibration: First measurements and future concept PANTER instrument chamber set-up for XMM mirror calibration: 12 m length, 3.5 m diameter: 8m to focal plane instrumentation now: f = 1.6

More information

GUN LAUNCH SETBACK LABORATORY ACTIVATOR TESTS. Dr. Ernest L. Baker Warheads Technology TSO +32 (0)

GUN LAUNCH SETBACK LABORATORY ACTIVATOR TESTS. Dr. Ernest L. Baker Warheads Technology TSO +32 (0) Munitions Safety Information Analysis Center Supporting Member Nations in the Enhancement of their Munitions Life Cycle Safety GUN LAUNCH SETBACK AND LABORATORY ACTIVATOR TESTS Dr. Ernest L. Baker Warheads

More information