Development of a fast EUV movie camera for Caltech spheromak jet experiments

Size: px
Start display at page:

Download "Development of a fast EUV movie camera for Caltech spheromak jet experiments"

Transcription

1 P1.029 Development of a fast EUV movie camera for Caltech spheromak jet experiments K. B. Chai and P. M. Bellan ` California Institute of Technology kbchai@caltech.edu

2 Caltech Spheromak gun 2 Target: study spheromak formation & astrophysical jets Plasma characteristics Discharge type: pulsed power Applied voltage: ~ 5 kv Current: ~ 100 ka Lifetime: a few tens of s Gas: H 2, Ar, N 2 Diagnostics Magnetic probe array: B Rogowski coil: I p High voltage probe: V p Interferometer: n e Fast framing camera: visible emission 1.58 m Chamber drawing Jet experiment 1.48 m

3 Evolution of spheromak jet 3 8 flux ropes formed Merged into jet Jet stretching Kink instability Rayleigh-Taylor instability Plasma torn apart

4 Motivation 4 Strong EUV burst: observed when there is magnetic reconnection 1 st reconnection: when loops merge 2 nd reconnection: when Rayleigh-Taylor instability occurs Study EUV: can learn about magnetic reconnection Goal: measure EUV as a movie with few hundreds ns interframe time EUV signal Plasma ignited Bursts of EUV during magnetic reconnection Rayleigh-Taylor s A. Moser and P. Bellan, Nature 482, 379 (2012)

5 EUV movie camera issues 5 Our camera cannot detect EUV directly We need something to convert EUV into visible: Use scintillator Rayleigh-Tayor instability lasts very short time: a few s Need fast decay scintillator Visible light should be blocked Metal thin film is good for blocking visible light Need EUV focusing optics: concave mirror 1 st method: High incident angle to surface normal 2 nd method: EUV multilayer mirror

6 EUV camera with parabolic mirror 6 EUV YAG:Ce Scintillator (Al coated at front side) Mirror Aperture (D=5.08 mm) Visible Parabolic mirror (Au, f=5.08 cm) (incident angle ~ 45 ) CCD camera with lens

7 Efficiency of YAG:Ce scintillator 7 For converting EUV into visible Efficiency for powder YAG:Ce scintillator 30 ev= 41.3 nm 60 ev= 20.7 nm 2.54 cm 5 m thickness 10 m thickness 75 m thickness Material: 100 m single crystal YAG:Ce with 100 nm Al coating Customized one for better imaging from Crytur Ltd. (Czech Republic) Decay time: 70 ns Efficiency for EUV (30-60 ev): more than 1% A. Baciero et al., J. Synchrotron Rad. 7, 215 (2000)

8 Reflectance Au off-axis parabolic mirror reflectance 8 Incident angle=45 For focusing EUV Photon energy (ev) 30 ev= 41.3 nm 60 ev= 20.7 nm Mirror material: Au (chemically stable and high reflectivity) Reflectance for EUV (30-60 ev) at 45 : 5-20%

9 Transmission Transmission of Al coating 9 For blocking visible Photon energy (ev) 30 ev= 41.3 nm 60 ev= 20.7 nm Coating thickness: 200 nm (enough to block visible light) Transmittance for EUV (30-60 ev): 60-70%

10 Efficiency Total efficiency of optics x 10-3 x10-3 Efficiency: converting rate of EUV into visible through all the optics Photon energy (ev) 30 ev= 41.3 nm 60 ev= 20.7 nm Maximum efficiency: 32 ev (= 38.7 nm) Average efficiency for EUV (30-60 ev): % Efficiency is low but enough for us!

11 EUV radiation power (Ar jet) 11 For showing that such a low efficiency should be okay Supposed all the photons are 30 ev and plasma jet is covered by line of sight of photodiode AXUV diode signal: Ohm 0.6 ma Responsivity of AXUV diode for 30 ev: 0.2 A/W [1] 5 mw Consider Al filter transmission for 30 ev: 60% 8 mw Area of AXUV: 1 mm 2 Therefore, total plasma jet EUV emission : 8 mw 4 R 2 /1 mm 2 = 50 kw [1] IRD homepage.

12 How many photons we will get 12 For showing that such a low efficiency should be okay Total EUV emissivity of 30 ev photon: 50 kw Distance between plasma and detector: 58.4 cm Radiation power at 2.54 mm diameter aperture: 50 kw (1.27 mm) 2 / 4 (58.4 cm) 2 = 50 mw Convert to 30 ev photon flux: s -1 = 10 7 ns -1 Optics efficiency: 10-3 # photons incident on the scintillator: = # of CCD pixels covering the object: =10 4 Set exposure time at 100 ns: photons will come Quantum efficiency of CCD: 35% 35 photons/100 ns/pixel

13 Spatial resolution 13 Phantom image (Laptop) Through EUV optics Diameter of dots: 0.25 (6 mm) Distance between dots: 0.25 (6 mm) Spatial resolution of optics ~0.25 (6 mm)

14 Image distortion check 14 Not real plasma 25.4x25.4 mm grid 12.5x12.5 mm grid ϕ12.5 dots Book Due to parabolic mirror, image is distorted Can be corrected by reconstruction method

15 Field of view 15 Plasma jet 25 cm 5 cm FOV: covers 5-25 cm with < 0.6 cm resolution Almost entire jet structure is Electrodes covered by this system Plasma jet

16 Visible light for optics check 16 Log-scaled images No EUV yet 7 s 9 s 11 s 13 s Jet structure moving away from electrodes Plasma Gas: Ar V p : 5 kv I p : 100 ka t p :20 us Camera Princeton ICCD (single frame camera) Exposure time: 100 ns Camera iris: f8.0 Position: inside the chamber

17 Visible light for optics check 17 Log-scaled images No EUV yet 28 s 28 s 29 s 30 s Rayleigh-Taylor Rayleigh-Taylor Kink instability Kink instability Plasma Gas: Ar V p : 5 kv I p : 100 ka t p :40 us Camera Princeton ICCD (single frame camera) Exposure time: 100 ns Camera iris: f8.0 Position: inside the chamber

18 EUV from actual plasma 18 Log-scaled images Visible leakage 6 s 7 s 8 s 9 s Jet structure moving away from electrodes Plasma Gas: Ar V p : 5 kv I p : 100 ka t p :40 us Camera Princeton ICCD (single frame) Exposure time: 100 ns Iris: f1.4 Position: inside the chamber

19 EUV from actual plasma 19 Log-scaled images 30 s 30 s 30 s 30 s Kink instability can be observed Plasma Gas: Ar V p : 5 kv I p : 100 ka t p :40 us Camera Princeton ICCD (single frame) Exposure time: 100 ns Iris: f1.4 Position: inside the chamber

20 EUV from actual plasma 20 Log-scaled images cathode FOV 6.50 µs 6.75 µs 7.00 µs µs 7.50 µs 7.75 µs 8.00 µs 8.25 µs Plasma Gas: Ar V p : 5 kv I p : 100 ka t p :40 us Camera Imacon ICCD (multi-frame) Exposure time: 100 ns Iris: f1.4 Position: inside the chamber

21 EUV from actual plasma 21 Log-scaled images cathode FOV` 27.8 µs 28.5 µs 29.2 µs µs 30.6 µs 31.3 µs 32.0 µs 32.7 µs Plasma Gas: Ar V p : 5 kv I p : 100 ka t p :40 us Camera Imacon ICCD (multi-frame) Exposure time: 200 ns Iris: f1.4 Position: inside the chamber

22 Comparison with diode data 22 Red line is time of picture Exposure time: 200 ns cathode FOV 27.8 µs 28.5 µs 29.2 µs 29.9 µs Corresponds with EUV diode

23 Comparison with visible image 23 Same plasma cathode EUV FOV Visible 27.8 µs 28.5 µs 29.2 µs 29.9 µs Both EUV and visible were measured at the same time EUV exposure time: 200 ns, Visible exposure time: 20 ns Strong EUV signal was captured when Rayleigh-Taylor happened Difference: Kink structure closer to cathode is bright in EUV

24 Conclusion 24 Successfully measured EUV movie 2 distinct EUV bursts corresponding to EUV diode peaks Merging phase (7-8 µs): rectangular structure bright when 8 flux loops merge Kinking phase (28-32 µs): kink close to the electrode bright when RT happens Problems: Low sensitivity: best performance with 200 ns exposure time Small field of view: got something happens just outside of FOV Difficulty in triggering right before Rayleigh-Taylor happens Image distortion Plans: FOV change to see upper part of kink New triggering circuit is under development Develop reconstruction method for our geometry

25 EUV camera with multilayer mirror 25 Mirror EUV Mirror Visible YAG:Ce Scintillator (Al coated at front side) Multilayer Mirror CCD camera with lens

26 Reflectivity Reflectance of multilayer mirror BB mirror (1) For focusing EUV Centered at 34 ev (36.5 nm) Photon energy (ev) Customized one for ev EUV from NTT-AT (Japan) Reflectance of 34 ev EUV at normal incident: 13%

27 EUV multilayer mirror 27 Principal: constructive interference between periodically placing two different materials (Bragg reflection) Periodicity: condition for constructive interference (Bragg s condition) dsinθ=λ/2 (d: periodicity, θ: angle to mirror surface, λ: wavelength) Difficulty: thickness should be a few tens of nanometers for EUV so extremely sophisticated coating technique is required Use: EUV measurement from solar corona and EUV lithography

28 Efficiency Total efficiency of optics x 10-4 Efficiency: converting rate of EUV into visible through all the optics Photon energy (ev) Maximum efficiency: 34 ev (= 36.5 nm) Average efficiency for EUV (25-50 ev): 0.05 % Conversion efficiency is half of previous one however, there is no aperture

29 Image distortion check 29 Using visible light It not a real plasma Due to the spherical mirror, images are distorted Can be corrected by reconstruction method

30 Field of view 30 Plasma jet 18 cm FOV: covers from electrode to 18 cm Electrodes Most interesting part will be covered by this system Plasma jet

31 Visible light for optics check 31 For checking optics (No EUV yet) using Al spherical mirror 1 us 5 us 9 us 13 us Arches merge Spider legs are merging together Plasma Gas: Ar V p : 5 kv I p : 100 ka t p :40 us Camera Princeton ICCD (single frame) Exposure time: 100 ns Camera iris: f22 Position: outside the chamber

32 Visible light for optics check 32 For checking optics (No EUV yet) using Al spherical mirror 21 us 28 us 29 us 30 us Kink kink instability Plasma Gas: Ar V p : 5 kv I p : 100 ka t p :40 us Camera Princeton ICCD (single frame) Exposure time: 100 ns Camera iris: f22 Position: outside the chamber

33 Conclusions 33 Visible test: spatial resolution looks okay Advantage: 100 times more sensitivity than parabolic mirror optics due to absence of aperture Multilayer mirror has been ordered from NTT-AT, Japan (will be done by end of February) Plans Install multilayer mirror optics and debugging Measure EUV images of actual plasma Study magnetic reconnection

X-ray generation by femtosecond laser pulses and its application to soft X-ray imaging microscope

X-ray generation by femtosecond laser pulses and its application to soft X-ray imaging microscope X-ray generation by femtosecond laser pulses and its application to soft X-ray imaging microscope Kenichi Ikeda 1, Hideyuki Kotaki 1 ' 2 and Kazuhisa Nakajima 1 ' 2 ' 3 1 Graduate University for Advanced

More information

NIST EUVL Metrology Programs

NIST EUVL Metrology Programs NIST EUVL Metrology Programs S.Grantham, C. Tarrio, R.E. Vest, Y. Barad, S. Kulin, K. Liu and T.B. Lucatorto National Institute of Standards and Technology (NIST) Gaithersburg, MD USA L. Klebanoff and

More information

Water-Window Microscope Based on Nitrogen Plasma Capillary Discharge Source

Water-Window Microscope Based on Nitrogen Plasma Capillary Discharge Source 2015 International Workshop on EUV and Soft X-Ray Sources Water-Window Microscope Based on Nitrogen Plasma Capillary Discharge Source T. Parkman 1, M. F. Nawaz 2, M. Nevrkla 2, M. Vrbova 1, A. Jancarek

More information

High-speed imaging of the SSPX plasma

High-speed imaging of the SSPX plasma High-speed imaging of the SSPX plasma Carlos A. Romero-Talamás, Paul M. Bellan, SSPX team * California Institute of Technology 1200 E. California Blvd. Mail Stop 128-95 Pasadena, CA, 91125 U.S.A * Lawrence

More information

Faster, Hotter MHD-Driven Jets Using RF Pre-Ionization

Faster, Hotter MHD-Driven Jets Using RF Pre-Ionization Faster, Hotter MHD-Driven Jets Using RF Pre-Ionization V. H. Chaplin, P. M. Bellan, and H. V. Willett 1 1) University of Cambridge, United Kingdom; work completed as a Summer Undergraduate Research Fellow

More information

Japan Update. EUVA (Extreme Ultraviolet Lithography System Development Association) Koichi Toyoda. SOURCE TWG 2 March, 2005 San Jose

Japan Update. EUVA (Extreme Ultraviolet Lithography System Development Association) Koichi Toyoda. SOURCE TWG 2 March, 2005 San Jose 1 Japan Update EUVA (Extreme Ultraviolet Lithography System Development Association) Koichi Toyoda SOURCE TWG 2 March, 2005 San Jose Outline 2 EUVA LPP at Hiratsuka R&D Center GDPP at Gotenba Branch Lab.

More information

Physics review Practice problems

Physics review Practice problems Physics review Practice problems 1. A double slit interference pattern is observed on a screen 2.0 m behind 2 slits spaced 0.5 mm apart. From the center of one particular fringe to 9 th bright fringe is

More information

Report on BLP Spectroscopy Experiments Conducted on October 6, 2017: M. Nansteel

Report on BLP Spectroscopy Experiments Conducted on October 6, 2017: M. Nansteel Report on BLP Spectroscopy Experiments Conducted on October 6, 2017: M. Nansteel Summary Several spectroscopic measurements were conducted on October 6, 2017 at BLP to characterize the radiant power of

More information

Introduction of New Products

Introduction of New Products Field Emission Electron Microscope JEM-3100F For evaluation of materials in the fields of nanoscience and nanomaterials science, TEM is required to provide resolution and analytical capabilities that can

More information

ABSTRACT. Supported by U.S. DoE grant No. DE-FG02-96ER54375

ABSTRACT. Supported by U.S. DoE grant No. DE-FG02-96ER54375 ABSTRACT A CCD imaging system is currently being developed for T e (,t) and bolometric measurements on the Pegasus Toroidal Experiment. Soft X-rays (E

More information

PHY 431 Homework Set #5 Due Nov. 20 at the start of class

PHY 431 Homework Set #5 Due Nov. 20 at the start of class PHY 431 Homework Set #5 Due Nov. 0 at the start of class 1) Newton s rings (10%) The radius of curvature of the convex surface of a plano-convex lens is 30 cm. The lens is placed with its convex side down

More information

EE119 Introduction to Optical Engineering Spring 2003 Final Exam. Name:

EE119 Introduction to Optical Engineering Spring 2003 Final Exam. Name: EE119 Introduction to Optical Engineering Spring 2003 Final Exam Name: SID: CLOSED BOOK. THREE 8 1/2 X 11 SHEETS OF NOTES, AND SCIENTIFIC POCKET CALCULATOR PERMITTED. TIME ALLOTTED: 180 MINUTES Fundamental

More information

Observational Astronomy

Observational Astronomy Observational Astronomy Instruments The telescope- instruments combination forms a tightly coupled system: Telescope = collecting photons and forming an image Instruments = registering and analyzing the

More information

R. Lebert 1, K. Bergmann 2, O. Rosier 3, W. Neff 2, R. Poprawe 2

R. Lebert 1, K. Bergmann 2, O. Rosier 3, W. Neff 2, R. Poprawe 2 R. Lebert 1, K. Bergmann 2, O. Rosier 3, W. Neff 2, R. Poprawe 2 1 AIXUV GmbH, Steinbachstrasse 15, D-52074 Aachen, Germany 2 Fraunhofer Institut für Lasertechnik 3 Lehrstuhl für Lasertechnik, RWTH Aachen

More information

plasmonic nanoblock pair

plasmonic nanoblock pair Nanostructured potential of optical trapping using a plasmonic nanoblock pair Yoshito Tanaka, Shogo Kaneda and Keiji Sasaki* Research Institute for Electronic Science, Hokkaido University, Sapporo 1-2,

More information

Physics 2306 Fall 1999 Final December 15, 1999

Physics 2306 Fall 1999 Final December 15, 1999 Physics 2306 Fall 1999 Final December 15, 1999 Name: Student Number #: 1. Write your name and student number on this page. 2. There are 20 problems worth 5 points each. Partial credit may be given if work

More information

Design and Fabrication of an Efficient Extreme Ultraviolet Beam Splitter

Design and Fabrication of an Efficient Extreme Ultraviolet Beam Splitter EUV Beam Splitter 1 Design and Fabrication of an Efficient Extreme Ultraviolet Beam Splitter First Semester Report Full Report By: Andrew Wiley Maram Alfaraj Prepared to partially fulfill the requirements

More information

APRAD SOR Excimer group -Progress Report 2011-

APRAD SOR Excimer group -Progress Report 2011- APRAD SOR Excimer group -Progress Report 011- The DPP EUV source activity During 011 the work on the DPP (Discharge Produced Plasma) source of Extreme Ultraviolet (EUV) radiation has been devoted to a

More information

membrane sample EUV characterization

membrane sample EUV characterization membrane sample EUV characterization Christian Laubis, PTB Outline PTB's synchrotron radiation lab Scatter from structures Scatter from random rough surfaces Measurement geometries SAXS Lifetime testing

More information

LOS 1 LASER OPTICS SET

LOS 1 LASER OPTICS SET LOS 1 LASER OPTICS SET Contents 1 Introduction 3 2 Light interference 5 2.1 Light interference on a thin glass plate 6 2.2 Michelson s interferometer 7 3 Light diffraction 13 3.1 Light diffraction on a

More information

Scintillation Counters

Scintillation Counters PHY311/312 Detectors for Nuclear and Particle Physics Dr. C.N. Booth Scintillation Counters Unlike many other particle detectors, which exploit the ionisation produced by the passage of a charged particle,

More information

Components of Optical Instruments

Components of Optical Instruments Components of Optical Instruments General Design of Optical Instruments Sources of Radiation Wavelength Selectors (Filters, Monochromators, Interferometers) Sample Containers Radiation Transducers (Detectors)

More information

k λ NA Resolution of optical systems depends on the wavelength visible light λ = 500 nm Extreme ultra-violet and soft x-ray light λ = 1-50 nm

k λ NA Resolution of optical systems depends on the wavelength visible light λ = 500 nm Extreme ultra-violet and soft x-ray light λ = 1-50 nm Resolution of optical systems depends on the wavelength visible light λ = 500 nm Spatial Resolution = k λ NA EUV and SXR microscopy can potentially resolve full-field images with 10-100x smaller features

More information

Silicon Photodiodes - SXUV Series with Platinum Silicide Front Entrance Windows

Silicon Photodiodes - SXUV Series with Platinum Silicide Front Entrance Windows Silicon Photodiodes - SXUV Series with Platinum Silicide Front Entrance Windows SXUV Responsivity Stability It is known that the UV photon exposure induced instability of common silicon photodiodes is

More information

PHYS 241 FINAL EXAM December 11, 2006

PHYS 241 FINAL EXAM December 11, 2006 1. (5 points) Light of wavelength λ is normally incident on a diffraction grating, G. On the screen S, the central line is at P and the first order line is at Q, as shown. The distance between adjacent

More information

Measurements of MeV Photon Flashes in Petawatt Laser Experiments

Measurements of MeV Photon Flashes in Petawatt Laser Experiments UCRL-JC-131359 PREPRINT Measurements of MeV Photon Flashes in Petawatt Laser Experiments M. J. Moran, C. G. Brown, T. Cowan, S. Hatchett, A. Hunt, M. Key, D.M. Pennington, M. D. Perry, T. Phillips, C.

More information

Applications of Optics

Applications of Optics Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 26 Applications of Optics Marilyn Akins, PhD Broome Community College Applications of Optics Many devices are based on the principles of optics

More information

Terahertz Radiation of a Low-inductance Discharge in Vacuum with Laser-plasma Initiation

Terahertz Radiation of a Low-inductance Discharge in Vacuum with Laser-plasma Initiation VII International Conference on Photonics and Information Optics Volume 2018 Conference Paper Terahertz Radiation of a Low-inductance Discharge in Vacuum with Laser-plasma Initiation K. I. Kozlovskii,

More information

Chapter 17: Wave Optics. What is Light? The Models of Light 1/11/13

Chapter 17: Wave Optics. What is Light? The Models of Light 1/11/13 Chapter 17: Wave Optics Key Terms Wave model Ray model Diffraction Refraction Fringe spacing Diffraction grating Thin-film interference What is Light? Light is the chameleon of the physical world. Under

More information

Vertical External Cavity Surface Emitting Laser

Vertical External Cavity Surface Emitting Laser Chapter 4 Optical-pumped Vertical External Cavity Surface Emitting Laser The booming laser techniques named VECSEL combine the flexibility of semiconductor band structure and advantages of solid-state

More information

Plasma Sheath Velocity and Pinch Phenomenal Measurements in TPF-II Plasma Focus Device

Plasma Sheath Velocity and Pinch Phenomenal Measurements in TPF-II Plasma Focus Device Plasma Sheath Velocity and Pinch Phenomenal Measurements in TPF-II Plasma Focus Device Arlee Tamman PE wave : Center of Excellence in Plasma Science and Electromagnetic Wave Walailak University, THAILAND

More information

Commissioning of Thomson Scattering on the Pegasus Toroidal Experiment

Commissioning of Thomson Scattering on the Pegasus Toroidal Experiment Commissioning of Thomson Scattering on the Pegasus Toroidal Experiment D.J. Schlossberg, R.J. Fonck, L.M. Peguero, G.R. Winz University of Wisconsin-Madison 55 th Annual Meeting of the APS Division of

More information

arxiv:hep-ex/ v1 19 Apr 2002

arxiv:hep-ex/ v1 19 Apr 2002 STUDY OF THE AVALANCHE TO STREAMER TRANSITION IN GLASS RPC EXCITED BY UV LIGHT. arxiv:hep-ex/0204026v1 19 Apr 2002 Ammosov V., Gapienko V.,Kulemzin A., Semak A.,Sviridov Yu.,Zaets V. Institute for High

More information

Recent Development and Study of Silicon Solid State Photomultiplier (MRS Avalanche Photodetector)

Recent Development and Study of Silicon Solid State Photomultiplier (MRS Avalanche Photodetector) Recent Development and Study of Silicon Solid State Photomultiplier (MRS Avalanche Photodetector) Valeri Saveliev University of Obninsk, Russia Vienna Conference on Instrumentation Vienna, 20 February

More information

Recent Activities of the Actinic Mask Inspection using the EUV microscope at Center for EUVL

Recent Activities of the Actinic Mask Inspection using the EUV microscope at Center for EUVL Recent Activities of the Actinic Mask Inspection using the EUV microscope at Center for EUVL Takeo Watanabe, Tetsuo Harada, and Hiroo Kinoshita Center for EUVL, University of Hyogo Outline 1) EUV actinic

More information

Low Voltage Electron Microscope

Low Voltage Electron Microscope LVEM5 Low Voltage Electron Microscope Nanoscale from your benchtop LVEM5 Delong America DELONG INSTRUMENTS COMPACT BUT POWERFUL The LVEM5 is designed to excel across a broad range of applications in material

More information

EUV Light Source The Path to HVM Scalability in Practice

EUV Light Source The Path to HVM Scalability in Practice EUV Light Source The Path to HVM Scalability in Practice Harald Verbraak et al. (all people at XTREME) 2011 International Workshop on EUV and Soft X-ray Sources Nov. 2011 Today s Talk o LDP Technology

More information

CPSC 4040/6040 Computer Graphics Images. Joshua Levine

CPSC 4040/6040 Computer Graphics Images. Joshua Levine CPSC 4040/6040 Computer Graphics Images Joshua Levine levinej@clemson.edu Lecture 04 Displays and Optics Sept. 1, 2015 Slide Credits: Kenny A. Hunt Don House Torsten Möller Hanspeter Pfister Agenda Open

More information

Compact EUV Source for Metrology and Inspection

Compact EUV Source for Metrology and Inspection Compact EUV Source for Metrology and Inspection Klaus Bergmann, Jochen Vieker, Alexander von Wezyk 2015 EUV Source Workshop, 10.11.2015, Dublin Overview Introduction Xenon based EUV Source FS5420 Consideration

More information

EE119 Introduction to Optical Engineering Fall 2009 Final Exam. Name:

EE119 Introduction to Optical Engineering Fall 2009 Final Exam. Name: EE119 Introduction to Optical Engineering Fall 2009 Final Exam Name: SID: CLOSED BOOK. THREE 8 1/2 X 11 SHEETS OF NOTES, AND SCIENTIFIC POCKET CALCULATOR PERMITTED. TIME ALLOTTED: 180 MINUTES Fundamental

More information

Overview and Initial Results of the ETE Spherical Tokamak

Overview and Initial Results of the ETE Spherical Tokamak Overview and Initial Results of the ETE Spherical Tokamak L.A. Berni, E. Del Bosco, J.G. Ferreira, G.O. Ludwig, R.M. Oliveira, C.S. Shibata, L.F.F.P.W. Barbosa, W.A. Vilela Instituto Nacional de Pesquisas

More information

High Rep-Rate KrF Laser Development and Intense Pulse Interaction Experiments for IFE*

High Rep-Rate KrF Laser Development and Intense Pulse Interaction Experiments for IFE* High Rep-Rate KrF Laser Development and Intense Pulse Interaction Experiments for IFE* Y. Owadano, E. Takahashi, I. Okuda, I. Matsushima, Y. Matsumoto, S. Kato, E. Miura and H.Yashiro 1), K. Kuwahara 2)

More information

combustion diagnostics

combustion diagnostics 3. Instrumentation t ti for optical combustion diagnostics Equipment for combustion laser diagnostics 1) Laser/Laser system 2) Optics Lenses Polarizer Filters Mirrors Etc. 3) Detector CCD-camera Spectrometer

More information

Image Formation. Light from distant things. Geometrical optics. Pinhole camera. Chapter 36

Image Formation. Light from distant things. Geometrical optics. Pinhole camera. Chapter 36 Light from distant things Chapter 36 We learn about a distant thing from the light it generates or redirects. The lenses in our eyes create images of objects our brains can process. This chapter concerns

More information

Development of Photon Detectors at UC Davis Daniel Ferenc Eckart Lorenz Alvin Laille Physics Department, University of California Davis

Development of Photon Detectors at UC Davis Daniel Ferenc Eckart Lorenz Alvin Laille Physics Department, University of California Davis Development of Photon Detectors at UC Davis Daniel Ferenc Eckart Lorenz Alvin Laille Physics Department, University of California Davis Work supported partly by DOE, National Nuclear Security Administration

More information

Photonics and Optical Communication

Photonics and Optical Communication Photonics and Optical Communication (Course Number 300352) Spring 2007 Dr. Dietmar Knipp Assistant Professor of Electrical Engineering http://www.faculty.iu-bremen.de/dknipp/ 1 Photonics and Optical Communication

More information

Physics 431 Final Exam Examples (3:00-5:00 pm 12/16/2009) TIME ALLOTTED: 120 MINUTES Name: Signature:

Physics 431 Final Exam Examples (3:00-5:00 pm 12/16/2009) TIME ALLOTTED: 120 MINUTES Name: Signature: Physics 431 Final Exam Examples (3:00-5:00 pm 12/16/2009) TIME ALLOTTED: 120 MINUTES Name: PID: Signature: CLOSED BOOK. TWO 8 1/2 X 11 SHEET OF NOTES (double sided is allowed), AND SCIENTIFIC POCKET CALCULATOR

More information

Typical LED Characteristics

Typical LED Characteristics Typical LED Characteristics Characteristic Unit Value Light output 1 mw > 1 2 Peak wavelength 3 nm 255 nm to 28 nm 4 Viewing angle Degrees 11 5 Full width at half maximum 3 (@1 ma) nm 16 Forward voltage

More information

EUV and Soft X-Ray Optics

EUV and Soft X-Ray Optics David Attwood University of California, Berkeley Cheiron School September 2012 SPring-8 1 The short wavelength region of the electromagnetic spectrum n = 1 + i,

More information

Optical Components for Laser Applications. Günter Toesko - Laserseminar BLZ im Dezember

Optical Components for Laser Applications. Günter Toesko - Laserseminar BLZ im Dezember Günter Toesko - Laserseminar BLZ im Dezember 2009 1 Aberrations An optical aberration is a distortion in the image formed by an optical system compared to the original. It can arise for a number of reasons

More information

Low Voltage Electron Microscope. Nanoscale from your benchtop LVEM5. Delong America

Low Voltage Electron Microscope. Nanoscale from your benchtop LVEM5. Delong America LVEM5 Low Voltage Electron Microscope Nanoscale from your benchtop LVEM5 Delong America DELONG INSTRUMENTS COMPACT BUT POWERFUL The LVEM5 is designed to excel across a broad range of applications in material

More information

TESTING OF ELECTROMAGNETIC RADIATION RESONATOR-CONVERTER PROTOTYPE

TESTING OF ELECTROMAGNETIC RADIATION RESONATOR-CONVERTER PROTOTYPE TESTING OF ELECTROMAGNETIC RADIATION RESONATOR-CONVERTER PROTOTYPE Phase II Report Customer UAB AIRESLITA Vilniaus str. 31, LT-01119 Vilnius, Lithuania Contact person Director Darius Višinskas Tests conducted

More information

Introduction. Chapter 16 Diagnostic Radiology. Primary radiological image. Primary radiological image

Introduction. Chapter 16 Diagnostic Radiology. Primary radiological image. Primary radiological image Introduction Chapter 16 Diagnostic Radiology Radiation Dosimetry I Text: H.E Johns and J.R. Cunningham, The physics of radiology, 4 th ed. http://www.utoledo.edu/med/depts/radther In diagnostic radiology

More information

BASICS OF FLUOROSCOPY

BASICS OF FLUOROSCOPY Medical Physics Residents Training Program BASICS OF FLUOROSCOPY Dr. Khalid Alyousef, PhD Department of Medical Imaging King Abdulaziz Medical City- Riyadh Edison examining the hand of Clarence Dally with

More information

12/6/2011. Electromagnetic Induction. Electromagnetic Induction and Electromagnetic Waves. Checking Understanding. Magnetic Flux. Lenz s Law.

12/6/2011. Electromagnetic Induction. Electromagnetic Induction and Electromagnetic Waves. Checking Understanding. Magnetic Flux. Lenz s Law. Electromagnetic Induction and Electromagnetic Waves Topics: Electromagnetic induction Lenz s law Faraday s law The nature of electromagnetic waves The spectrum of electromagnetic waves Electromagnetic

More information

Light Sources for High Volume Metrology and Inspection Applications

Light Sources for High Volume Metrology and Inspection Applications Light Sources for High Volume Metrology and Inspection Applications Reza Abhari International Workshop on EUV and Soft X- Ray Sources November 9-11, 2015, Dublin, Ireland Reza S. Abhari 11/10/15 1 Inspection

More information

(0.35) (0.2) 2.2. P 75 mw (0.65) 1.4

(0.35) (0.2) 2.2. P 75 mw (0.65) 1.4 GLMNxMP Series GLMNxMP Series Features. Compact and thin package 2. Surface mount type 3. 2-way mounting;top view/side view 4. Reflow soldering 5. High output type:glmnmp 6. General purpose type:glmnmp

More information

Class XII - Physics Wave Optics Chapter-wise Problems

Class XII - Physics Wave Optics Chapter-wise Problems Class XII - hysics Wave Optics Chapter-wise roblems Multiple Choice Question :- 10.1 Consider a light beam incident from air to a glass slab at Brewster s angle as shown in Fig. 10.1. A polaroid is placed

More information

Gas scintillation Glass GEM detector for high-resolution X-ray imaging and CT

Gas scintillation Glass GEM detector for high-resolution X-ray imaging and CT Gas scintillation Glass GEM detector for high-resolution X-ray imaging and CT Takeshi Fujiwara 1, Yuki Mitsuya 2, Hiroyuki Takahashi 2, and Hiroyuki Toyokawa 2 1 National Institute of Advanced Industrial

More information

THIS IS A NEW SPECIFICATION

THIS IS A NEW SPECIFICATION THIS IS A NEW SPECIFICATION ADVANCED SUBSIDIARY GCE PHYSICS A Electrons, Waves and Photons G482 * OCE / 1 9082* Candidates answer on the Question Paper OCR Supplied Materials: Data, Formulae and Relationships

More information

3B SCIENTIFIC PHYSICS

3B SCIENTIFIC PHYSICS 3B SCIENTIFIC PHYSICS Equipment Set for Wave Optics with Laser U17303 Instruction sheet 10/08 Alf 1. Safety instructions The laser emits visible radiation at a wavelength of 635 nm with a maximum power

More information

Ultra-stable flashlamp-pumped laser *

Ultra-stable flashlamp-pumped laser * SLAC-PUB-10290 September 2002 Ultra-stable flashlamp-pumped laser * A. Brachmann, J. Clendenin, T.Galetto, T. Maruyama, J.Sodja, J. Turner, M. Woods Stanford Linear Accelerator Center, 2575 Sand Hill Rd.,

More information

IN-LAB PELLICLE METROLOGY CHALLENGES

IN-LAB PELLICLE METROLOGY CHALLENGES IN-LAB PELLICLE METROLOGY CHALLENGES Serhiy Danylyuk RWTH Aachen University 04.10.2015, Maastricht Pellicle requirements Pellicle requirem ent HVM Target EUV transmission 90% single pass Spatial non-uniformity

More information

X-ray Detectors: What are the Needs?

X-ray Detectors: What are the Needs? X-ray Detectors: What are the Needs? Sol M. Gruner Physics Dept. & Cornell High Energy Synchrotron Source (CHESS) Ithaca, NY 14853 smg26@cornell.edu 1 simplified view of the Evolution of Imaging Synchrotron

More information

Laser-Produced Sn-plasma for Highvolume Manufacturing EUV Lithography

Laser-Produced Sn-plasma for Highvolume Manufacturing EUV Lithography Panel discussion Laser-Produced Sn-plasma for Highvolume Manufacturing EUV Lithography Akira Endo * Extreme Ultraviolet Lithography System Development Association Gigaphoton Inc * 2008 EUVL Workshop 11

More information

Cr, Co, Cu, Mo, Ag (others on request) Mean Reflectivity: R > 70%

Cr, Co, Cu, Mo, Ag (others on request) Mean Reflectivity: R > 70% PARALLEL BEAM X-RAY OPTICS y Mirror length L Θ = f(x) b p/2 λ = 2d eff (x) sin Θ(x) eff x m Parallel beam width b=f(p,λ,l,,l,x m ) x Fabrication of high precision 6 mm parallel beam optics both on prefigured

More information

A novel tunable diode laser using volume holographic gratings

A novel tunable diode laser using volume holographic gratings A novel tunable diode laser using volume holographic gratings Christophe Moser *, Lawrence Ho and Frank Havermeyer Ondax, Inc. 85 E. Duarte Road, Monrovia, CA 9116, USA ABSTRACT We have developed a self-aligned

More information

Unit thickness. Unit area. σ = NΔX = ΔI / I 0

Unit thickness. Unit area. σ = NΔX = ΔI / I 0 Unit thickness I 0 ΔI I σ = ΔI I 0 NΔX = ΔI / I 0 NΔX Unit area Δx Average probability of reaction with atom for the incident photons at unit area with the thickness of Delta-X Atom number at unit area

More information

Week 9: Chap.13 Other Semiconductor Material

Week 9: Chap.13 Other Semiconductor Material Week 9: Chap.13 Other Semiconductor Material Exam Other Semiconductors and Geometries -- Why --- CZT properties -- Silicon Structures --- CCD s Gamma ray Backgrounds The MIT Semiconductor Subway (of links

More information

The HPD DETECTOR. Michele Giunta. VLVnT Workshop "Technical Aspects of a Very Large Volume Neutrino Telescope in the Mediterranean Sea"

The HPD DETECTOR. Michele Giunta. VLVnT Workshop Technical Aspects of a Very Large Volume Neutrino Telescope in the Mediterranean Sea The HPD DETECTOR VLVnT Workshop "Technical Aspects of a Very Large Volume Neutrino Telescope in the Mediterranean Sea" In this presentation: The HPD working principles The HPD production CLUE Experiment

More information

High Performance Thin Film Optical Coatings Technical Reference Document 09/13. Coatings Capabilities. Heat Control - Hot Mirror Filters

High Performance Thin Film Optical Coatings Technical Reference Document 09/13. Coatings Capabilities. Heat Control - Hot Mirror Filters Heat Control - Hot Mirror Filters A hot mirror is in essence a thin film coating applied to substrates in an effort to reflect infra-red radiation either as a means to harness the reflected wavelengths

More information

The Hong Kong University of Science and Technology Final Year Project presentation 2007

The Hong Kong University of Science and Technology Final Year Project presentation 2007 The Hong Kong University of Science and Technology Final Year Project presentation 2007 Project supervisor: Dr. Andrew Poon Department of Electronic and Computer Engineering Wong Ka Ki Chris, ee_wkkaf,

More information

A modular Cap bank for SSPX 1

A modular Cap bank for SSPX 1 A modular Cap bank for SSPX 1 Bick Hooper, H. S. McLean, R. D. Wood, B. I. Cohen, D. N. Hill Lawrence Livermore National Laboratory, Livermore, CA 94551 A new, modular capacitor bank being constructed

More information

Low Voltage Electron Microscope

Low Voltage Electron Microscope LVEM 25 Low Voltage Electron Microscope fast compact powerful Delong America FAST, COMPACT AND POWERFUL The LVEM 25 offers a high-contrast, high-throughput, and compact solution with nanometer resolutions.

More information

Abstract. Technological advances are exploited by a Thomson scattering diagnostic on the Pegasus Toroidal Experiment

Abstract. Technological advances are exploited by a Thomson scattering diagnostic on the Pegasus Toroidal Experiment Abstract Technological advances are exploited by a Thomson scattering diagnostic on the Pegasus Toroidal Experiment New diagnostic leverages high-energy pulsed laser, VPH diffraction gratings, ICCD cameras

More information

LVEM 25. Low Voltage Electron Mictoscope. fast compact powerful

LVEM 25. Low Voltage Electron Mictoscope. fast compact powerful LVEM 25 Low Voltage Electron Mictoscope fast compact powerful FAST, COMPACT AND POWERFUL The LVEM 25 offers a high-contrast, high-throughput, and compact solution with nanometer resolutions. All the benefits

More information

Phys214 Fall 2004 Midterm Form A

Phys214 Fall 2004 Midterm Form A 1. A clear sheet of polaroid is placed on top of a similar sheet so that their polarizing axes make an angle of 30 with each other. The ratio of the intensity of emerging light to incident unpolarized

More information

Chapter 36. Image Formation

Chapter 36. Image Formation Chapter 36 Image Formation Image of Formation Images can result when light rays encounter flat or curved surfaces between two media. Images can be formed either by reflection or refraction due to these

More information

Components of Optical Instruments. Chapter 7_III UV, Visible and IR Instruments

Components of Optical Instruments. Chapter 7_III UV, Visible and IR Instruments Components of Optical Instruments Chapter 7_III UV, Visible and IR Instruments 1 Grating Monochromators Principle of operation: Diffraction Diffraction sources: grooves on a reflecting surface Fabrication:

More information

6 - Stage Marx Generator

6 - Stage Marx Generator 6 - Stage Marx Generator Specifications - 6-stage Marx generator has two capacitors per stage for the total of twelve capacitors - Each capacitor has 90 nf with the rating of 75 kv - Charging voltage used

More information

Experimental Physics. Experiment C & D: Pulsed Laser & Dye Laser. Course: FY12. Project: The Pulsed Laser. Done by: Wael Al-Assadi & Irvin Mangwiza

Experimental Physics. Experiment C & D: Pulsed Laser & Dye Laser. Course: FY12. Project: The Pulsed Laser. Done by: Wael Al-Assadi & Irvin Mangwiza Experiment C & D: Course: FY1 The Pulsed Laser Done by: Wael Al-Assadi Mangwiza 8/1/ Wael Al Assadi Mangwiza Experiment C & D : Introduction: Course: FY1 Rev. 35. Page: of 16 1// In this experiment we

More information

Chapter 36. Image Formation

Chapter 36. Image Formation Chapter 36 Image Formation Notation for Mirrors and Lenses The object distance is the distance from the object to the mirror or lens Denoted by p The image distance is the distance from the image to the

More information

Exercise 8: Interference and diffraction

Exercise 8: Interference and diffraction Physics 223 Name: Exercise 8: Interference and diffraction 1. In a two-slit Young s interference experiment, the aperture (the mask with the two slits) to screen distance is 2.0 m, and a red light of wavelength

More information

Development of scalable laser technology for EUVL applications

Development of scalable laser technology for EUVL applications Development of scalable laser technology for EUVL applications Tomáš Mocek, Ph.D. Chief Scientist & Project Leader HiLASE Centre CZ.1.05/2.1.00/01.0027 Lasers for real-world applications Laser induced

More information

Achievement of Arbitrary Bandwidth of a Narrow Bandpass Filter

Achievement of Arbitrary Bandwidth of a Narrow Bandpass Filter Achievement of Arbitrary Bandwidth of a Narrow Bandpass Filter Cheng-Chung ee, Sheng-ui Chen, Chien-Cheng Kuo and Ching-Yi Wei 2 Department of Optics and Photonics/ Thin Film Technology Center, National

More information

A Possible Design of Large Angle Beamstrahlung Detector for CESR

A Possible Design of Large Angle Beamstrahlung Detector for CESR A Possible Design of Large Angle Beamstrahlung Detector for CESR Gang Sun Wayne State University, Detroit MI 482 June 4, 1998 1 Introduction Beamstrahlung radiation occurs when high energy electron and

More information

Diode Lasers, Single- Mode 50 to 200 mw, 830/852 nm. 54xx Series

Diode Lasers, Single- Mode 50 to 200 mw, 830/852 nm. 54xx Series Diode Lasers, Single- Mode 50 to 200 mw, 830/852 nm 54xx Series www.lumentum.com Data Sheet Diode Lasers, Single-Mode 50 to 200 mw,830/852 nm High-resolution applications including optical data storage,

More information

SYNCHRONIZABLE HIGH VOLTAGE PULSER WITH LASER-PHOTOCATHODE TRIGGER

SYNCHRONIZABLE HIGH VOLTAGE PULSER WITH LASER-PHOTOCATHODE TRIGGER SYNCHRONIZABLE HIGH VOLTAGE PULSER WITH LASER-PHOTOCATHODE TRIGGER P. Chen, M. Lundquist, R. Yi, D. Yu DULY Research Inc., California, USA Work Supported by DOE SBIR 1 Outline 1. Introduction 2. Marx Generator

More information

Imaging in the EUV region. Eberhard Spiller

Imaging in the EUV region. Eberhard Spiller Imaging in the EUV region Eberhard Spiller Introduction to Imaging Applications Astronomy Microscopy EUV Lithography Direct Reconstruction E. Spiller, June 11, 2008 2 Imaging with light Waves move by λ

More information

A novel High Average Power High Brightness Soft X-ray Source using a Thin Disk Laser System for optimized Laser Produced Plasma Generation

A novel High Average Power High Brightness Soft X-ray Source using a Thin Disk Laser System for optimized Laser Produced Plasma Generation A novel High Average Power High Brightness Soft X-ray Source using a Thin Disk Laser System for optimized Laser Produced Plasma Generation I. Mantouvalou, K. Witte, R. Jung, J. Tümmler, G. Blobel, H. Legall,

More information

APPLICATION OF A POINT-DIFFRACTION INTERFEROMETER TO UNSTEADY SHOCK WAVE PHENOMENA

APPLICATION OF A POINT-DIFFRACTION INTERFEROMETER TO UNSTEADY SHOCK WAVE PHENOMENA 15 th International Symposium on Flow Visualization June 25-28, 2012, Minsk, Belarus APPLICATION OF A POINT-DIFFRACTION INTERFEROMETER Daiju Numata 1,c, Kiyonobu Ohtani 2 1 Tohoku University, 6-6-01 Aramaki-Aza-Aoba,

More information

Quantum-Well Semiconductor Saturable Absorber Mirror

Quantum-Well Semiconductor Saturable Absorber Mirror Chapter 3 Quantum-Well Semiconductor Saturable Absorber Mirror The shallow modulation depth of quantum-dot saturable absorber is unfavorable to increasing pulse energy and peak power of Q-switched laser.

More information

THz Components and Systems

THz Components and Systems THz Components and Systems Serving the global THz community since 1992 Table of Contents Lenses 3 Free-standing wire-grid polarizers.. 5 Mid-IR polarizers.... 7 Quasi-Optical Sources (BWOs)...8 VR-2S BWO

More information

Astronomical Cameras

Astronomical Cameras Astronomical Cameras I. The Pinhole Camera Pinhole Camera (or Camera Obscura) Whenever light passes through a small hole or aperture it creates an image opposite the hole This is an effect wherever apertures

More information

ABC Math Student Copy. N. May ABC Math Student Copy. Physics Week 13(Sem. 2) Name. Light Chapter Summary Cont d 2

ABC Math Student Copy. N. May ABC Math Student Copy. Physics Week 13(Sem. 2) Name. Light Chapter Summary Cont d 2 Page 1 of 12 Physics Week 13(Sem. 2) Name Light Chapter Summary Cont d 2 Lens Abberation Lenses can have two types of abberation, spherical and chromic. Abberation occurs when the rays forming an image

More information

The Light Amplifier Concept

The Light Amplifier Concept The Light Amplifier Concept Daniel Ferenc 1 Eckart Lorenz 1,2 Daniel Kranich 1 Alvin Laille 1 (1) Physics Department, University of California Davis (2) Max Planck Institute, Munich Work supported partly

More information

Single-photon excitation of morphology dependent resonance

Single-photon excitation of morphology dependent resonance Single-photon excitation of morphology dependent resonance 3.1 Introduction The examination of morphology dependent resonance (MDR) has been of considerable importance to many fields in optical science.

More information

Silicon Carbide Solid-State Photomultiplier for UV Light Detection

Silicon Carbide Solid-State Photomultiplier for UV Light Detection Silicon Carbide Solid-State Photomultiplier for UV Light Detection Sergei Dolinsky, Stanislav Soloviev, Peter Sandvik, and Sabarni Palit GE Global Research 1 Why Solid-State? PMTs are sensitive to magnetic

More information

Examination Optoelectronic Communication Technology. April 11, Name: Student ID number: OCT1 1: OCT 2: OCT 3: OCT 4: Total: Grade:

Examination Optoelectronic Communication Technology. April 11, Name: Student ID number: OCT1 1: OCT 2: OCT 3: OCT 4: Total: Grade: Examination Optoelectronic Communication Technology April, 26 Name: Student ID number: OCT : OCT 2: OCT 3: OCT 4: Total: Grade: Declaration of Consent I hereby agree to have my exam results published on

More information

6.014 Recitation 1: Wireless Radio and Optical Links

6.014 Recitation 1: Wireless Radio and Optical Links 6.014 Recitation 1: Wireless Radio and Optical Links A. Review Wireless radio links were introduced in Lecture 1. The basic equations introduced there are repeated in Figure R1-1 and below. First is the

More information