Lahore University of Management Sciences. EE 340 Devices and Electronics. Fall Dr. Tehseen Zahra Raza. Instructor

Size: px
Start display at page:

Download "Lahore University of Management Sciences. EE 340 Devices and Electronics. Fall Dr. Tehseen Zahra Raza. Instructor"

Transcription

1 EE 340 Devices and Electronics Fall Instructor Dr. Tehseen Zahra Raza Room No. SSE L-301 Office Hours TBA Telephone 3522 Secretary/TA TBA TA Office Hours TBA Course URL (if any) Lms/zambeel Course Basics Credit Hours 4 Lecture(s) Nbr of Lec(s) Per Week 2 Duration 75 minutes each Recitation/Lab (per week) Nbr of Lec(s) Per Week 1 Duration 3 hours Tutorial (per week) Nbr of Lec(s) Per Week Duration Course Distribution Core Elective Open for Student Category Close for Student Category Core course for Electrical Engineering Majors COURSE DESCRIPTION This course lays the foundations for the design of electronic systems for various applications. The fundamentals of device physics are discussed laying the foundation to understand the operation of diodes, bipolar junction transistors and field effect transistors. It will cover topics on modeling microelectronic devices, circuit analysis and design. The course will develop and use large-signal techniques to analyze and design BJT and FET circuits including an overview of multistage amplifiers. Finally the small-signal behavior of BJT and FET is studied along with appropriate

2 mathematical models. COURSE PREREQUISITE(S) EE240: Circuits 1 EE242: Circuits 2 COURSE OBJECTIVES To overview the fundamentals of semiconductor physics and devices; PN junction diode, MOSFET and BJT. To develop skills needed for analysis and design of electronic systems using these components. Learning Outcomes Grading Breakup and Policy

3 This grading policy istentative. Quiz(s): Quizzes 20% Assignment(s): 5% Labs and Final Project: 5% + 5% Midterm Examination: 25% Final Examination: 40% Assignment(s): 2 Quiz(s): 4-5 Class Participation: Class participation is encouraged Attendance: Attendance is not compulsory but participation and punctuality is expected Midterm Examination: One Project: One end term Project Final Examination: Comprehensive Examination Detail Yes/No: Yes Midterm Exam Combine Separate: Combine Duration: 60 mins Preferred Date: TBA Exam Specifications:

4 Yes/No: Yes Final Exam Combine Separate: Cumulative Duration: Exam Specifications: COURSE OVERVIEW Week/ Lecture/ Module Topics Objectives/ Application Semiconductors General Introduction NO LAB Carrier modeling energy bands and band gaps Session 1 LAB 1 Diode Characteristics Density of States, Fermi Energy Doping/carrier concentration

5 PN Junction structure and electrostatics Session 2 LAB 1 Diode Characteristics PN Junction I-V characteristics I-V characteristics, Small signal admittance Session 3 LAB 2 Diode Applications Diode circuits models and applications Diode circuits models and applications Session 4 LAB 2 Diode Applications Diode circuits analysis and applications MOSFET- Introduction, Structure and device operation, models Session 5 Lab 3 Characteristics of MOSFET MOSFET- Introduction, Structure and device operation, models Session 6 Lab 4 MOSFET as an amplifier MOSFET Biasing and DC analysis Session 7 Lab 4 MOSFET as an amplifier Midterm

6 MOSFET Biasing and DC analysis MOSFET Small signal models and analysis Session 8 Lab 5 Common Gate and Common Drain Amplifiers MOSFET Amplifier configurations MOSFET Amplifier characteristics Session 9 Lab 6 Frequency Response of Common Source Amplifier Transistor Switch and Inverter Session 10 Lab 7 CMOS Digital Logic Inverter Current Mirror configurations BJT Structure and device operation, models Session 11 Lab 8 Switching Circuits and Timers Session 12 : FINAL PROJECT BJT Structure and device operation, models BJT Biasing and DC analysis

7 Session 13 : FINAL PROJECT BJT Small signal models and analysis BJT Amplifier configurations and analysis Sesison 14 : FINAL PROJECT Textbook(s)/Supplementary Readings TEXTBOOKS Microelectronic Circuits by Sedra and Smith, 6 th Edition, Oxford University Press, 2010 SUPPLEMENTARY READING Semiconductor Device Fundamentals by Robert Pierret, Addison Wesley, 1996 Fundamentals of Microelectronics by Behzad Razavi, Wiley, Introduction to Solid State Physics by Charles Kittel, 7 th Edition, Wiley. Description of Laboratory Exercises Following are the labs that will be conducted during this course. Handouts of actual lab to be conducted will be provided in the preceding week. Session 1: Diode characteristics of pn junction diode, LED and zener diode To understand the characteristics of various semiconductor diodes and the parameters used to model their behavior. In this lab characteristics of a pn junction diode, LED and zener diode are studied. Session 2: Junction capacitance and opto-coupling of LED

8 This lab is the continuation of Session 1. The junction capacitance and opto-coupling of LED is studied. Session 3:Diode applications I Session 4: Diode applications II This lab comprises of two sessions to study various applications of diodes. The following circuits will be studied in Session 3 and Session 4. Use of diode as a half-wave and full-wave rectifier ripple reduction with capacitor filter regulation using a zener diode, clamping circuit voltage multipliers Session 5: Lab No. 3: MOSFET Characteristics Characteristics of a MOSFET device and understanding the parameters used to model its behavior. Session 6: Transistor as an amplifier I Session 7: Transistor as an amplifier II Biasing schemes and amplification characteristics of a single stage common source MOSFET amplifier will be considered in Session 6 and Session 7 Session 8: Common Drain and Common Gate Amplifiers Biasing and amplification characteristics of a common gate and common drain MOSFET amplifiers Session 9: Frequency Response of MOSFET amplifier High frequency and low frequency response of a common source MOSFET amplifier Session 10: CMOS Digital Logic Inverter Voltage transfer characteristics and dynamic operation of CMOS digital logic inverter Session 11: Switching Circuits and Timers Design and working of discrete component multi-vibrators with BJTs and applications of 555 timer Sessions 12 14: Final Project: Group project (4 members maximum)

9 Proposal to be submitted in week 10.

Lahore SSE L-301 TBA. Office TBA TBA. Hours. Credit. Duration. Core Elective COURSE DESCRIPTION. laying.

Lahore SSE L-301 TBA. Office TBA TBA. Hours. Credit. Duration. Core Elective COURSE DESCRIPTION. laying. EE 340 Devices and Electronics Fall 2013 14 Instructor Room No. Office Hours Email Telephone Secretary/TA TA Office Hours Course URL (if any) Dr. Tehseen Zahra Raza SSE L-301 TBA tehseen.raza@ @lums.edu.pk

More information

ET475 Electronic Circuit Design I [Onsite]

ET475 Electronic Circuit Design I [Onsite] ET475 Electronic Circuit Design I [Onsite] Course Description: This course covers the analysis and design of electronic circuits, and includes a laboratory that utilizes computer-aided software tools for

More information

School of Engineering

School of Engineering Electronics (ENGR 353) Spring 2009 Bulletin Description Prerequisite: grades of C or better in Engr 205 and 206. Concurrent enrollment in Engr 301. PN diodes, BJTs, and MOSFETs. Semiconductor device basics,

More information

Carleton University. Faculty of Engineering and Design, Department of Electronics. ELEC 2507 Electronic - I Summer Term 2017

Carleton University. Faculty of Engineering and Design, Department of Electronics. ELEC 2507 Electronic - I Summer Term 2017 Carleton University Faculty of Engineering and Design, Department of Electronics Instructors: ELEC 2507 Electronic - I Summer Term 2017 Name Section Office Email Prof. Q. J. Zhang Section A 4148 ME qjz@doe.carleton.ca

More information

ITT Technical Institute. ET215 Electronic Devices I Onsite Course SYLLABUS

ITT Technical Institute. ET215 Electronic Devices I Onsite Course SYLLABUS ITT Technical Institute ET215 Electronic Devices I Onsite Course SYLLABS Credit hours: 4 Contact/Instructional hours: 50 (30 Theory Hours, 20 Lab Hours) Prerequisite(s) and/or Corequisite(s): Prerequisite:

More information

EE (3L-1.5P) Analog Electronics Department of Electrical and Computer Engineering Fall 2015

EE (3L-1.5P) Analog Electronics Department of Electrical and Computer Engineering Fall 2015 EE 221.3 (3L-1.5P) Analog Electronics Department of Electrical and Computer Engineering Fall 2015 Description: Introduction to solid state electronics. Emphasis is on circuit design concepts with extensive

More information

Carleton University. Faculty of Engineering, Department of Electronics ELEC 2507 / PLT 2006A - Electronic - I Winter Term 2016

Carleton University. Faculty of Engineering, Department of Electronics ELEC 2507 / PLT 2006A - Electronic - I Winter Term 2016 Carleton University Faculty of Engineering, Department of Electronics ELEC 2507 / PLT 2006A - Electronic - I Winter Term 2016 Instructor: Name Sections Office/hours Email Prof. Ram Achar A&B 3036 MC Tue:

More information

ES 330 Electronics II Fall 2016

ES 330 Electronics II Fall 2016 ES 330 Electronics II Fall 2016 Sect Lectures Location Instructor Office Office Hours Email Tel 001 001 9:00 am to 9:50 am Wednesday 10:00 am to 10 :50 am 2001 2001 Dr. Donald Estreich Dr. Donald Estreich

More information

visit website regularly for updates and announcements

visit website regularly for updates and announcements ESE 372: Electronics Spring 2013 Web site: www.ece.sunysb.edu/~oe/leon.html visit website regularly for updates and announcements Prerequisite: ESE 271 Corequisites: ESE 211 Text Books: A.S. Sedra, K.C.

More information

Introduction to Electronic Devices

Introduction to Electronic Devices (Course Number 300331 ) Fall 2006 Dr. Dietmar Knipp Assistant Professor of Electrical Engineering Information: http://www.faculty.iubremen.de/dknipp/ Source: Apple Ref.: Apple Ref.: IBM Critical 10-8 10-7

More information

Instructor: Aaron T. Ohta Office Hours: Mon 3:30 to 4:30 pm

Instructor: Aaron T. Ohta Office Hours: Mon 3:30 to 4:30 pm EE 323 Microelectronic Circuits I Lecture: MWF 2:30 to 3:20 pm, POST 127 Labs: Section 1 Tue 9:00 to 11:50 am, Holmes 358 Section 2 Thur 9:00 to 11:50 am, Holmes 358 Section 3 Tue 1:30 to 4:20 pm, Holmes

More information

Course Objectives and Outcomes

Course Objectives and Outcomes Course Objectives and Outcomes Course Objectives and Outcomes 1. Course code and title: EE3019 Integrated Electronics 2. Number of AUs: 3 3. Course type: Elective 4. Course schedule: Lecture: 2 hours/week

More information

Lecture 12. Bipolar Junction Transistor (BJT) BJT 1-1

Lecture 12. Bipolar Junction Transistor (BJT) BJT 1-1 Lecture 12 Bipolar Junction Transistor (BJT) BJT 1-1 Course Info Lecture hours: 4 Two Lectures weekly (Saturdays and Wednesdays) Location: K2 Time: 1:40 pm Tutorial hours: 2 One tutorial class every week

More information

Communication Microelectronics ELCT508 (W17) Lecture 1: Introduction Dr. Eman Azab Assistant Professor Office: C

Communication Microelectronics ELCT508 (W17) Lecture 1: Introduction Dr. Eman Azab Assistant Professor Office: C Communication Microelectronics ELCT508 (W17) Lecture 1: Introduction Assistant Professor Office: C3.315 E-mail: eman.azab@guc.edu.eg 1 Course Team Lecturer Teaching Assistants Contact Information E-mail:

More information

Monolithic Amplifier Circuits

Monolithic Amplifier Circuits Monolithic Amplifier Circuits Analog Integrated Circuits Lecturer Jón Tómas Guðmundsson Office: Room 120, UM-SJTU JI Building Office hours: Tuesday and Friday 13:15-14:15 e-mail: tumi@raunvis.hi.is Jón

More information

ITT Technical Institute. ET1310 Solid State Devices Onsite Course SYLLABUS

ITT Technical Institute. ET1310 Solid State Devices Onsite Course SYLLABUS ITT Technical Institute ET1310 Solid State Devices Onsite Course SYLLABUS Credit hours: 4.5 Contact/Instructional hours: 56 (34 Theory Hours, 22 Lab Hours) Prerequisite(s) and/or Corequisite(s): Prerequisites:

More information

EE 230. Electronic Circuits and Systems. Randy Geiger 2133 Coover

EE 230. Electronic Circuits and Systems. Randy Geiger 2133 Coover EE 230 Electronic Circuits and Systems Randy Geiger 2133 Coover rlgeiger@iastate.edu 294-7745 Course Description Linear Systems Frequency domain characterization of electronic circuits and systems transfer

More information

Microelectronic Circuits

Microelectronic Circuits SECOND EDITION ISHBWHBI \ ' -' Microelectronic Circuits Adel S. Sedra University of Toronto Kenneth С Smith University of Toronto HOLT, RINEHART AND WINSTON HOLT, RINEHART AND WINSTON, INC. New York Chicago

More information

EET-2120: ELECTRONICS I

EET-2120: ELECTRONICS I EET-2120: Electronics I 1 EET-2120: ELECTRONICS I Cuyahoga Community College Viewing:EET-2120 : Electronics I Board of Trustees: 2017-03-30 Academic Term: Fall 2018 Subject Code EET - Electrical/Electronic

More information

DEGREE: BACHELOR IN INDUSTRIAL ELECTRONICS AND AUTOMATION YEAR: 2ND TERM: 2ND

DEGREE: BACHELOR IN INDUSTRIAL ELECTRONICS AND AUTOMATION YEAR: 2ND TERM: 2ND SESSION WEEK COURSE: ELECTRONICS ENGINEERING FUNDAMENTALS DEGREE: BACHELOR IN INDUSTRIAL ELECTRONICS AND AUTOMATION YEAR: 2ND TERM: 2ND The course has 29 sessions distributed during 15 weeks. The duration

More information

Electronic Circuits for Mechatronics ELCT609 Lecture 1: Introduction

Electronic Circuits for Mechatronics ELCT609 Lecture 1: Introduction Electronic Circuits for Mechatronics ELCT609 Lecture 1: Introduction Assistant Professor Office: C3.315 E-mail: eman.azab@guc.edu.eg 1 Course Team Contact Information Lecturer Teaching Assistants E-mail:

More information

UVic Department of Electrical and Computer Engineering

UVic Department of Electrical and Computer Engineering UVic Department of Electrical and Computer Engineering COURSE OUTLINE ELEC 365 Applied Electronics and Electrical Machines Fall 2013 Instructor: Office Hours: Dr. S. Nandi Days: Same as tutorial time in

More information

Electronic Circuits. Lecturer. Schedule. Electronic Circuits. Books

Electronic Circuits. Lecturer. Schedule. Electronic Circuits. Books Lecturer Electronic Circuits Jón Tómas Guðmundsson Jón Tómas Guðmundsson Office: Room 120, UM-SJTU JI Building Office hours: Monday and Thursday 13:15-14:15 e-mail: tumi@raunvis.hi.is tumi@raunvis.hi.is

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, yderabad -500 043 INFORMATION TECNOLOGY Course Title Course Code Regulation Course Structure Course Coordinator Team of Instructors COURSE DESCRIPTION

More information

Georgia Institute of Technology School of Electrical and Computer Engineering. Midterm Exam

Georgia Institute of Technology School of Electrical and Computer Engineering. Midterm Exam Georgia Institute of Technology School of Electrical and Computer Engineering Midterm Exam ECE-3400 Fall 2013 Tue, September 24, 2013 Duration: 80min First name Solutions Last name Solutions ID number

More information

INSTRUCTOR S COURSE REQUIREMENTS

INSTRUCTOR S COURSE REQUIREMENTS INSTRUCTOR S COURSE REQUIREMENTS PO Box 1189 1042 W. Hamlet Avenue Hamlet, NC 28345 (910) 410-1700 www.richmondcc.edu COURSE: ELN 131 Analog Electronics I SEMESTER & YEAR: SPRING 2015 INSTRUCTOR S NAME

More information

Scheme I Sample. : Second : Basic. Electronics : 70. Marks. Time: 3 Hrs. 2] b) State any. e) State any. Figure Definition.

Scheme I Sample. : Second : Basic. Electronics : 70. Marks. Time: 3 Hrs. 2] b) State any. e) State any. Figure Definition. Program Name Program Code Semester Course Title Scheme I Sample Question Paper : Diploma in Electronics Program Group : DE/EJ/IE/IS/ET/EN/EX : Second : Basic Electronics : 70 22216 Time: 3 Hrs. Instructions:

More information

Academic Course Description. BEE 303 ELECTRON DEVICES Third Semester (Odd Semester)

Academic Course Description. BEE 303 ELECTRON DEVICES Third Semester (Odd Semester) BEE 303- Electron Devices Academic Course Description Course (catalog) description BHARATH UNIVERSITY Faculty of Engineering and Technology Department of Electrical and Electronics Engineering BEE 303

More information

Chapter 1. Introduction

Chapter 1. Introduction EECS3611 Analog Integrated Circuit esign Chapter 1 Introduction EECS3611 Analog Integrated Circuit esign Instructor: Prof. Ebrahim Ghafar-Zadeh, Prof. Peter Lian email: egz@cse.yorku.ca peterlian@cse.yorku.ca

More information

DIGITAL INTEGRATED CIRCUITS FALL 2003 ANALYSIS AND DESIGN OF DIGITAL INTEGRATED CIRCUITS (18-322) COURSE SYLLABUS

DIGITAL INTEGRATED CIRCUITS FALL 2003 ANALYSIS AND DESIGN OF DIGITAL INTEGRATED CIRCUITS (18-322) COURSE SYLLABUS ANALYSIS AND DESIGN OF DIGITAL INTEGRATED CIRCUITS (18-322) COURSE SYLLABUS Prof. Herman Schmit HH 2108; x 86470 herman@ece.cmu.edu Prof. Andrzej J. Strojwas HH 2106; X 83530 ajs@ece.cmu.edu 1 I. PURPOSE

More information

0. Introduction to Microelectronic Circuits

0. Introduction to Microelectronic Circuits 0. Introduction to Microelectronic Circuits S. S. Dan and S. R. Zinka Department of Electrical & Electronics Engineering BITS Pilani, Hyderbad Campus January 18, 2016 Outline 1 Introduction 2 Course Contents

More information

SAULT COLLEGE OF APPLIED ARTS AND TECHNOLOGY SAULT STE. MARIE, ONTARIO COURSE OUTLINE CODE NO. : ELN109 SEMESTER: TWO. Corey Meunier CHAIR

SAULT COLLEGE OF APPLIED ARTS AND TECHNOLOGY SAULT STE. MARIE, ONTARIO COURSE OUTLINE CODE NO. : ELN109 SEMESTER: TWO. Corey Meunier CHAIR SAULT COLLEGE OF APPLIED ARTS AND TECHNOLOGY SAULT STE. MARIE, ONTARIO COURSE OUTLINE COURSE TITLE: ELECTRONIC CIRCUITS 1 CODE NO. : SEMESTER: TWO PROGRAM: AUTHOR: ELECTRICAL/INSTRUMENTATION/ POWER GENERATION

More information

Administrative-Master Syllabus form approved June/2006 revised Page 1 of 1

Administrative-Master Syllabus form approved June/2006 revised Page 1 of 1 revised 11-02-06 Page 1 of 1 Administrative - Master Syllabus I. Topical Outline Each offering of this course must include the following topics (be sure to include information regarding lab, practicum,

More information

MICROELECTRONICS ELCT 703 (W17) LECTURE 1: ANALOG MULTIPLIERS

MICROELECTRONICS ELCT 703 (W17) LECTURE 1: ANALOG MULTIPLIERS MICROELECTRONICS ELCT 703 (W17) LECTURE 1: ANALOG MULTIPLIERS Dr. Eman Azab Assistant Professor Office: C3.315 E-mail: eman.azab@guc.edu.eg 1 COURSE OVERVIEW Lecturer Teaching Assistant Course Team Dr.

More information

Solid State. Prerequisit. cies. Minimum. interviews. In research, the. A. Safety 3. PPE

Solid State. Prerequisit. cies. Minimum. interviews. In research, the. A. Safety 3. PPE Solid State Circuits (CETT 1441) Credit: 4 semester credit hours (3 hours lecture, 4 hours lab) Prerequisit te/co-requisite: CETT1405 Course Description A study of various devices incorporated in circuits

More information

Syllabus. ELECTRONICS AND INSTRUMENTATION 3 SEM HRS Fall PHY3722C TuTh 12:00 A.M. -- 2:45 P.M. MAP 333A

Syllabus. ELECTRONICS AND INSTRUMENTATION 3 SEM HRS Fall PHY3722C TuTh 12:00 A.M. -- 2:45 P.M. MAP 333A Syllabus ELECTRONICS AND INSTRUMENTATION 3 SEM HRS Fall 2015 PHY3722C TuTh 12:00 A.M. -- 2:45 P.M. MAP 333A Instructor: Dr. Christos Velissaris Office: PS 130 E-mail: Chris.Velissaris@ucf.edu. Office Hours:

More information

Wish you all Very Happy New Year

Wish you all Very Happy New Year Wish you all Very Happy New Year Course: Basic Electronics (EC21101) Course Instructors: Prof. Goutam Saha (Sec. 2), Prof. Shailendra K. Varshney (Sec. 1), Prof. Sudip Nag (Sec. 3 ), Prof. Debashish Sen

More information

ECE 440 Lecture 29 : Introduction to the BJT-I Class Outline:

ECE 440 Lecture 29 : Introduction to the BJT-I Class Outline: ECE 440 Lecture 29 : Introduction to the BJT-I Class Outline: Narrow-Base Diode BJT Fundamentals BJT Amplification Things you should know when you leave Key Questions How does the narrow-base diode multiply

More information

COURSE SCHEDULE SECTION. A (Room No: TP 301) B (Room No: TP 302) Hours Timings Hours Timings. Name of the staff Sec Office Office Hours Mail ID

COURSE SCHEDULE SECTION. A (Room No: TP 301) B (Room No: TP 302) Hours Timings Hours Timings. Name of the staff Sec Office Office Hours Mail ID SRM UNIVERSITY FACULTY OF ENGINEERING AND TECHNOLOGY SCHOOL OF ELECTRONICS AND COMMUNICATION ENGINEERING DEPARTMENT OF ECE COURSE PLAN Course Code : IT0201 Course Title : Electron Devices and Circuits

More information

Electronics I ELEC 311/1 BB. Final August 14, hours 6

Electronics I ELEC 311/1 BB. Final August 14, hours 6 Course Number Section Electronics I ELEC 311/1 BB Examination Date Time # of pages Final August 14, 2009 3 hours 6 Instructor(s) Dr.R. Raut M aterials allowed: No Yes X (Please specify) Calculators allowed:

More information

Government of Karnataka Department of Technical Education Board of Technical Examinations, Bengaluru

Government of Karnataka Department of Technical Education Board of Technical Examinations, Bengaluru Prerequisites Government of Karnataka Department of Technical Education Board of Technical Examinations, Bengaluru Title: Basics of Semiconductor Devices Code : 15EC21T Semester : 2 Group : Core Teaching

More information

BME 3512 Bioelectronics Reading Assignments and Homework Problems Spring 2015

BME 3512 Bioelectronics Reading Assignments and Homework Problems Spring 2015 The BME 3512 Bioelectronics course is partitioned into essentially seven areas, divided into four tests: Test One - Principles of DC and AC Circuits Review of Basic Concepts and Principles of DC and AC

More information

EE Analog and Non-linear Integrated Circuit Design

EE Analog and Non-linear Integrated Circuit Design University of Southern California Viterbi School of Engineering Ming Hsieh Department of Electrical Engineering EE 479 - Analog and Non-linear Integrated Circuit Design Instructor: Ali Zadeh Email: prof.zadeh@yahoo.com

More information

ECE 3040 Dr. Alan Doolittle.

ECE 3040 Dr. Alan Doolittle. ECE 3040 Dr. Alan Doolittle I have thoroughly enjoyed meeting each of you and hope that I have had a positive influence on your carriers. Please feel free to consult with me in your future work. If I can

More information

ECEN474/704: (Analog) VLSI Circuit Design Fall 2016

ECEN474/704: (Analog) VLSI Circuit Design Fall 2016 ECEN474/704: (Analog) VLSI Circuit Design Fall 2016 Lecture 1: Introduction Sam Palermo Analog & Mixed-Signal Center Texas A&M University Announcements Turn in your 0.18um NDA form by Thursday Sep 1 No

More information

Electronics I Circuit Drawings. Robert R. Krchnavek Rowan University Spring, 2018

Electronics I Circuit Drawings. Robert R. Krchnavek Rowan University Spring, 2018 Electronics I Circuit Drawings Robert R. Krchnavek Rowan University Spring, 2018 Ideal Diode Piecewise Linear Models of a Diode Piecewise Linear Models of a Diode 1 r d Piecewise Linear Models of a Diode

More information

Field-Effect Transistor (FET) is one of the two major transistors; FET derives its name from its working mechanism;

Field-Effect Transistor (FET) is one of the two major transistors; FET derives its name from its working mechanism; Chapter 3 Field-Effect Transistors (FETs) 3.1 Introduction Field-Effect Transistor (FET) is one of the two major transistors; FET derives its name from its working mechanism; The concept has been known

More information

GRAPHIC ERA UNIVERSITY DEHRADUN

GRAPHIC ERA UNIVERSITY DEHRADUN GRAPHIC ERA UNIVERSITY DEHRADUN Name of Department: - Electronics and Communication Engineering 1. Subject Code: TEC 2 Course Title: CMOS Analog Circuit Design 2. Contact Hours: L: 3 T: 1 P: 3. Examination

More information

SRM UNIVERSITY FACULTY OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF TCE COURSE PLAN. Tech Park 13 th floor

SRM UNIVERSITY FACULTY OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF TCE COURSE PLAN. Tech Park 13 th floor SRM UNIVERSITY FACULTY OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF TCE COURSE PLAN Course Code : TN00 Course Title : RF System Engineering Semester : II Semester Location : S.R.M.E.C Tech Park Faculty

More information

GOPALAN COLLEGE OF ENGINEERING AND MANAGEMENT Department of Electronics and Communication Engineering COURSE PLAN

GOPALAN COLLEGE OF ENGINEERING AND MANAGEMENT Department of Electronics and Communication Engineering COURSE PLAN Appendix - C GOPALAN COLLEGE OF ENGINEERING AND MANAGEMENT Department of Electronics and Communication Engineering Academic Year: 2016-17 Semester: EVEN COURSE PLAN Semester: VI Subject Code& Name: 10EC63

More information

DEPARTMENT OF PHYSICS PHYS*2040 W'09. Fundamental Electronics and Sensors. Lecturer: Dr. Ralf Gellert MacN 450 Ext

DEPARTMENT OF PHYSICS PHYS*2040 W'09. Fundamental Electronics and Sensors. Lecturer: Dr. Ralf Gellert MacN 450 Ext DEPARTMENT OF PHYSICS PHYS*2040 W'09 Fundamental Electronics and Sensors Lecturer: Dr. Ralf Gellert MacN 450 Ext. 53992 ralf@physics.uoguelph.ca Lab Instructor: Andrew Tersigni MacN 023 Ext. 58342 andrew@physics.uoguelph.ca

More information

Semiconductor Devices

Semiconductor Devices Semiconductor Devices Topics and References M. B. Patil mbpatil@ee.iitb.ac.in www.ee.iitb.ac.in/~sequel Department of Electrical Engineering Indian Institute of Technology Bombay Course contents * Carrier

More information

THE JFET. Script. Discuss the JFET and how it differs from the BJT. Describe the basic structure of n-channel and p -channel JFETs

THE JFET. Script. Discuss the JFET and how it differs from the BJT. Describe the basic structure of n-channel and p -channel JFETs Course: B.Sc. Applied Physical Science (Computer Science) Year & Sem.: Ist Year, Sem - IInd Subject: Electronics Paper No.: V Paper Title: Analog Circuits Lecture No.: 12 Lecture Title: Analog Circuits

More information

Introduction to Electronic Devices

Introduction to Electronic Devices Introduction to Electronic Devices (Course Number 300331) Fall 2006 Dr. Dietmar Knipp Assistant Professor of Electrical Engineering Information: http://www.faculty.iubremen.de/dknipp/ Source: Apple Ref.:

More information

ELEC 350L Electronics I Laboratory Fall 2012

ELEC 350L Electronics I Laboratory Fall 2012 ELEC 350L Electronics I Laboratory Fall 2012 Lab #9: NMOS and CMOS Inverter Circuits Introduction The inverter, or NOT gate, is the fundamental building block of most digital devices. The circuits used

More information

CALEDONIAN COLLEGE OF ENGINEERING, MODULE HANDBOOK. Department of Electrical & Computer Engineering SULTANATE OF OMAN M1H Electronic Devices

CALEDONIAN COLLEGE OF ENGINEERING, MODULE HANDBOOK. Department of Electrical & Computer Engineering SULTANATE OF OMAN M1H Electronic Devices M1H624688 Electronic Devices CALEDONIAN COLLEGE OF ENGINEERING, SULTANATE OF OMAN 2017-18 MODULE HANDBOOK Semester B Module Leader J Nadarajan Department of Electrical & Computer Engineering 1. Module

More information

Lesson Plan. Week Theory Practical Lecture Day. Topic (including assignment / test) Day. Thevenin s theorem, Norton s theorem

Lesson Plan. Week Theory Practical Lecture Day. Topic (including assignment / test) Day. Thevenin s theorem, Norton s theorem Name of the faculty: GYANENDRA KUMAR YADAV Discipline: APPLIED SCIENCE(C.S.E,E.E.ECE) Year : 1st Subject: FEEE Lesson Plan Lesson Plan Duration: 31 weeks (from July, 2018 to April, 2019) Week Theory Practical

More information

Microelectronic Circuits, Kyung Hee Univ. Spring, Chapter 3. Diodes

Microelectronic Circuits, Kyung Hee Univ. Spring, Chapter 3. Diodes Chapter 3. Diodes 1 Introduction IN THIS CHAPTER WE WILL LEARN the characteristics of the ideal diode and how to analyze and design circuits containing multiple ideal diodes together with resistors and

More information

Academic Course Description. BHARATH University Faculty of Engineering and Technology Department of Electrical and Electronics Engineering

Academic Course Description. BHARATH University Faculty of Engineering and Technology Department of Electrical and Electronics Engineering BEE101- Basic Electrical and Electronics Engineering Academic Course Description BHARATH University Faculty of Engineering and Technology Department of Electrical and Electronics Engineering BEE101 Basic

More information

EEE225: Analogue and Digital Electronics

EEE225: Analogue and Digital Electronics EEE225: Analogue and Digital Electronics Lecture I James E. Green Department of Electronic Engineering University of Sheffield j.e.green@sheffield.ac.uk Introduction This Lecture 1 Introduction Aims &

More information

Electronics Circuits and Devices I with Lab

Electronics Circuits and Devices I with Lab ECET110 Electronics Circuits and Devices I with Lab Term Information: 2009 Spring Credit Hours 4 Contact Hours: 5 Instructor Information: Name: Pui-chor Wong Telephone contact numbers: 403-207-3108 Office

More information

UNIT-1 Bipolar Junction Transistors. Text Book:, Microelectronic Circuits 6 ed., by Sedra and Smith, Oxford Press

UNIT-1 Bipolar Junction Transistors. Text Book:, Microelectronic Circuits 6 ed., by Sedra and Smith, Oxford Press UNIT-1 Bipolar Junction Transistors Text Book:, Microelectronic Circuits 6 ed., by Sedra and Smith, Oxford Press Figure 6.1 A simplified structure of the npn transistor. Microelectronic Circuits, Sixth

More information

Transistor Radio Circuit Design Lecture Notes

Transistor Radio Circuit Design Lecture Notes Transistor Radio Circuit Design Lecture Notes Proficiency in the RF circuit design profession requires significant awareness of (1) American Radio Relay League, 2015 ARRL Handbook for Radio the subject,

More information

Reading. Lecture 17: MOS transistors digital. Context. Digital techniques:

Reading. Lecture 17: MOS transistors digital. Context. Digital techniques: Reading Lecture 17: MOS transistors digital Today we are going to look at the analog characteristics of simple digital devices, 5. 5.4 And following the midterm, we will cover PN diodes again in forward

More information

EE 330 Fall Sheng-Huang (Alex) Lee and Dan Congreve

EE 330 Fall Sheng-Huang (Alex) Lee and Dan Congreve EE 330 Fall 2009 Integrated Electronics Lecture Instructor: Lab Instructors: Web Site: Lecture: MWF 9:00 Randy Geiger 2133 Coover rlgeiger@iastate.edu 294-7745 Sheng-Huang (Alex) Lee and Dan Congreve http://class.ece.iastate.edu/ee330/

More information

Academic Course Description. VL2004 CMOS Analog VLSI Second Semester, (Even semester)

Academic Course Description. VL2004 CMOS Analog VLSI Second Semester, (Even semester) Academic Course Description SRM University Faculty of Engineering and Technology Department of Electronics and Communication Engineering VL2004 CMOS Analog VLSI Second Semester, 2013-14 (Even semester)

More information

*************************************************************************

************************************************************************* for EE 151 Circuits I, EE 153 Circuits II, EE 121 Introduction to Electronic Devices, and CpE 111 Introduction to Computer Engineering. Missouri University of Science and Technology Introduction The required

More information

CRN: MET-487 Instrumentation and Automatic Control June 28, 2010 August 5, 2010 Professor Paul Lin

CRN: MET-487 Instrumentation and Automatic Control June 28, 2010 August 5, 2010 Professor Paul Lin CRN: 32030 MET-487 Instrumentation and Automatic Control June 28, 2010 August 5, 2010 Professor Paul Lin Course Description: Class 2, Lab 2, Cr. 3, Junior class standing and 216 Instrumentation for pressure,

More information

Chapter #3: Diodes. from Microelectronic Circuits Text by Sedra and Smith Oxford Publishing

Chapter #3: Diodes. from Microelectronic Circuits Text by Sedra and Smith Oxford Publishing Chapter #3: Diodes from Microelectronic Circuits Text by Sedra and Smith Oxford Publishing Introduction IN THIS CHAPTER WE WILL LEARN the characteristics of the ideal diode and how to analyze and design

More information

* GATE 2017 ONLINE TEST SERIES

* GATE 2017 ONLINE TEST SERIES * GATE 2017 ONLINE TEST SERIES Complete with best... Our proficient faculties have done extensive research to prepare and shape these test series. An opportunity for students to come across their strengths

More information

Lecture 9 Transistors

Lecture 9 Transistors Lecture 9 Transistors Physics Transistor/transistor logic CMOS logic CA 1947 http://www.extremetech.com/extreme/164301-graphenetransistors-based-on-negative-resistance-could-spell-theend-of-silicon-and-semiconductors

More information

Lecture 1. EE 215 Electronic Devices & Circuits. Semiconductor Devices: Diodes. The Ideal Diode

Lecture 1. EE 215 Electronic Devices & Circuits. Semiconductor Devices: Diodes. The Ideal Diode Lecture 1 EE 215 Electronic Deices & Circuits Asst Prof Muhammad Anis Chaudhary EE 215 Electronic Deices & Circuits Credit Hours: 3 1 Course Book: Adel S. Sedra and Kenneth C. Smith, Microelectronic Circuits,

More information

Modern Power Electronics Courses at UCF

Modern Power Electronics Courses at UCF Modern Power Electronics Courses at UCF Issa Batarseh, John Shen, and Sam Abdel-Rahman School of Electrical Engineering and Computer Science University of Central Florida Orlando, Florida, USA University

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad INTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 ELECTRICAL AND ELECTRONIC ENGINEERING COURE DECRIPTION FORM Course Title Course Code Regulation Course tructure Course Coordinator

More information

PhD PRELIMINARY WRITTEN EXAMINATION READING LIST

PhD PRELIMINARY WRITTEN EXAMINATION READING LIST Updated 10/18/2007 PhD PRELIMINARY WRITTEN EXAMINATION READING LIST COMMUNICATIONS Textbook example: R. Ziemer and W. Tranter, "Principles of Communications", Wiley Typically covered in a course such as

More information

Electrical and Electronic Principles

Electrical and Electronic Principles Unit 19: Unit code Electrical and Electronic Principles M/615/1493 Unit level 4 Credit value 15 Introduction Electrical engineering is mainly concerned with the movement of energy and power in electrical

More information

BE Assignment. (1) Explain Active component and Passive component in Detail. (1) Explain practical voltage source and ideal voltage source.

BE Assignment. (1) Explain Active component and Passive component in Detail. (1) Explain practical voltage source and ideal voltage source. BE Assignment chapter-1 (1) Explain Active component and Passive component in Detail. (1) Explain practical voltage source and ideal voltage source. (2) Explain practical current source and ideal current

More information

Lecture #1 Course Introduction and Differential Amplifiers

Lecture #1 Course Introduction and Differential Amplifiers Spring 2015 Benha University Faculty of Engineering at Shoubra ECE-322 Electronic Circuits (B) Lecture #1 Course Introduction and Differential Amplifiers Instructor: Dr. Ahmad El-Banna Agenda Course Objectives

More information

Lecture 4 -- Tuesday, Sept. 19: Non-uniform injection and/or doping. Diffusion. Continuity/conservation. The five basic equations.

Lecture 4 -- Tuesday, Sept. 19: Non-uniform injection and/or doping. Diffusion. Continuity/conservation. The five basic equations. 6.012 ELECTRONIC DEVICES AND CIRCUITS Schedule -- Fall 1995 (8/31/95 version) Recitation 1 -- Wednesday, Sept. 6: Review of 6.002 models for BJT. Discussion of models and modeling; motivate need to go

More information

Academic Course Description

Academic Course Description BEC702 Digital CMOS VLSI Academic Course Description BHARATH UNIVERSITY Faculty of Engineering and Technology Department of Electronics and Communication Engineering BEC702 Digital CMOS VLSI Seventh Semester

More information

Sai Nath University. Assignment For Diploma in ELECTRICAL Engineering II ND Sem.

Sai Nath University. Assignment For Diploma in ELECTRICAL Engineering II ND Sem. Sai Nath University Assignment For Diploma in ELECTRICAL Engineering II ND Sem. The Assignment will consist of two parts, A and B. will have 5 short answer questions(40-60 words) of 4 marks each. will

More information

IENGINEERS-CONSULTANTS QUESTION BANK SERIES ELECTRONICS ENGINEERING 1 YEAR UPTU ELECTRONICS ENGINEERING EC 101 UNIT 3 (JFET AND MOSFET)

IENGINEERS-CONSULTANTS QUESTION BANK SERIES ELECTRONICS ENGINEERING 1 YEAR UPTU ELECTRONICS ENGINEERING EC 101 UNIT 3 (JFET AND MOSFET) ELECTRONICS ENGINEERING EC 101 UNIT 3 (JFET AND MOSFET) LONG QUESTIONS (10 MARKS) 1. Draw the construction diagram and explain the working of P-Channel JFET. Also draw the characteristics curve and transfer

More information

SAMPLE FINAL EXAMINATION FALL TERM

SAMPLE FINAL EXAMINATION FALL TERM ENGINEERING SCIENCES 154 ELECTRONIC DEVICES AND CIRCUITS SAMPLE FINAL EXAMINATION FALL TERM 2001-2002 NAME Some Possible Solutions a. Please answer all of the questions in the spaces provided. If you need

More information

EE 330 Laboratory 8 Discrete Semiconductor Amplifiers

EE 330 Laboratory 8 Discrete Semiconductor Amplifiers EE 330 Laboratory 8 Discrete Semiconductor Amplifiers Fall 2017 Contents Objective:... 2 Discussion:... 2 Components Needed:... 2 Part 1 Voltage Controlled Amplifier... 2 Part 2 Common Source Amplifier...

More information

LESSON PLAN. Chap.no. Testing. & Page. Outcome No. 1. Introduction - T1 C5,95. Understand the devices. a).an ability to 2. Field intensity - potential

LESSON PLAN. Chap.no. Testing. & Page. Outcome No. 1. Introduction - T1 C5,95. Understand the devices. a).an ability to 2. Field intensity - potential EE0207 ELECTRONIC DEVICES LESSON PLAN SEMICONDUCTORS Semiconductors devices: Field intensity - potential energy - mobility - conductivity - electrons holes - charge density in semiconductors - electrical

More information

ECE-606: Spring Course Introduction

ECE-606: Spring Course Introduction ECE-606: Spring 2013 Course Introduction Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA lundstro@purdue.edu 1/8/13 1 course objectives To introduce

More information

Academic Course Description. BEC702 Digital CMOS VLSI

Academic Course Description. BEC702 Digital CMOS VLSI BEC702 Digital CMOS VLSI Academic Course Description Course (catalog) description BHARATH UNIVERSITY Faculty of Engineering and Technology Department of Electronics and Communication Engineering CMOS is

More information

ENE/EIE 211 : Electronic Devices and Circuit Design II Lecture 1: Introduction

ENE/EIE 211 : Electronic Devices and Circuit Design II Lecture 1: Introduction ENE/EIE 211 : Electronic Devices and Circuit Design II Lecture 1: Introduction 1/14/2018 1 Course Name: ENE/EIE 211 Electronic Devices and Circuit Design II Credits: 3 Prerequisite: ENE/EIE 210 Electronic

More information

SETH JAI PARKASH POLYTECHNIC, DAMLA

SETH JAI PARKASH POLYTECHNIC, DAMLA SETH JAI PARKASH POLYTECHNIC, DAMLA NAME OF FACULTY----------SANDEEP SHARMA DISCIPLINE---------------------- E.C.E (S.F) SEMESTER-------------------------2 ND SUBJECT----------------------------BASIC ELECTRONICS

More information

10. Output Stages and Power Supplies. 10. Output Stages and Power Supplies TLT-8016 Basic Analog Circuits 2005/2006 1

10. Output Stages and Power Supplies. 10. Output Stages and Power Supplies TLT-8016 Basic Analog Circuits 2005/2006 1 10. Output Stages and Power Supplies 10. Output Stages and Power Supplies TLT-8016 Basic Analog Circuits 2005/2006 1 10.1 Thermal Considerations Considerable power is dissipated as heat in power devices.

More information

EE 330 Laboratory 8 Discrete Semiconductor Amplifiers

EE 330 Laboratory 8 Discrete Semiconductor Amplifiers EE 330 Laboratory 8 Discrete Semiconductor Amplifiers Fall 2018 Contents Objective:...2 Discussion:...2 Components Needed:...2 Part 1 Voltage Controlled Amplifier...2 Part 2 A Nonlinear Application...3

More information

EELE 201 Circuits I. Fall 2013 (4 Credits)

EELE 201 Circuits I. Fall 2013 (4 Credits) EELE 201 Circuits I Instructor: Fall 2013 (4 Credits) Jim Becker 535 Cobleigh Hall 994-5988 Office hours: Monday 2:30-3:30 pm and Wednesday 3:30-4:30 pm or by appointment EMAIL: For EELE 201-related questions,

More information

COURSE SYLLABUS AVT 317: Introduction to Aviation Electronics Fall 2016

COURSE SYLLABUS AVT 317: Introduction to Aviation Electronics Fall 2016 COURSE SYLLABUS AVT 317: Introduction to Aviation Electronics Fall 2016 Instructor: Matthew Harrison Aviation Test Cell, Room 102 Tel. 618-453-9205 E-mail: harrison@siu.edu Office Hours: As posted, by

More information

EE301 Electronics I , Fall

EE301 Electronics I , Fall EE301 Electronics I 2018-2019, Fall 1. Introduction to Microelectronics (1 Week/3 Hrs.) Introduction, Historical Background, Basic Consepts 2. Rewiev of Semiconductors (1 Week/3 Hrs.) Semiconductor materials

More information

Introduction to Electronic Devices

Introduction to Electronic Devices (Course Number 300331) Fall 2006 Instructor: Dr. Dietmar Knipp Assistant Professor of Electrical Engineering Information: http://www.faculty.iubremen.de/dknipp/ Source: Apple Ref.: Apple Ref.: IBM Critical

More information

Lahore University of Management Sciences

Lahore University of Management Sciences Lahore University of Management Sciences Mushtaq Ahmed Gurmani School of Humanities and Social Sciences (MGSHSS) ENGL 2253 The Age of Literary Modernism: Early 20 th- Century American Fiction Spring Semester

More information

ELE744 Instrumentation Course Outline

ELE744 Instrumentation Course Outline Course Description ELE744 Instrumentation Course Outline Peter Hiscocks, Professor Department of Electrical and Computer Engineering Ryerson Polytechnic University phiscock@ee.ryerson.ca September 3, 2002

More information

ECE 303 ELECTRONICS LABORATORY SPRING No labs meet this week. Course introduction & lab safety

ECE 303 ELECTRONICS LABORATORY SPRING No labs meet this week. Course introduction & lab safety ECE 303 ELECTRONICS LABORATORY SPRING 2018 Week of Jan. 8 Jan. 15 Jan. 22 Jan. 29 Feb. 5 Feb. 12 Feb. 19 Feb. 26 Mar. 5 Mar. 12 Mar. 19 Mar. 26 Apr. 2 Apr. 9 Apr. 16 Topic No labs meet this week Course

More information

EE : ELECTRICAL ENGINEERING Module 8 : Analog and Digital Electronics INDEX

EE : ELECTRICAL ENGINEERING Module 8 : Analog and Digital Electronics INDEX Pearl Centre, S.B. Marg, Dadar (W), Mumbai 400 028. Tel. 4232 4232 EE : ELECTRICAL ENGINEERING Module 8 : Analog and Digital Electronics Contents INDEX Sub Topics 1. Characteristics of Diodes, BJT & FET

More information

EE 320 L LABORATORY 9: MOSFET TRANSISTOR CHARACTERIZATIONS. by Ming Zhu UNIVERSITY OF NEVADA, LAS VEGAS 1. OBJECTIVE 2. COMPONENTS & EQUIPMENT

EE 320 L LABORATORY 9: MOSFET TRANSISTOR CHARACTERIZATIONS. by Ming Zhu UNIVERSITY OF NEVADA, LAS VEGAS 1. OBJECTIVE 2. COMPONENTS & EQUIPMENT EE 320 L ELECTRONICS I LABORATORY 9: MOSFET TRANSISTOR CHARACTERIZATIONS by Ming Zhu DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING UNIVERSITY OF NEVADA, LAS VEGAS 1. OBJECTIVE Get familiar with MOSFETs,

More information