Course Objectives and Outcomes

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Course Objectives and Outcomes"

Transcription

1 Course Objectives and Outcomes Course Objectives and Outcomes 1. Course code and title: EE3019 Integrated Electronics 2. Number of AUs: 3 3. Course type: Elective 4. Course schedule: Lecture: 2 hours/week for 13 weeks Tutorial: 1 hours/week for 13 weeks 5. Course assessment: Laboratory: 10% Quiz: 20% Exam: 70% 6. Course prerequisites: EE2002. Student should have prior knowledge of fundamental circuit analysis techniques and basic electronics backgrounds, including BJT, MOSFET and operational 7. Course description: This course encompasses analog and digital electronic circuits from a circuit and monolithic (integrated circuit) implementation point of view. The objective of this course is to provide Year 3 electrical and electronic undergraduates with sufficient fundamental theoretical and practical knowledge to pursue advanced topics in analog and digital integrated circuits. The course includes the design of elements in bipolar and CMOS based op amps, feedback, power supplies, linear and non linear applications circuits with the op amp as the basic building block, and transistor circuits for realising basic digital circuits. This course provides sufficient basic knowledge for the undergraduate to understand the design of op amps and their applications as well as the design of digital circuits. 8. Textbook(s): Sedra Adel S and Smith Kenneth Carless, Microelectronic Circuits, 5th Edition, Oxford University Press, Reference Book(s) Kang Sung Mo and Leblebici Yusuf, CMOS Digital Integrated Circuits: Analysis and Design, 3rd Edition, McGraw Hill Gray Paul R and Meyer Robert G, Analysis and Design of Analog Integrated Circuits, 4th Edition, John Wiley, Franco Sergio, Design with Operational Amplifiers and Analog Integrated Circuits, 3rd Edition, McGraw Hill, of 5

2 10. Level of course contribution to Programme Outcomes (strong/average/slight/n.a.): Outcome a b c d e Description Ability to apply knowledge of mathematics, science and engineering to the solution of complex engineering problems Ability to design and conduct experiments, analyse, interpret data and synthesise valid conclusions. Ability to design a system, component, or process, and synthesise solutions to achieve desired needs. Ability to identify, formulate, research through relevant literature review, and solve engineering problems reaching substantiated conclusions. Ability to use the techniques, skills, and modern engineering tools necessary for engineering practice with appropriate considerations for public health and safety, cultural, societal, and environmental constraints. Contribution level Average Average f Ability to communicate effectively. n.a. g h i j Ability to recognise the need for, and have the ability to engage in life long learning. Ability to understand the impact of engineering solutions in a societal context and to be able to respond effectively to the needs for sustainable development. Ability to function effectively within multi disciplinary teams and understand the fundamental precepts of effective project management. Ability to understand professional, ethical and moral responsibility. Slight Slight n.a. n.a. 11. Mapping of Specific Course Outcomes to Program Outcomes: S/no Specific Course Outcome Program Outcomes 1 Design CMOS inverters, logic circuits and transmission gates to specifications. 2 Design latches and flip flops as the basic circuit for Random Access Memory (RAM) and Read Only Memory (ROM) cells. Understand the mechanism of sense amplifier and 3 Analyse the effects of ideal feedback network on gain sensitivity, noise, distortion, bandwidth and impedance. Understand the loading effect of feedback networks. 4 Design various voltage references & current sources, including Bandgap voltage, a, c, e a, c, d, e, g, h a, c, e, g, h a, c, d 2 of 5

3 5 Understand differential amplifiers, active loads, level shifters, output stage in BJT & CMOS. Appreciate frequency response compensations & stability of operational 6 Analyse operational transconductance amplifier (OTA), currentdifferencing (Norton) Understand application of Op Amp as precision rectifiers, sample and hold circuits, curve shapers and clippers, comparators and Schmitt trigger and peak detector 7 Calculate the power supply specifications. Design rectifier circuits and integrated circuit 8 Study transfer characteristics of data converters (DC). Measure resolution of DC and derive its functional dependence on the reference voltage and data word size etc. a, c, d, e, g a, c, d, e, h a, c, d, e, g, h a, b, e 12 Programme Outcomes and how they are covered by the specific course outcomes: Programme Outcomes Specific Course Outcomes a Design CMOS inverters, logic circuits and transmission gates to specifications. Understand application of Op Amp as precision rectifiers, sample and hold Study transfer characteristics of data converters (DC). Measure resolution of DC and b Study transfer characteristics of data converters (DC). Measure resolution of DC and c Design CMOS inverters, logic circuits and transmission gates to specifications. Understand application of Op Amp as precision rectifiers, sample and hold 3 of 5

4 d Understand application of Op Amp as precision rectifiers, sample and hold e Design CMOS inverters, logic circuits and transmission gates to specifications. Understand application of Op Amp as precision rectifiers, sample and hold Study transfer characteristics of data converters (DC). Measure resolution of DC and g h 4 of 5

5 Understand application of Op Amp as precision rectifiers, sample and hold 5 of 5

Electronic Circuits for Mechatronics ELCT609 Lecture 1: Introduction

Electronic Circuits for Mechatronics ELCT609 Lecture 1: Introduction Electronic Circuits for Mechatronics ELCT609 Lecture 1: Introduction Assistant Professor Office: C3.315 E-mail: eman.azab@guc.edu.eg 1 Course Team Contact Information Lecturer Teaching Assistants E-mail:

More information

Communication Microelectronics ELCT508 (W17) Lecture 1: Introduction Dr. Eman Azab Assistant Professor Office: C

Communication Microelectronics ELCT508 (W17) Lecture 1: Introduction Dr. Eman Azab Assistant Professor Office: C Communication Microelectronics ELCT508 (W17) Lecture 1: Introduction Assistant Professor Office: C3.315 E-mail: eman.azab@guc.edu.eg 1 Course Team Lecturer Teaching Assistants Contact Information E-mail:

More information

0. Introduction to Microelectronic Circuits

0. Introduction to Microelectronic Circuits 0. Introduction to Microelectronic Circuits S. S. Dan and S. R. Zinka Department of Electrical & Electronics Engineering BITS Pilani, Hyderbad Campus January 18, 2016 Outline 1 Introduction 2 Course Contents

More information

ECEN474/704: (Analog) VLSI Circuit Design Fall 2016

ECEN474/704: (Analog) VLSI Circuit Design Fall 2016 ECEN474/704: (Analog) VLSI Circuit Design Fall 2016 Lecture 1: Introduction Sam Palermo Analog & Mixed-Signal Center Texas A&M University Announcements Turn in your 0.18um NDA form by Thursday Sep 1 No

More information

GRAPHIC ERA UNIVERSITY DEHRADUN

GRAPHIC ERA UNIVERSITY DEHRADUN GRAPHIC ERA UNIVERSITY DEHRADUN Name of Department: - Electronics and Communication Engineering 1. Subject Code: TEC 2 Course Title: CMOS Analog Circuit Design 2. Contact Hours: L: 3 T: 1 P: 3. Examination

More information

Analog and Telecommunication Electronics

Analog and Telecommunication Electronics Politecnico di Torino ICT School Analog and Telecommunication Electronics A0 Course Introduction» Goals and contents» Course organization» Learning material» Reference system 15/03/2011-1 ATLCE - A0-2010

More information

COURSE SCHEDULE SECTION. A (Room No: TP 301) B (Room No: TP 302) Hours Timings Hours Timings. Name of the staff Sec Office Office Hours Mail ID

COURSE SCHEDULE SECTION. A (Room No: TP 301) B (Room No: TP 302) Hours Timings Hours Timings. Name of the staff Sec Office Office Hours Mail ID SRM UNIVERSITY FACULTY OF ENGINEERING AND TECHNOLOGY SCHOOL OF ELECTRONICS AND COMMUNICATION ENGINEERING DEPARTMENT OF ECE COURSE PLAN Course Code : IT0201 Course Title : Electron Devices and Circuits

More information

Academic Course Description. EC1013 Linear Integrated Circuits Fourth Semester, (Even Semester)

Academic Course Description. EC1013 Linear Integrated Circuits Fourth Semester, (Even Semester) Academic Course Description SRM University Faculty of Engineering and Technology Department of Electronics and Communication Engineering EC1013 Linear Integrated Circuits Fourth Semester, 2014-15 (Even

More information

EE5310: Analog Electronic Circuits EE3002: Analog Circuits

EE5310: Analog Electronic Circuits EE3002: Analog Circuits EE5310: Analog Electronic Circuits EE3002: Analog Circuits Introduction Aniruddhan S Nagendra Krishnapura https://courses.iitm.ac.in Department of Electrical Engineering Indian Institute of Technology,

More information

EC0206 Linear Integrated Circuits Fourth Semester, (even semester)

EC0206 Linear Integrated Circuits Fourth Semester, (even semester) COURSE HANDOUT Course (catalog) description SRM University Faculty of Engineering and Technology Department of Electronics and Communication Engineering EC0206 Linear Integrated Circuits Fourth Semester,

More information

Analogue Electronic Systems

Analogue Electronic Systems Unit 47: Unit code Analogue Electronic Systems F/615/1515 Unit level 5 Credit value 15 Introduction Analogue electronic systems are still widely used for a variety of very important applications and this

More information

Academic Course Description. VL2004 CMOS Analog VLSI Second Semester, (Even semester)

Academic Course Description. VL2004 CMOS Analog VLSI Second Semester, (Even semester) Academic Course Description SRM University Faculty of Engineering and Technology Department of Electronics and Communication Engineering VL2004 CMOS Analog VLSI Second Semester, 2013-14 (Even semester)

More information

CRN: MET-487 Instrumentation and Automatic Control June 28, 2010 August 5, 2010 Professor Paul Lin

CRN: MET-487 Instrumentation and Automatic Control June 28, 2010 August 5, 2010 Professor Paul Lin CRN: 32030 MET-487 Instrumentation and Automatic Control June 28, 2010 August 5, 2010 Professor Paul Lin Course Description: Class 2, Lab 2, Cr. 3, Junior class standing and 216 Instrumentation for pressure,

More information

2.996/6.971 Biomedical Devices Design Laboratory Lecture 7: OpAmps

2.996/6.971 Biomedical Devices Design Laboratory Lecture 7: OpAmps 2.996/6.971 Biomedical Devices Design Laboratory Lecture 7: OpAmps Instructor: Dr. Hong Ma Oct. 3, 2007 Fundamental Circuit: Source and Load Sources Power supply Signal Generator Sensor Amplifier output

More information

UMAINE ECE Morse Code ROM and Transmitter at ISM Band Frequency

UMAINE ECE Morse Code ROM and Transmitter at ISM Band Frequency UMAINE ECE Morse Code ROM and Transmitter at ISM Band Frequency Jamie E. Reinhold December 15, 2011 Abstract The design, simulation and layout of a UMAINE ECE Morse code Read Only Memory and transmitter

More information

*************************************************************************

************************************************************************* for EE 151 Circuits I, EE 153 Circuits II, EE 121 Introduction to Electronic Devices, and CpE 111 Introduction to Computer Engineering. Missouri University of Science and Technology Introduction The required

More information

LESSON PLAN. SUBJECT: LINEAR IC S AND APPLICATION NO OF HOURS: 52 FACULTY NAME: Mr. Lokesh.L, Hema. B DEPT: ECE. Portions to be covered

LESSON PLAN. SUBJECT: LINEAR IC S AND APPLICATION NO OF HOURS: 52 FACULTY NAME: Mr. Lokesh.L, Hema. B DEPT: ECE. Portions to be covered LESSON PLAN SUBJECT: LINEAR IC S AND APPLICATION SUB CODE: 15EC46 NO OF HOURS: 52 FACULTY NAME: Mr. Lokesh.L, Hema. B DEPT: ECE Class# Chapter title/reference literature Portions to be covered MODULE I

More information

NZQA registered unit standard version 1 Page 1 of 6

NZQA registered unit standard version 1 Page 1 of 6 Page 1 of 6 Title Demonstrate and apply fundamental knowledge of digital and analogue electronics for IMC technicians Level 3 Credits 12 Purpose This unit standard covers an introduction to digital and

More information

Academic Course Description

Academic Course Description BEC702 Digital CMOS VLSI Academic Course Description BHARATH UNIVERSITY Faculty of Engineering and Technology Department of Electronics and Communication Engineering BEC702 Digital CMOS VLSI Seventh Semester

More information

Fundamentals of Microelectronics

Fundamentals of Microelectronics Fundamentals of Microelectronics CH1 Why Microelectronics? CH2 Basic Physics of Semiconductors CH3 Diode Circuits CH4 Physics of Bipolar Transistors CH5 Bipolar Amplifiers CH6 Physics of MOS Transistors

More information

INSTRUCTOR S COURSE REQUIREMENTS

INSTRUCTOR S COURSE REQUIREMENTS INSTRUCTOR S COURSE REQUIREMENTS PO Box 1189 1042 W. Hamlet Avenue Hamlet, NC 28345 (910) 410-1700 www.richmondcc.edu COURSE: ELN 131 Analog Electronics I SEMESTER & YEAR: SPRING 2015 INSTRUCTOR S NAME

More information

Federal Urdu University of Arts, Science & Technology Islamabad Pakistan THIRD SEMESTER ELECTRONICS - II BASIC ELECTRICAL & ELECTRONICS LAB

Federal Urdu University of Arts, Science & Technology Islamabad Pakistan THIRD SEMESTER ELECTRONICS - II BASIC ELECTRICAL & ELECTRONICS LAB THIRD SEMESTER ELECTRONICS - II BASIC ELECTRICAL & ELECTRONICS LAB DEPARTMENT OF ELECTRICAL ENGINEERING Prepared By: Checked By: Approved By: Engr. Saqib Riaz Engr. M.Nasim Khan Dr.Noman Jafri Lecturer

More information

Lecture #4 Basic Op-Amp Circuits

Lecture #4 Basic Op-Amp Circuits Summer 2015 Ahmad El-Banna Faculty of Engineering Department of Electronics and Communications GEE336 Electronic Circuits II Lecture #4 Basic Op-Amp Circuits Instructor: Dr. Ahmad El-Banna Agenda Some

More information

Design and implementation of two stage operational amplifier

Design and implementation of two stage operational amplifier Design and implementation of two stage operational amplifier Priyanka T 1, Dr. H S Aravind 2, Yatheesh Hg 3 1M.Tech student, Dept, of ECE JSSATE Bengaluru 2Professor and HOD, Dept, of ECE JSSATE Bengaluru

More information

Post Graduate Diploma in IC Layout Design. Course No. Title Credits Semester I (Six Months) T- Theory, P- Practicals

Post Graduate Diploma in IC Layout Design. Course No. Title Credits Semester I (Six Months) T- Theory, P- Practicals Post Graduate Diploma in IC Layout Design Eligibility: BE/ B.Tech/ MSc. in Electronics/ Electronics & Telecommunication/ Instrumentation/ Electrical/ Computers/ Information Technology/ MCA/ MCS/ AMIE /AMIETE

More information

High Performance Current-Mode DC-DC Boost Converter in BiCMOS Integrated Circuits

High Performance Current-Mode DC-DC Boost Converter in BiCMOS Integrated Circuits TANSACTONS ON EECTCA AND EECTONC MATEAS Vol. 1, No. 6, pp. 6-66, December 5, 011 egular Paper pssn: 19-7607 essn: 09-759 DO: http://dx.doi.org/10.4313/teem.011.1.6.6 High Performance Current-Mode DC-DC

More information

DESIGN AND VERIFICATION OF ANALOG PHASE LOCKED LOOP CIRCUIT

DESIGN AND VERIFICATION OF ANALOG PHASE LOCKED LOOP CIRCUIT DESIGN AND VERIFICATION OF ANALOG PHASE LOCKED LOOP CIRCUIT PRADEEP G CHAGASHETTI Mr. H.V. RAVISH ARADHYA Department of E&C Department of E&C R.V.COLLEGE of ENGINEERING R.V.COLLEGE of ENGINEERING Bangalore

More information

What will we do next time?

What will we do next time? What will we do next time? Amplifiers and differential pairs Why differential? Stability Why stability? Phase margin Compensation 62 of 113 Lecture 1, ANIK Introduction, CMOS Analog integrated circuits

More information

Introduction to Electronic Devices

Introduction to Electronic Devices (Course Number 300331) Fall 2006 Instructor: Dr. Dietmar Knipp Assistant Professor of Electrical Engineering Information: http://www.faculty.iubremen.de/dknipp/ Source: Apple Ref.: Apple Ref.: IBM Critical

More information

Chapter 10 Feedback ECE 3120 Microelectronics II Dr. Suketu Naik

Chapter 10 Feedback ECE 3120 Microelectronics II Dr. Suketu Naik 1 Chapter 10 Feedback Operational Amplifier Circuit Components 2 1. Ch 7: Current Mirrors and Biasing 2. Ch 9: Frequency Response 3. Ch 8: Active-Loaded Differential Pair 4. Ch 10: Feedback 5. Ch 11: Output

More information

COURSE INFORMATION DOCUMENT

COURSE INFORMATION DOCUMENT University of Hartford, Ward College of Technology Prepared and Taught by the Department of Electronic Engineering Technology In Academic Year 2000-2001 COURSE INFORMATION DOCUMENT EL 351 - Linear Integrated

More information

BJT Amplifier. Superposition principle (linear amplifier)

BJT Amplifier. Superposition principle (linear amplifier) BJT Amplifier Two types analysis DC analysis Applied DC voltage source AC analysis Time varying signal source Superposition principle (linear amplifier) The response of a linear amplifier circuit excited

More information

EC5135: Analog Electronic Circuits EC3102: Analog Circuits

EC5135: Analog Electronic Circuits EC3102: Analog Circuits EC5135: Analog Electronic Circuits EC3102: Analog Circuits Introduction Nagendra Krishnapura Shanthi Pavan ec3102iitm@gmail.com Department of Electrical Engineering Indian Institute of Technology, Madras

More information

Using Transistor Roles in Teaching CMOS Integrated Circuits

Using Transistor Roles in Teaching CMOS Integrated Circuits Using Transistor Roles in Teaching CMOS Integrated Circuits G. S. KLIROS 1 and A. S. ANDREATOS 2 Department of Aeronautical Sciences (1) Div. of Electronics & Communications Engineering (2) Div. of Computer

More information

Analysis of Different Topologies of Inverter in 0.18µm CMOS Technology and its Comparision

Analysis of Different Topologies of Inverter in 0.18µm CMOS Technology and its Comparision Analysis of Different Topologies of Inverter in 0.18µm CMOS Technology and its Comparision Ashish Panchal (Senior Lecturer) Electronics & Instrumentation Engg. Department, Shri G.S.Institute of Technology

More information

GATE: Electronics MCQs (Practice Test 1 of 13)

GATE: Electronics MCQs (Practice Test 1 of 13) GATE: Electronics MCQs (Practice Test 1 of 13) 1. Removing bypass capacitor across the emitter leg resistor in a CE amplifier causes a. increase in current gain b. decrease in current gain c. increase

More information

Concepts to be Reviewed

Concepts to be Reviewed Introductory Medical Device Prototyping Analog Circuits Part 3 Operational Amplifiers, http://saliterman.umn.edu/ Department of Biomedical Engineering, University of Minnesota Concepts to be Reviewed Operational

More information

ANALYSIS AND DESIGN OF ANALOG INTEGRATED CIRCUITS

ANALYSIS AND DESIGN OF ANALOG INTEGRATED CIRCUITS ANALYSIS AND DESIGN OF ANALOG INTEGRATED CIRCUITS Fourth Edition PAUL R. GRAY University of California, Berkeley PAUL J. HURST University of California, Davis STEPHEN H. LEWIS University of California,

More information

Special-Purpose Operational Amplifier Circuits

Special-Purpose Operational Amplifier Circuits Special-Purpose Operational Amplifier Circuits Instrumentation Amplifier An instrumentation amplifier (IA) is a differential voltagegain device that amplifies the difference between the voltages existing

More information

ENGINEERING. Unit 4 Principles of electrical and electronic engineering Suite. Cambridge TECHNICALS LEVEL 3

ENGINEERING. Unit 4 Principles of electrical and electronic engineering Suite. Cambridge TECHNICALS LEVEL 3 2016 Suite Cambridge TECHNICALS LEVEL 3 ENGINEERING Unit 4 Principles of electrical and electronic engineering D/506/7269 Guided learning hours: 60 Version 3 October 2017 - black lines mark updates ocr.org.uk/engineering

More information

DC/AC CIRCUITS: CONVENTIONAL FLOW TEXTBOOKS

DC/AC CIRCUITS: CONVENTIONAL FLOW TEXTBOOKS 4 PEARSON CUSTOM ELECTRONICS TECHNOLOGY DC/AC CIRCUITS: CONVENTIONAL FLOW TEXTBOOKS AVAILABLE MARCH 2009 Boylestad Introductory Circuit Analysis, 11/e, 0-13-173044-4 Introduction 32 LC4501 Voltage and

More information

Physical Limitations of Op Amps

Physical Limitations of Op Amps Physical Limitations of Op Amps The IC Op-Amp comes so close to ideal performance that it is useful to state the characteristics of an ideal amplifier without regard to what is inside the package. Infinite

More information

Electronic Devices. Floyd. Chapter 9. Ninth Edition. Electronic Devices, 9th edition Thomas L. Floyd

Electronic Devices. Floyd. Chapter 9. Ninth Edition. Electronic Devices, 9th edition Thomas L. Floyd Electronic Devices Ninth Edition Floyd Chapter 9 The Common-Source Amplifier In a CS amplifier, the input signal is applied to the gate and the output signal is taken from the drain. The amplifier has

More information

ECEN 5008: Analog IC Design. Final Exam

ECEN 5008: Analog IC Design. Final Exam ECEN 5008 Initials: 1/10 ECEN 5008: Analog IC Design Final Exam Spring 2004 Instructions: 1. Exam Policy: Time-limited, 150-minute exam. When the time is called, all work must stop. Put your initials on

More information

KINGS COLLEGE OF ENGINEERING* DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK

KINGS COLLEGE OF ENGINEERING* DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK KINGS COLLEGE OF ENGINEERING* DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUB.NAME : LINEAR INTEGRATED CIRCUITS SUB CODE: EC1254 YEAR / SEMESTER : II / IV UNIT- I IC FABRICATION

More information

PURPOSE: NOTE: Be sure to record ALL results in your laboratory notebook.

PURPOSE: NOTE: Be sure to record ALL results in your laboratory notebook. EE4902 Lab 9 CMOS OP-AMP PURPOSE: The purpose of this lab is to measure the closed-loop performance of an op-amp designed from individual MOSFETs. This op-amp, shown in Fig. 9-1, combines all of the major

More information

DIGITAL INTEGRATED CIRCUITS A DESIGN PERSPECTIVE 2 N D E D I T I O N

DIGITAL INTEGRATED CIRCUITS A DESIGN PERSPECTIVE 2 N D E D I T I O N DIGITAL INTEGRATED CIRCUITS A DESIGN PERSPECTIVE 2 N D E D I T I O N Jan M. Rabaey, Anantha Chandrakasan, and Borivoje Nikolic CONTENTS PART I: THE FABRICS Chapter 1: Introduction (32 pages) 1.1 A Historical

More information

V o2 = V c V d 2. V o1. Sensor circuit. Figure 1: Example of common-mode and difference-mode voltages. V i1 Sensor circuit V o

V o2 = V c V d 2. V o1. Sensor circuit. Figure 1: Example of common-mode and difference-mode voltages. V i1 Sensor circuit V o M.B. Patil, IIT Bombay 1 BJT Differential Amplifier Common-mode and difference-mode voltages A typical sensor circuit produces an output voltage between nodes A and B (see Fig. 1) such that V o1 = V c

More information

DAT175: Topics in Electronic System Design

DAT175: Topics in Electronic System Design DAT175: Topics in Electronic System Design Analog Readout Circuitry for Hearing Aid in STM90nm 21 February 2010 Remzi Yagiz Mungan v1.10 1. Introduction In this project, the aim is to design an adjustable

More information

Introduction to Electronic Devices

Introduction to Electronic Devices Introduction to Electronic Devices (Course Number 300331) Fall 2006 Dr. Dietmar Knipp Assistant Professor of Electrical Engineering Information: http://www.faculty.iubremen.de/dknipp/ Source: Apple Ref.:

More information

Low-Voltage Rail-to-Rail CMOS Operational Amplifier Design

Low-Voltage Rail-to-Rail CMOS Operational Amplifier Design Electronics and Communications in Japan, Part 2, Vol. 89, No. 12, 2006 Translated from Denshi Joho Tsushin Gakkai Ronbunshi, Vol. J89-C, No. 6, June 2006, pp. 402 408 Low-Voltage Rail-to-Rail CMOS Operational

More information

Radivoje Đurić, 2015, Analogna Integrisana Kola 1

Radivoje Đurić, 2015, Analogna Integrisana Kola 1 OTA-output buffer 1 According to the types of loads, the driving capability of the output stages differs. For switched capacitor circuits which have high impedance capacitive loads, class A output stage

More information

Lab 8: SWITCHED CAPACITOR CIRCUITS

Lab 8: SWITCHED CAPACITOR CIRCUITS ANALOG & TELECOMMUNICATION ELECTRONICS LABORATORY EXERCISE 8 Lab 8: SWITCHED CAPACITOR CIRCUITS Goal The goals of this experiment are: - Verify the operation of basic switched capacitor cells, - Measure

More information

ASTABLE MULTIVIBRATOR

ASTABLE MULTIVIBRATOR 555 TIMER ASTABLE MULTIIBRATOR MONOSTABLE MULTIIBRATOR 555 TIMER PHYSICS (LAB MANUAL) PHYSICS (LAB MANUAL) 555 TIMER Introduction The 555 timer is an integrated circuit (chip) implementing a variety of

More information

DIGITAL ELECTRONICS ANALOG ELECTRONICS

DIGITAL ELECTRONICS ANALOG ELECTRONICS DIGITAL ELECTRONICS 1. N10 4 Bit Binary Universal shift register. 2. N22- Random Access Memory (16*4). 3. N23- Read Only Memory. 4. N4-R-S/D-T Flip flop, characteristic and comparison. 5. Master Slave

More information

Operational Amplifiers

Operational Amplifiers Monolithic Amplifier Circuits: Operational Amplifiers Chapter Jón Tómas Guðmundsson tumi@hi.is. Week Fall 200 Operational amplifiers (op amps) are an integral part of many analog and mixedsignal systems

More information

Analog and Mixed-Signal IC Design in a Junior Electronics Course Sequence

Analog and Mixed-Signal IC Design in a Junior Electronics Course Sequence Analog and Mixed-Signal IC Design in a Junior Electronics Course Sequence David A. Rich and John A. Nestor Department of Electrical and Computer Engineering Lafayette College Easton, PA 18042 richd@lafayette.edu

More information

Lecture 030 ECE4430 Review III (1/9/04) Page 030-1

Lecture 030 ECE4430 Review III (1/9/04) Page 030-1 Lecture 030 ECE4430 Review III (1/9/04) Page 0301 LECTURE 030 ECE 4430 REVIEW III (READING: GHLM Chaps. 3 and 4) Objective The objective of this presentation is: 1.) Identify the prerequisite material

More information

Logic signal voltage levels

Logic signal voltage levels Logic signal voltage levels Logic gate circuits are designed to input and output only two types of signals: "high" (1) and "low" (0), as represented by a variable voltage: full power supply voltage for

More information

Guest Editorial: Low-Voltage Integrated Circuits and Systems

Guest Editorial: Low-Voltage Integrated Circuits and Systems Circuits Syst Signal Process (2017) 36:4769 4773 DOI 10.1007/s00034-017-0666-7 Guest Editorial: Low-Voltage Integrated Circuits and Systems Fabian Khateb 1,2 Spyridon Vlassis 3 Tomasz Kulej 4 Published

More information

Analog Integrated Circuits Fundamental Building Blocks

Analog Integrated Circuits Fundamental Building Blocks Analog Integrated Circuits Fundamental Building Blocks Basic OTA/Opamp architectures Faculty of Electronics Telecommunications and Information Technology Gabor Csipkes Bases of Electronics Department Outline

More information

Chapter 12 Opertational Amplifier Circuits

Chapter 12 Opertational Amplifier Circuits 1 Chapter 12 Opertational Amplifier Circuits Learning Objectives 1) The design and analysis of the two basic CMOS op-amp architectures: the two-stage circuit and the single-stage, folded cascode circuit.

More information

Lecture 7 ECEN 4517/5517

Lecture 7 ECEN 4517/5517 Lecture 7 ECEN 4517/5517 Experiments 4-5: inverter system Exp. 4: Step-up dc-dc converter (cascaded boost converters) Analog PWM and feedback controller to regulate HVDC Exp. 5: DC-AC inverter (H-bridge)

More information

University of Michigan, EECS413 Final project. A High Speed Operational Amplifier. 1. A High Speed Operational Amplifier

University of Michigan, EECS413 Final project. A High Speed Operational Amplifier. 1. A High Speed Operational Amplifier University of Michigan, EECS413 Final project. A High Speed Operational Amplifier. 1 A High Speed Operational Amplifier A. Halim El-Saadi, Mohammed El-Tanani, University of Michigan Abstract This paper

More information

ECE 303 ELECTRONICS LABORATORY SPRING No labs meet this week. Course introduction & lab safety

ECE 303 ELECTRONICS LABORATORY SPRING No labs meet this week. Course introduction & lab safety ECE 303 ELECTRONICS LABORATORY SPRING 2018 Week of Jan. 8 Jan. 15 Jan. 22 Jan. 29 Feb. 5 Feb. 12 Feb. 19 Feb. 26 Mar. 5 Mar. 12 Mar. 19 Mar. 26 Apr. 2 Apr. 9 Apr. 16 Topic No labs meet this week Course

More information

An introduction to Depletion-mode MOSFETs By Linden Harrison

An introduction to Depletion-mode MOSFETs By Linden Harrison An introduction to Depletion-mode MOSFETs By Linden Harrison Since the mid-nineteen seventies the enhancement-mode MOSFET has been the subject of almost continuous global research, development, and refinement

More information

Design of Low Power High Speed Fully Dynamic CMOS Latched Comparator

Design of Low Power High Speed Fully Dynamic CMOS Latched Comparator International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 10, Issue 4 (April 2014), PP.01-06 Design of Low Power High Speed Fully Dynamic

More information

Input Offset Voltage (V OS ) & Input Bias Current (I B )

Input Offset Voltage (V OS ) & Input Bias Current (I B ) Input Offset Voltage (V OS ) & Input Bias Current (I B ) TIPL 1100 TI Precision Labs Op Amps Presented by Ian Williams Prepared by Art Kay and Ian Williams Hello, and welcome to the TI Precision Lab discussing

More information

ANALOG INTEGRATED CIRCUITS FOR COMMUNICATION Principles, Simulation and Design

ANALOG INTEGRATED CIRCUITS FOR COMMUNICATION Principles, Simulation and Design ANALOG INTEGRATED CIRCUITS FOR COMMUNICATION Principles, Simulation and Design ANALOG INTEGRATED CIRCUITS FOR COMMUNICATION Principles, Simulation and Design by Donald 0. Pederson University of California

More information

Atypical op amp consists of a differential input stage,

Atypical op amp consists of a differential input stage, IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 33, NO. 6, JUNE 1998 915 Low-Voltage Class Buffers with Quiescent Current Control Fan You, S. H. K. Embabi, and Edgar Sánchez-Sinencio Abstract This paper presents

More information

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT. Course Curriculum ANALOG ELECTRONICS. (Code: ) Electronics and Communication Engineering

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT. Course Curriculum ANALOG ELECTRONICS. (Code: ) Electronics and Communication Engineering GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT Course Curriculum ANALOG ELECTRONICS (Code: 333110) Diploma Programme in which this course is offered Semester in which offered Electronics and Communication

More information

Electronic PRINCIPLES

Electronic PRINCIPLES MALVINO & BATES Electronic PINCIPLES SEVENTH EDITION Chapter 20 Linear Op-Amp Circuits Topics Covered in Chapter 20 Inverting amplifier circuits Noninverting amplifier circuits Inverter/noninverter circuits

More information

ECEN620: Network Theory Broadband Circuit Design Fall 2014

ECEN620: Network Theory Broadband Circuit Design Fall 2014 ECEN620: Network Theory Broadband Circuit Design Fall 2014 Lecture 7: Phase Detector Circuits Sam Palermo Analog & Mixed-Signal Center Texas A&M University Announcements & Agenda HW2 is due Oct 6 Exam

More information

APPLIED ELECTRONIC CIRCUITS

APPLIED ELECTRONIC CIRCUITS SRM UNIVERSITY DEPARTMENT OF BIOMEDICAL ENGINEERING ODD Semester-2014-2015 BM1005 APPLIED ELECTRONIC CIRCUITS Course Code: BM1005 Course Title: APPLIED ELECTRONIC CIRCUITS Sem: III SEM B. Tech Second Year

More information

University of California at Berkeley Donald A. Glaser Physics 111A Instrumentation Laboratory

University of California at Berkeley Donald A. Glaser Physics 111A Instrumentation Laboratory Published on Instrumentation LAB (http://instrumentationlab.berkeley.edu) Home > Lab Assignments > Digital Labs > Digital Circuits II Digital Circuits II Submitted by Nate.Physics on Tue, 07/08/2014-13:57

More information

COMBINATIONAL and SEQUENTIAL LOGIC CIRCUITS Hardware implementation and software design

COMBINATIONAL and SEQUENTIAL LOGIC CIRCUITS Hardware implementation and software design PH-315 COMINATIONAL and SEUENTIAL LOGIC CIRCUITS Hardware implementation and software design A La Rosa I PURPOSE: To familiarize with combinational and sequential logic circuits Combinational circuits

More information

Design of a Folded Cascode Operational Amplifier in a 1.2 Micron Silicon-Carbide CMOS Process

Design of a Folded Cascode Operational Amplifier in a 1.2 Micron Silicon-Carbide CMOS Process University of Arkansas, Fayetteville ScholarWorks@UARK Electrical Engineering Undergraduate Honors Theses Electrical Engineering 5-2017 Design of a Folded Cascode Operational Amplifier in a 1.2 Micron

More information

Low Power Adiabatic Logic Design

Low Power Adiabatic Logic Design IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 12, Issue 1, Ver. III (Jan.-Feb. 2017), PP 28-34 www.iosrjournals.org Low Power Adiabatic

More information

ANALOG TO DIGITAL CONVERTER

ANALOG TO DIGITAL CONVERTER Final Project ANALOG TO DIGITAL CONVERTER As preparation for the laboratory, examine the final circuit diagram at the end of these notes and write a brief plan for the project, including a list of the

More information

Transistor Design & Analysis (Inverter)

Transistor Design & Analysis (Inverter) Experiment No. 1: DIGITAL ELECTRONIC CIRCUIT Transistor Design & Analysis (Inverter) APPARATUS: Transistor Resistors Connecting Wires Bread Board Dc Power Supply THEORY: Digital electronics circuits operate

More information

Circuit Simulation with SPICE OPUS

Circuit Simulation with SPICE OPUS Circuit Simulation with SPICE OPUS Theory and Practice Tadej Tuma Arpäd Bürmen Birkhäuser Boston Basel Berlin Contents Abbreviations About SPICE OPUS and This Book xiii xv 1 Introduction to Circuit Simulation

More information

Modern Power Electronics Courses at UCF

Modern Power Electronics Courses at UCF Modern Power Electronics Courses at UCF Issa Batarseh, John Shen, and Sam Abdel-Rahman School of Electrical Engineering and Computer Science University of Central Florida Orlando, Florida, USA University

More information

APPLIED ELECTRONIC CIRCUITS

APPLIED ELECTRONIC CIRCUITS SRM UNIVERSITY DEPARTMENT OF BIOMEDICAL ENGINEERING ODD Semester-2014-2015 APPLIED ELECTRONIC CIRCUITS Course Code: Course Title: APPLIED ELECTRONIC CIRCUITS Sem: III SEM B. Tech Second Year STAFF NAME:

More information

State Machine Oscillators

State Machine Oscillators by Kenneth A. Kuhn March 22, 2009, rev. March 31, 2013 Introduction State machine oscillators are based on periodic charging and discharging a capacitor to specific voltages using one or more voltage comparators

More information

Common-Source Amplifiers

Common-Source Amplifiers Lab 2: Common-Source Amplifiers Introduction The common-source stage is the most basic amplifier stage encountered in CMOS analog circuits. Because of its very high input impedance, moderate-to-high gain,

More information

1 sur 8 07/04/ :06

1 sur 8 07/04/ :06 1 sur 8 07/04/2012 12:06 Les Banki Circuit Updated Version August 16, 2007 Synchronized 3 Frequency PWM circuit & cell drivers (for resonance electrolysis of water) Background The basic idea for this design

More information

Low Voltage Standard CMOS Opamp Design Techniques

Low Voltage Standard CMOS Opamp Design Techniques Low Voltage Standard CMOS Opamp Design Techniques Student name: Eliyahu Zamir Student number: 961339780 Course: ECE1352F Proffessor: Khoman Phang Page 1 of 18 1.Abstract In a never-ending effort to reduce

More information

Lecture 18. BUS and MEMORY

Lecture 18. BUS and MEMORY Lecture 18 BUS and MEMORY Slides of Adam Postula used 12/8/2002 1 SIGNAL PROPAGATION FROM ONE SOURCE TO MANY SINKS A AND XOR Signal le - FANOUT = 3 AND AND B BUS LINE Signal Driver - Sgle Source Many Sks

More information

EE 3111 Lab 7.1. BJT Amplifiers

EE 3111 Lab 7.1. BJT Amplifiers EE 3111 Lab 7.1 BJT Amplifiers BJT Amplifier Device/circuit that alters the amplitude of a signal, while keeping input waveform shape BJT amplifiers run the BJT in active mode. Forward current gain is

More information

Facility of Engineering. Biomedical Engineering Department. Medical Electronic Lab BME (317) Pre-Report Forms

Facility of Engineering. Biomedical Engineering Department. Medical Electronic Lab BME (317) Pre-Report Forms Facility of Engineering Biomedical Engineering Department Medical Electronic Lab BME (317) Pre-Report Forms Prepared by Eng.Hala Amari Spring 2014 Facility of Engineering Biomedical Engineering Department

More information

VALLIAMMAI ENGINEERING COLLEGE

VALLIAMMAI ENGINEERING COLLEGE VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203 DEPARTMENT OF ELECTRONICS AND INSTRUMENTATION ENGINEERING QUESTION BANK III SEMESTER EE6303 Linear Integrated Circuits and Applications

More information

Facility of Engineering. Biomedical Engineering Department. Medical Electronic Lab BME (317) Post-lab Forms

Facility of Engineering. Biomedical Engineering Department. Medical Electronic Lab BME (317) Post-lab Forms Facility of Engineering Biomedical Engineering Department Medical Electronic Lab BME (317) Post-lab Forms Prepared by Eng.Hala Amari Spring 2014 Facility of Engineering Biomedical Engineering Department

More information

Electronics Prof D. C. Dube Department of Physics Indian Institute of Technology, Delhi

Electronics Prof D. C. Dube Department of Physics Indian Institute of Technology, Delhi Electronics Prof D. C. Dube Department of Physics Indian Institute of Technology, Delhi Module No. # 04 Feedback in Amplifiers, Feedback Configurations and Multi Stage Amplifiers Lecture No. # 03 Input

More information

MediaTek MT1688E DVD-ROM/CD-RW Drive Controller Partial Circuit Analysis

MediaTek MT1688E DVD-ROM/CD-RW Drive Controller Partial Circuit Analysis October 13, 2005 MediaTek MT1688E DVD-ROM/CD-RW Drive Controller Partial Circuit Analysis Table of Contents Introduction... Page 1 List of Figures... Page 2 Device Summary Sheet... Page 19 Top Level Diagram...Tab

More information

Analog Circuits Part 3 Operational Amplifiers

Analog Circuits Part 3 Operational Amplifiers Introductory Medical Device Prototyping Analog Circuits Part 3 Operational Amplifiers, http://saliterman.umn.edu/ Department of Biomedical Engineering, University of Minnesota Concepts to be Reviewed Operational

More information

Lecture 9 Transistors

Lecture 9 Transistors Lecture 9 Transistors Physics Transistor/transistor logic CMOS logic CA 1947 http://www.extremetech.com/extreme/164301-graphenetransistors-based-on-negative-resistance-could-spell-theend-of-silicon-and-semiconductors

More information

Design of Low Voltage Low Power CMOS OP-AMP

Design of Low Voltage Low Power CMOS OP-AMP RESEARCH ARTICLE OPEN ACCESS Design of Low Voltage Low Power CMOS OP-AMP Shahid Khan, Prof. Sampath kumar V. Electronics & Communication department, JSSATE ABSTRACT Operational amplifiers are an integral

More information

DEPARTMENT OF ELECTRICAL ENGINEERING LAB WORK EE301 ELECTRONIC CIRCUITS

DEPARTMENT OF ELECTRICAL ENGINEERING LAB WORK EE301 ELECTRONIC CIRCUITS DEPARTMENT OF ELECTRICAL ENGINEERING LAB WORK EE301 ELECTRONIC CIRCUITS EXPERIMENT : 4 TITLE : 555 TIMERS OUTCOME : Upon completion of this unit, the student should be able to: 1. gain experience with

More information

Each individual is to report on the design, simulations, construction, and testing according to the reporting guidelines attached.

Each individual is to report on the design, simulations, construction, and testing according to the reporting guidelines attached. EE 352 Design Project Spring 2015 FM Receiver Revision 0, 03-02-15 Interim report due: Friday April 3, 2015, 5:00PM Project Demonstrations: April 28, 29, 30 during normal lab section times Final report

More information

Control of Electrical Lights and Fans using TV Remote

Control of Electrical Lights and Fans using TV Remote EE 389 Electronic Design Lab -II, Project Report, EE Dept., IIT Bombay, October 2005 Control of Electrical Lights and Fans using TV Remote Group No. D10 Liji Jayaprakash (02d07021)

More information