Learning from the Field of Photometry: The Way Towards Better Radiometric Measurements

Size: px
Start display at page:

Download "Learning from the Field of Photometry: The Way Towards Better Radiometric Measurements"

Transcription

1 Chart 1 Learning rom the Field o Photometry: The Way Towards Better Radiometric Measurements Björn J. Döring, Marco Schwerdt October 8, 2013

2 Chart 2 > Vortrag > utor Dokumetname > Datum [Show image o TSX satellite]

3 Chart 3 Traceability Know Example SR What to measure Length [m] RCS [m²] How to measure it T = 20 C, C-band, 100 MHz BW Traceable uncertainty o measurement standard PTB/NIST calibration certiicate?? Corner relector, transponder

4 Chart 4 What We Measure Point target

5 Chart 5 Status Quo Calibration point targets are described by Radar Cross Section (RCS) E 2 2 r σ = lim 4πR R E 2 i Body property, depending on: - Wavelength - Incidence angle o (plane) wave - Polarization o radar transmitter and receiver - Position o transmitter and receiver (monostatic vs. bistatic)

6 Chart 6 Eects Inluencing the Point Target Impulse Response Impulse response is aected by much more than just the target RCS!

7 Chart 7 > re Pixel Intensities Proportional to RCS in SR Images? > Björn Döring > July 25, 2012 Body property Pixel intensity RCS = Ratio o powers E σ πr E Correlation o complex amplitudes ( averaging over requency and angle ) 2 2 r 2 = lim 4 R 2 Ixy (, ) = [ KSxy (, ) hxy (, )] i

8 Chart 8 Proposed New Measurement Quantity The RCS replacement The equivalent radar cross section shall be equal to the radar cross section o a perectly conducting sphere which would result in an equivalent pixel intensity i the sphere were to replace the measured target.

9 Chart 9 Equivalent Radar Cross Section (ERCS) What stays the same? - Measurement procedure: No additional correction actors necessary - Measurement unit: [m²] - Understanding: Still thinking o ratio relected/incident power What changes? - nnotation More clarity (know what you measure) - Calibration! - Reerence or absolute radiometric calibration must be given as equivalent RCS, not as RCS - Deinition works or low to highresolution SR systems

10 Chart 10 FSR P band (E)RCS o Trihedral Corners Bandwidth m MHz 50 MHz 20 MHz 300 MHz 600 MHz Frequency dependence

11 Chart 11 Midpoint Conclusions Know What to measure RCS ERCS How to measure it Traceable uncertainty o measurement standard

12 Outputs Inputs K 1 K 2 Cal. actors system 1&2 Chart 13 Calibration target I 1 I 2 Pixel int. o target I 1 I 2 Pixel int. o SR system 1 SR system 2 Target ERCS o target ERCS o Target B B B σ = I K

13 Outputs Inputs 50 % K 1 K 2 Cal. actors system 1&2 Chart 21 Calibration target 50 % I 1 I 2 Pixel int. o target 50 % I 1 I 2 Pixel int. o SR system 1 SR system 2 Target ERCS o target ERCS o Target B B B σ = I K

14 Outputs Inputs K 1 K 2 Cal. actors system 1&2 Chart 22 Calibration target I 1 I 2 Pixel int. o target I 1 I 2 Pixel int. o SR system 1 SR system 2 Target ERCS o target ERCS o Target B B B σ = I K

15 Outputs Inputs 67 % K 1 K 2 Cal. actors system 1&2 Chart 23 Calibration target 33 % 50 % I 1 I 2 Pixel int. o target 67 % I 1 I 2 Pixel int. o SR system 1 SR system 2 Target ERCS o target ERCS o Target B 50 % 50 % 50 % 50 % B B σ = I K

16 Outputs Inputs 42 % K 1 K 2 Cal. actors system 1&2 Chart % Calibration target 33 % 38 % I 1 I 2 Pixel int. o target 67 % 75 % I 1 I 2 Pixel int. o SR system 1 SR system 2 Target 80% ERCS o target ERCS o Target B 75 % 160 % 150 % 105 % 105 % B B σ = I K

17 Outputs Inputs 42 % K 1 K 2 Cal. actors system 1&2 Chart % Calibration target 33 % 38 % 67 % 75 % SR system 1 SR system 2 Target 80% Measured σ seem uncalibrated despite calibration Result o requency dependence o calibration target and I 1 SR I 2 systems I 1 I 2 Pixel int. o Pixel int. o ERCS o ERCS o target target Target B 75 % 160 % 150 % 105 % 105 % B B σ = I K

18 Outputs Inputs 67 % K 1 K 2 Cal. actors system 1&2 Chart 26 Result 1: Calibration target needs to be controlled Sphere-like target! Calibration target 33 % 50 % I 1 I 2 Pixel int. o target 67 % I 1 I 2 Pixel int. o SR system 1 SR system 2 Target 50 % ERCS o target ERCS o Target B 50 % 50 % 50 % B B σ = I K

19 Outputs Inputs 67 % K 1 K 2 Cal. actors system 1&2 Chart 31 Calibration target 58 % 83 % I 1 I 2 Pixel int. o target 17 % 33 % I 1 I 2 Pixel int. o SR system 1 SR system 2 Target 88 % ERCS o target ERCS o Target B 125 % 17 % 33 % 520 % 375 % B B σ = I K

20 Outputs Inputs 67 % K 1 K 2 Cal. actors system 1&2 Chart 32 Calibration target 58 % 83 % 17 % 33 % SR system 1 SR system 2 Target 88 % Measured σ e seem uncalibrated, despite calibration Relative measurements within one system are dierent Result I 1 I 2 o req. responses I 1 I 2 o targets and systems Pixel int. o Pixel int. o ERCS o ERCS o target target Target B 125 % 17 % 33 % 520 % 375 % B B σ = I K

21 Outputs Inputs Result 2: Frequency response (oremost apodization/weighting during processing) needs to be controlled/standardized 67 % K 1 K 2 Cal. actors system 1&2 Chart % Calibration target 58 % 58 % I 1 I 2 Pixel int. o target 17 % 17 % I 1 I 2 Pixel int. o SR system 1 SR system 2 Target ERCS o target ERCS o Target B 88 % 88 % 17 % 17 % 520 % 520 % B B σ = I K

22 Inputs Control reerence! (e.g. sphere-like target) Control system! (using standardized apodization unctions) Measure! (any requency or angular dependence allowed high-resolution systems) Outputs Chart 36 σ = I K

23 Chart 38 > Vortrag > utor Dokumetname > Datum Hipparcos eye Telescopes Daguerreotypy 200 BC 18th century Chart 38 Image: ESO/Y. Beletsky

24 Chart 39 > Vortrag > utor Dokumetname > Datum Hipparcos eye Telescopes Daguerreotypy 200 BC 18th century 1870 Open OpenCluster ClusterM103 M103on onfn J plate plate Open Cluster M103 on plate Source: Michael Richmond Chart 39 Image: ESO/Y. Beletsky

25 Chart 40 > Vortrag > utor Dokumetname > Datum Hipparcos eye Telescopes Daguerreotypy 200 BC 18th century Chart 40 Photomultiplier tubes UBV ilters RI ilters Image: ESO/Y. Beletsky

26 Chart 41 > Vortrag > utor Dokumetname > Datum Hipparcos eye Telescopes Daguerreotypy 200 BC 18th century 1870 Photomultiplier tubes UBV ilters RI ilters 1953 Source: Michael Richmond Chart Image: ESO/Y. Beletsky

27 Chart 42 > Vortrag > utor Dokumetname > Datum Hipparcos eye Telescopes Daguerreotypy 200 BC 18th century 1870 Photomultiplier tubes UBV ilters RI ilters Development o photometric systems SR community today CCD sensors UBVRcIc ilters Chart 42 Image: ESO/Y. Beletsky

28 Chart 43 Currently Used podization Functions Mission Functions # combinations z = Rg LOS/PLSR w r 1 RDRST-2 w k (β 2.4, 3.5 ) 3 Sentinel-1 w c (α 0.50, 0.75 ) 11 TerraSR-X w c (α = 0.60) 1 w r : Rectangular window w k : Kaiser window w c : General cosine window

29 Chart 44 podization Functions & Sentinel-1 Center req. Sentinel db

30 Chart 45 Conclusions Know What to measure RCS ERCS How to measure it Traceable uncertainty o measurement standard Standardized apodization unctions Target with known ERCS

Report on CEOS WGCV SAR Subgroup Activities

Report on CEOS WGCV SAR Subgroup Activities Report on CEOS WGCV SAR Subgroup Activities CEOS WGCV 37 th Plenary ESRIN, Frascati/Italy February 17-20, 2014 M. Zink Chair CEOS WGCV SAR Subgroup German Aerospace Center (DLR) manfred.zink@dlr.de http://sarcv.ceos.org

More information

TerraSAR-X Calibration Status 2 Years in Flight

TerraSAR-X Calibration Status 2 Years in Flight 2 Years in Flight Dirk Schrank, Marco Schwerdt, Markus Bachmann, Björn Döring, Clemens Schulz November 2009 CEOS 09 VG 1 Calibration Tasks Performed 2009 Introduction Challenge Schedule Re-Calibration

More information

GMES Sentinel-1 Transponder Development

GMES Sentinel-1 Transponder Development GMES Sentinel-1 Transponder Development Paul Snoeij Evert Attema Björn Rommen Nicolas Floury Malcolm Davidson ESA/ESTEC, European Space Agency, Noordwijk, The Netherlands Outline 1. GMES Sentinel-1 overview

More information

The Radiometric Measurement Quantity for SAR Images

The Radiometric Measurement Quantity for SAR Images IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. XX, NO. XX, FEBRUARY 2013 1 The Radiometric Measurement Quantity for SAR Images Björn J. Döring and Marco Schwerdt Abstract A Synthetic Aperture

More information

HiFi Radar Target. Kristian Karlsson (RISE)

HiFi Radar Target. Kristian Karlsson (RISE) HiFi Radar Target Kristian Karlsson (RISE) Outline HiFi Radar Target: Overview Background & goals Radar introduction RCS measurements: Setups Uncertainty contributions (ground reflection) Back scattering

More information

TerraSAR-X Calibration Ground Equipment

TerraSAR-X Calibration Ground Equipment 86 Proceedings of WFMN07, Chemnitz, Germany TerraSAR-X Calibration Ground Equipment Björn J. Döring, Marco Schwerdt, Robert Bauer Microwaves and Radar Institute German Aerospace Center (DLR) Oberpfaffenhofen,

More information

Measuring the Speed of Light

Measuring the Speed of Light Physics Teaching Laboratory Measuring the peed o Light Introduction: The goal o this experiment is to measure the speed o light, c. The experiment relies on the technique o heterodyning, a very useul tool

More information

ECEN 5014, Spring 2013 Special Topics: Active Microwave Circuits and MMICs Zoya Popovic, University of Colorado, Boulder

ECEN 5014, Spring 2013 Special Topics: Active Microwave Circuits and MMICs Zoya Popovic, University of Colorado, Boulder ECEN 5014, Spring 2013 Special Topics: Active Microwave Circuits and MMICs Zoya Popovic, University o Colorado, Boulder LECTURE 13 PHASE NOISE L13.1. INTRODUCTION The requency stability o an oscillator

More information

SAS-2 6Gbps PHY Specification

SAS-2 6Gbps PHY Specification SAS-2 6Gbps PHY Speciication T10/07-063r2 Date: March 8, 2007 To: T10 Technical Committee From: Alvin Cox (alvin.cox@seagate.com) Subject: SAS-2 6Gbps PHY Electrical Speciication Abstract: The attached

More information

Bistatic/Monostatic Synthetic Aperture Radar for Ice Sheet Measurements

Bistatic/Monostatic Synthetic Aperture Radar for Ice Sheet Measurements Bistatic/Monostatic Snthetic Aperture Radar for Ice Sheet Measurements John Paden MS Thesis Defense April 18, 003 Committee Chairperson: Dr. Chris Allen Committee Members: Dr. Prasad Gogineni Dr. Glenn

More information

Hydrophone calibration by laser interferometer in NMIJ

Hydrophone calibration by laser interferometer in NMIJ Hydrophone calibration by laser intererometer in NMIJ Takeyoshi Uchida, Yoichi Matsuda, Masahiro Yoshioka National Metrology Institute o Japan National Institute o Advanced Industrial Science and Technology

More information

Astro-photography. Daguerreotype: on a copper plate

Astro-photography. Daguerreotype: on a copper plate AST 1022L Astro-photography 1840-1980s: Photographic plates were astronomers' main imaging tool At right: first ever picture of the full moon, by John William Draper (1840) Daguerreotype: exposure using

More information

( ) D. An information signal x( t) = 5cos( 1000πt) LSSB modulates a carrier with amplitude A c

( ) D. An information signal x( t) = 5cos( 1000πt) LSSB modulates a carrier with amplitude A c An inormation signal x( t) 5cos( 1000πt) LSSB modulates a carrier with amplitude A c 1. This signal is transmitted through a channel with 30 db loss. It is demodulated using a synchronous demodulator.

More information

Calibration Concepts for Future Low Frequency SAR Systems. Jens Reimann, Marco Schwerdt, Sravan Kumar Aitha and Manfred Zink

Calibration Concepts for Future Low Frequency SAR Systems. Jens Reimann, Marco Schwerdt, Sravan Kumar Aitha and Manfred Zink Calibration Concepts for Future Low Frequency SAR Systems Jens Reimann, Marco Schwerdt, Sravan Kumar Aitha and Manfred Zink DLR.de Chart 2 Low Frequency SAR Missions OHB DLR.de Chart 3 BIOMASS - Facts

More information

Wireless Channel Modeling (Modeling, Simulation, and Mitigation)

Wireless Channel Modeling (Modeling, Simulation, and Mitigation) Wireless Channel Modeling (Modeling, Simulation, and Mitigation) Dr. Syed Junaid Nawaz Assistant Proessor Department o Electrical Engineering COMSATS Institute o Inormation Technology Islamabad, Paistan.

More information

New metallic mesh designing with high electromagnetic shielding

New metallic mesh designing with high electromagnetic shielding MATEC Web o Conerences 189, 01003 (018) MEAMT 018 https://doi.org/10.1051/mateccon/01818901003 New metallic mesh designing with high electromagnetic shielding Longjia Qiu 1,,*, Li Li 1,, Zhieng Pan 1,,

More information

DARK CURRENT ELIMINATION IN CHARGED COUPLE DEVICES

DARK CURRENT ELIMINATION IN CHARGED COUPLE DEVICES DARK CURRENT ELIMINATION IN CHARGED COUPLE DEVICES L. Kňazovická, J. Švihlík Department o Computing and Control Engineering, ICT Prague Abstract Charged Couple Devices can be ound all around us. They are

More information

INTERFERENCE effects of wind turbines on communication

INTERFERENCE effects of wind turbines on communication TCOM-TPS-13-144.R 1 A Measurement-based Multipath Channel Model or Signal Propagation in Presence o Wind Farms in the UHF Band Itziar Angulo, Member, IEEE, Jon Montalbán, Graduate Student Member, IEEE,

More information

Experiment 7: Frequency Modulation and Phase Locked Loops Fall 2009

Experiment 7: Frequency Modulation and Phase Locked Loops Fall 2009 Experiment 7: Frequency Modulation and Phase Locked Loops Fall 2009 Frequency Modulation Normally, we consider a voltage wave orm with a ixed requency o the orm v(t) = V sin(ω c t + θ), (1) where ω c is

More information

3.6 Intersymbol interference. 1 Your site here

3.6 Intersymbol interference. 1 Your site here 3.6 Intersymbol intererence 1 3.6 Intersymbol intererence what is intersymbol intererence and what cause ISI 1. The absolute bandwidth o rectangular multilevel pulses is ininite. The channels bandwidth

More information

Global Design Analysis for Highly Repeatable Solid-state Klystron Modulators

Global Design Analysis for Highly Repeatable Solid-state Klystron Modulators CERN-ACC-2-8 Davide.Aguglia@cern.ch Global Design Analysis or Highly Repeatable Solid-state Klystron Modulators Anthony Dal Gobbo and Davide Aguglia, Member, IEEE CERN, Geneva, Switzerland Keywords: Power

More information

ESA Radar Remote Sensing Course ESA Radar Remote Sensing Course Radar, SAR, InSAR; a first introduction

ESA Radar Remote Sensing Course ESA Radar Remote Sensing Course Radar, SAR, InSAR; a first introduction Radar, SAR, InSAR; a first introduction Ramon Hanssen Delft University of Technology The Netherlands r.f.hanssen@tudelft.nl Charles University in Prague Contents Radar background and fundamentals Imaging

More information

Signal Sampling. Sampling. Sampling. Sampling. Sampling. Sampling

Signal Sampling. Sampling. Sampling. Sampling. Sampling. Sampling Signal Let s sample the signal at a time interval o Dr. Christopher M. Godrey University o North Carolina at Asheville Photo: C. Godrey Let s sample the signal at a time interval o Reconstruct the curve

More information

ECE5984 Orthogonal Frequency Division Multiplexing and Related Technologies Fall Mohamed Essam Khedr. Channel Estimation

ECE5984 Orthogonal Frequency Division Multiplexing and Related Technologies Fall Mohamed Essam Khedr. Channel Estimation ECE5984 Orthogonal Frequency Division Multiplexing and Related Technologies Fall 2007 Mohamed Essam Khedr Channel Estimation Matlab Assignment # Thursday 4 October 2007 Develop an OFDM system with the

More information

Radiometry I: Illumination. cs348b Matt Pharr

Radiometry I: Illumination. cs348b Matt Pharr Radiometry I: Illumination cs348b Matt Pharr Administrivia Extra copies of lrt book Bug fix for assignment 1 polynomial.h file Onward To The Physical Description of Light Four key quantities Power Radiant

More information

IEEE Broadband Wireless Access Working Group <

IEEE Broadband Wireless Access Working Group < Project Title IEEE 80.16 Broadband Wireless Access Working Group Channel and intererence model or 80.16b Physical Layer Date Submitted Source(s) Re: 000-31-09 Tal Kaitz BreezeCOM

More information

ATMS INDIA RCS Measurements. V.J. Vokurka March Microwave Systems B.V. de Huufkes TM Nuenen, the Netherlands

ATMS INDIA RCS Measurements. V.J. Vokurka March Microwave Systems B.V. de Huufkes TM Nuenen, the Netherlands RCS Measurements V.J. Vokurka March Microwave Systems B.V. de Huufkes 0 5674 TM Nuenen, the Netherlands 015 March Microwave Systems B.V. Nuenen, January 015 MARCH MMS/RCS/01-15 1 Abstract Radar range equation

More information

SAOCOM Calibration Strategy

SAOCOM Calibration Strategy COMISION NACIONAL DE ACTIVIDADES ESPACIALES (The Argentinean National Commission of Space Activities) M. Azcueta, J. Giardini, J. P. Cuesta González, M. Thibeault, T. Zajc November 7-9, 20 October 20 8

More information

Traceable Radiometric Calibration of Synthetic Aperture Radars

Traceable Radiometric Calibration of Synthetic Aperture Radars Traceable Radiometric Calibration of Synthetic Aperture Radars Zur Erlangung des akademischen Grades eines Doktor-Ingenieurs von der Fakultät für Elektrotechnik und Informationstechnik des Karlsruher Instituts

More information

A Physical Sine-to-Square Converter Noise Model

A Physical Sine-to-Square Converter Noise Model A Physical Sine-to-Square Converter Noise Model Attila Kinali Max Planck Institute or Inormatics, Saarland Inormatics Campus, Germany adogan@mpi-in.mpg.de Abstract While sinusoid signal sources are used

More information

Ionospheric Propagation Effects on W de Bandwidth Sig Si nals Dennis L. Knepp NorthWest Research NorthW Associates est Research Monterey California

Ionospheric Propagation Effects on W de Bandwidth Sig Si nals Dennis L. Knepp NorthWest Research NorthW Associates est Research Monterey California Ionospheric Propagation Effects on Wide Bandwidth Signals Dennis L. Knepp NorthWest Research Associates 2008 URSI General Assembly Chicago, August 2008 Ionospheric Effects on Propagating Signals Mean effects:

More information

PLANNING AND DESIGN OF FRONT-END FILTERS

PLANNING AND DESIGN OF FRONT-END FILTERS PLANNING AND DESIGN OF FRONT-END FILTERS AND DIPLEXERS FOR RADIO LINK APPLICATIONS Kjetil Folgerø and Jan Kocba Nera Networks AS, N-52 Bergen, NORWAY. Email: ko@nera.no, jko@nera.no Abstract High capacity

More information

Noise. Interference Noise

Noise. Interference Noise Noise David Johns and Ken Martin University o Toronto (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) University o Toronto 1 o 55 Intererence Noise Unwanted interaction between circuit and outside world

More information

Complex RF Mixers, Zero-IF Architecture, and Advanced Algorithms: The Black Magic in Next-Generation SDR Transceivers

Complex RF Mixers, Zero-IF Architecture, and Advanced Algorithms: The Black Magic in Next-Generation SDR Transceivers Complex RF Mixers, Zero-F Architecture, and Advanced Algorithms: The Black Magic in Next-Generation SDR Transceivers By Frank Kearney and Dave Frizelle Share on ntroduction There is an interesting interaction

More information

Predicting the performance of a photodetector

Predicting the performance of a photodetector Page 1 Predicting the perormance o a photodetector by Fred Perry, Boston Electronics Corporation, 91 Boylston Street, Brookline, MA 02445 USA. Comments and corrections and questions are welcome. The perormance

More information

ENSC327 Communications Systems 5: Frequency Translation (3.6) and Superhet Receiver (3.9)

ENSC327 Communications Systems 5: Frequency Translation (3.6) and Superhet Receiver (3.9) ENSC327 Communications Systems 5: Frequency Translation (3.6) and Superhet Receiver (3.9) Jie Liang School o Engineering Science Simon Fraser University 1 Outline Frequency translation (page 128) Superhet

More information

Photometry for Traffic Engineers...

Photometry for Traffic Engineers... Photometry for Traffic Engineers... Workshop presented at the annual meeting of the Transportation Research Board in January 2000 by Frank Schieber Heimstra Human Factors Laboratories University of South

More information

Observational Astronomy

Observational Astronomy Observational Astronomy Instruments The telescope- instruments combination forms a tightly coupled system: Telescope = collecting photons and forming an image Instruments = registering and analyzing the

More information

Potentiostat stability mystery explained

Potentiostat stability mystery explained Application Note #4 Potentiostat stability mystery explained I- Introduction As the vast majority o research instruments, potentiostats are seldom used in trivial experimental conditions. But potentiostats

More information

APPLICATION NOTE #1. Phase NoiseTheory and Measurement 1 INTRODUCTION

APPLICATION NOTE #1. Phase NoiseTheory and Measurement 1 INTRODUCTION Tommorrow s Phase Noise Testing Today 35 South Service Road Plainview, NY 803 TEL: 56-694-6700 FAX: 56-694-677 APPLICATION NOTE # Phase NoiseTheory and Measurement INTRODUCTION Today, noise measurements

More information

UMRR: A 24GHz Medium Range Radar Platform

UMRR: A 24GHz Medium Range Radar Platform UMRR: A 24GHz Medium Range Radar Platorm Dr.-Ing. Ralph Mende, Managing Director smart microwave sensors GmbH Phone: +49 (531) 39023 0 / Fax: +49 (531) 39023 58 / ralph.mende@smartmicro.de Mittelweg 7

More information

Optimization of the apodization strength for linearly chirped Bragg grating dispersion compensators in optical fiber communications links

Optimization of the apodization strength for linearly chirped Bragg grating dispersion compensators in optical fiber communications links Optimization o the apodization strength or linearly chirped Bragg grating dispersion compensators in optical iber communications links P. FERNÁNDEZ, J.C. AGUADO, J. BAS, F. GONZÁEZ, I. DE MIGUE, J. DURÁN,

More information

Recommendation ITU-R P (06/2017)

Recommendation ITU-R P (06/2017) Recommendation ITU-R P.1238-9 (06/2017) Propagation data and prediction methods or the planning o indoor radiocommunication systems and radio local area networks in the requency range 300 MHz to 100 GHz

More information

EE 529 Remote Sensing Techniques. Radar

EE 529 Remote Sensing Techniques. Radar EE 59 Remote Sensing Techniques Radar Outline Radar Resolution Radar Range Equation Signal-to-Noise Ratio Doppler Frequency Basic function of an active radar Radar RADAR: Radio Detection and Ranging Detection

More information

Definition of Calibration Terms

Definition of Calibration Terms Microwaves and Radar Institute Tandem-L, Technical Note Doc. No.: TDL-SE-TN-0010 prepared: J. Reimann, M. Schwerdt Date Calibration Engineer reviewed: M. Schwerdt Date Head of Calibration Group released:

More information

The Biomass Mission, status of the satellite system

The Biomass Mission, status of the satellite system The Biomass Mission, status of the satellite system M. Arcioni, P. Bensi, M. Fehringer, F. Fois, F. Heliere, K. Scipal PolInSAR/Biomass Meeting 2015, ESRIN 29/01/2015 1. Key facts (lifetime, duty cycle

More information

1 PERFORMANCE COMPARISION BETWEEN HIGHER-ORDER AND RWG BASIS FUNCTIONS

1 PERFORMANCE COMPARISION BETWEEN HIGHER-ORDER AND RWG BASIS FUNCTIONS 1 PERFORMANCE COMPARISION BETWEEN HIGHER-ORDER AND RWG BASIS FUNCTIONS Two monopoles are mounted on a PEC cylinder oriented along the z axis. The length and radius of the cylinder are 5. m and 1. m, respectively.

More information

The UMRR-S: A High-Performance 24GHz Multi Mode Automotive Radar Sensor for Comfort and Safety Applications

The UMRR-S: A High-Performance 24GHz Multi Mode Automotive Radar Sensor for Comfort and Safety Applications The UMRR-S: A High-Perormance 24GHz Multi Mode Automotive Radar Sensor or Comort and Saety Applications Ralph Mende*, Marc Behrens*, Marc-Michael Meinecke**, Arne Bartels**, Thanh-Binh To** *smart microwave

More information

Calibration Concepts of Multi-Channel Spaceborne SAR

Calibration Concepts of Multi-Channel Spaceborne SAR DLR.de Chart 1 > CEOS Workshop 2016 > Tobias Rommel > September 7 th, 2016 Calibration Concepts of Multi-Channel Spaceborne SAR T. Rommel, F. Queiroz de Almeida, S. Huber, M. Jäger, G. Krieger, C. Laux,

More information

Study of the Effect of RCS on Radar Detection

Study of the Effect of RCS on Radar Detection Study of the Effect of RCS on Radar Detection Dr. Haitham Kareem Ali (Assistant Professor) Technical College of Engineering, Sulaimani Polytechnic University, Kurdistan Region, Iraq doi: 10.19044/esj.2017.v13n15p148

More information

1. MIMO capacity basics

1. MIMO capacity basics Introduction to MIMO: Antennas & Propagation aspects Björn Lindmark. MIMO capacity basics. Physical interpretation of the channel matrix Example x in free space 3. Free space vs. multipath: when is scattering

More information

Final Examination. 22 April 2013, 9:30 12:00. Examiner: Prof. Sean V. Hum. All non-programmable electronic calculators are allowed.

Final Examination. 22 April 2013, 9:30 12:00. Examiner: Prof. Sean V. Hum. All non-programmable electronic calculators are allowed. UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING The Edward S. Rogers Sr. Department of Electrical and Computer Engineering ECE 422H1S RADIO AND MICROWAVE WIRELESS SYSTEMS Final Examination

More information

Polarisation Capabilities and Status of TerraSAR-X

Polarisation Capabilities and Status of TerraSAR-X Polarisation Capabilities and Status of TerraSAR-X Irena Hajnsek, Josef Mittermayer, Stefan Buckreuss, Kostas Papathanassiou German Aerospace Center Microwaves and Radar Institute irena.hajnsek@dlr.de

More information

1. Basic radar range equation 2. Developing the radar range equation 3. Design impacts 4. Receiver sensitivity 5. Radar cross-section 6.

1. Basic radar range equation 2. Developing the radar range equation 3. Design impacts 4. Receiver sensitivity 5. Radar cross-section 6. Radar The radar range equation Prof. N.V.S.N. Sarma 1 Outline 1. Basic radar range equation. Developing the radar range equation 3. Design impacts 4. Receiver sensitivity 5. Radar cross-section 6. Low

More information

Introduction to OFDM. Characteristics of OFDM (Orthogonal Frequency Division Multiplexing)

Introduction to OFDM. Characteristics of OFDM (Orthogonal Frequency Division Multiplexing) Introduction to OFDM Characteristics o OFDM (Orthogonal Frequency Division Multiplexing Parallel data transmission with very long symbol duration - Robust under multi-path channels Transormation o a requency-selective

More information

Lecture 14: FDM, AM Radio, and the Superheterodyne Receiver. Dr. Mohammed Hawa. Electrical Engineering Department, University of Jordan

Lecture 14: FDM, AM Radio, and the Superheterodyne Receiver. Dr. Mohammed Hawa. Electrical Engineering Department, University of Jordan Lecture 14: FDM, AM Radio, and the Superheterodyne Receiver Dr. Mohammed Hawa Electrical Engineering Department University o Jordan EE421: Communications I: Lecture 14. For more inormation read Chapter

More information

Multiple access techniques

Multiple access techniques Multiple access techniques Narrowband and wideband systems FDMA TDMA CDMA /FHMA SDMA Random-access techniques Summary Wireless Systems 2015 Narrowband and wideband systems Coherence BW B coh 1/σ τ σ τ

More information

Report No.: HZ j. Total Luminous Flux (Lumens) Stabilization Time (Light & Power) Table 1: Executive Data Summary CRI

Report No.: HZ j. Total Luminous Flux (Lumens) Stabilization Time (Light & Power) Table 1: Executive Data Summary CRI Test Summary Sample Tested: T8FR17/835/DIR/LED Luminous Efficacy (Lumens /Watt) Total Luminous Flux (Lumens) Power (Watts)/2 Power Factor 105.4 1761.0 16.70 0.9970 CCT (K) CRI Stabilization Time (Light

More information

6.014 Lecture 14: Microwave Communications and Radar

6.014 Lecture 14: Microwave Communications and Radar 6.014 Lecture 14: Microwave Communications and Radar A. Overview Microwave communications and radar systems have similar architectures. They typically process the signals before and after they are transmitted

More information

zt ( ) = Ae find f(t)=re( zt ( )), g(t)= Im( zt ( )), and r(t), and θ ( t) if z(t)=r(t) e

zt ( ) = Ae find f(t)=re( zt ( )), g(t)= Im( zt ( )), and r(t), and θ ( t) if z(t)=r(t) e Homework # Fundamentals Review Homework or EECS 562 (As needed or plotting you can use Matlab or another sotware tool or your choice) π. Plot x ( t) = 2cos(2π5 t), x ( t) = 2cos(2π5( t.25)), and x ( t)

More information

The ultimate lock-in performance: sub-ppm resolution

The ultimate lock-in performance: sub-ppm resolution Electrical characterisation o nanoscale samples & biochemical interaces: methods and electronic instrumentation The ultimate lock-in perormance: sub-ppm resolution Giorgio Ferrari Dipartimento di elettronica,

More information

TECHNICAL REPORT RD-MG-01-38

TECHNICAL REPORT RD-MG-01-38 TECHNICAL REPORT RD-MG-01-38 FACILITY DESIGN AND MEASUREMENTS OF BISTATIC AND MONOSTATIC REFLECTIVITY OF X, KU, KA, AND W-BAND FREQUENCIES OVER SAND TERRAIN Brenda L. Matkin James H. Mullins Missile Guidance

More information

EC Transmission Lines And Waveguides

EC Transmission Lines And Waveguides EC6503 - Transmission Lines And Waveguides UNIT I - TRANSMISSION LINE THEORY A line of cascaded T sections & Transmission lines - General Solution, Physical Significance of the Equations 1. Define Characteristic

More information

Narrow- and wideband channels

Narrow- and wideband channels RADIO SYSTEMS ETIN15 Lecture no: 3 Narrow- and wideband channels Ove Edfors, Department of Electrical and Information technology Ove.Edfors@eit.lth.se 2012-03-19 Ove Edfors - ETIN15 1 Contents Short review

More information

Photometry for Traffic Engineers...

Photometry for Traffic Engineers... Photometry for Traffic Engineers... Workshop presented at the annual meeting of the Transportation Research Board in January 2000 by Frank Schieber Heimstra Human Factors Laboratories University of South

More information

ICT 5305 Mobile Communications. Lecture - 3 April Dr. Hossen Asiful Mustafa

ICT 5305 Mobile Communications. Lecture - 3 April Dr. Hossen Asiful Mustafa ICT 5305 Mobile Communications Lecture - 3 April 2016 Dr. Hossen Asiul Mustaa Advanced Phase Shit Keying Q BPSK (Binary Phase Shit Keying): bit value 0: sine wave bit value 1: inverted sine wave very simple

More information

1. Motivation. 2. Periodic non-gaussian noise

1. Motivation. 2. Periodic non-gaussian noise . Motivation One o the many challenges that we ace in wireline telemetry is how to operate highspeed data transmissions over non-ideal, poorly controlled media. The key to any telemetry system design depends

More information

Ground Penetrating Radar: Impulse and Stepped Frequency

Ground Penetrating Radar: Impulse and Stepped Frequency Ground Penetrating Radar: Impulse and Stepped Frequency Carey M. Rappaport Professor Elect. and Comp. Engineering Northeastern University CenSSIS Workshop SW3, November 15, 2 Center for Subsurface Sensing

More information

RADAR EQUATIONS 4-0.1

RADAR EQUATIONS 4-0.1 RADAR EQUATIONS Field Intensity and Power Density... 4-1 Power Density... 4- One-Way Radar Equation / RF Propagation... 4-3 Two-Way Radar Equation (Monostatic)... 4-4 Alternate Two-Way Radar Equation...

More information

EEG 816: Radiowave Propagation 2009

EEG 816: Radiowave Propagation 2009 Student Matriculation No: Name: EEG 816: Radiowave Propagation 2009 Dr A Ogunsola This exam consists of 5 problems. The total number of pages is 5, including the cover page. You have 2.5 hours to solve

More information

Biomass, a polarimetric interferometric P-band SAR mission

Biomass, a polarimetric interferometric P-band SAR mission Biomass, a polarimetric interferometric P-band SAR mission M. Arcioni, P. Bensi, M. Fehringer, F. Fois, F. Heliere, N. Miranda, K. Scipal Fringe 2015, ESRIN 27/03/2015 The Biomass Mission 1. Biomass was

More information

PAZ Mission CalVal Centre

PAZ Mission CalVal Centre PAZ Mission CalVal Centre In-Flight Campaigns Design CASAL, N., CIFUENTES, P., CUERDA, J.M., DEL CASTILLO, J., CORES, J.F., GARCIA, M., GIMENO N., GOMEZ, B., GONZALEZ, M.J., LOPEZ, A. 30/10/2015 Pag.:

More information

CHEM*3440 Instrumental Analysis Mid-Term Examination Fall Duration: 2 hours

CHEM*3440 Instrumental Analysis Mid-Term Examination Fall Duration: 2 hours CHEM*344 Instrumental Analysis Mid-Term Examination Fall 4 Duration: hours. ( points) An atomic absorption experiment found the following results for a series of standard solutions for dissolved palladium

More information

Report No.: HZ f. Total Luminous Flux (Lumens) Stabilization Time (Light & Power) Table 1: Executive Data Summary CRI

Report No.: HZ f. Total Luminous Flux (Lumens) Stabilization Time (Light & Power) Table 1: Executive Data Summary CRI Test Summary Sample Tested: L15T8SE450-G Luminous Efficacy (Lumens /Watt) Total Luminous Flux (Lumens) Power (Watts) Power Factor 125.1 1904.0 15.22 0.9679 CCT (K) CRI Stabilization Time (Light & Power)

More information

Analog to Digital in a Few Simple. Steps. A Guide to Designing with SAR ADCs. Senior Applications Engineer Texas Instruments Inc

Analog to Digital in a Few Simple. Steps. A Guide to Designing with SAR ADCs. Senior Applications Engineer Texas Instruments Inc Analog to Digital in a Few Simple Steps A Guide to Designing with SAR ADCs Miro Oljaca Senior Applications Engineer Texas Instruments Inc Tucson, Arizona USA moljaca@ti.com Miro Oljaca Feb 2010 SAR ADC

More information

PAZ Product Definition

PAZ Product Definition PAZ Product Definition CALVAL Centre Juan Manuel Cuerda Muñoz, Javier del Castillo Mena, Adolfo López Pescador, Nuria Gimeno Martínez, Nuria Casal Vázquez, Patricia Cifuentes Revenga, Marcos García Rodríguez,

More information

Report No.: HZ b. Total Luminous Flux (Lumens) Stabilization Time (Light & Power) Table 1: Executive Data Summary CRI

Report No.: HZ b. Total Luminous Flux (Lumens) Stabilization Time (Light & Power) Table 1: Executive Data Summary CRI Test Summary Sample Tested: MLFP24DS4241/SD Luminous Efficacy (Lumens /Watt) Total Luminous Flux (Lumens) Power (Watts) Power Factor 108.6 4723.5 43.49 0.9902 CCT (K) CRI Stabilization Time (Light & Power)

More information

CEGEG046 / GEOG3051 Principles & Practice of Remote Sensing (PPRS) 8: RADAR 1

CEGEG046 / GEOG3051 Principles & Practice of Remote Sensing (PPRS) 8: RADAR 1 CEGEG046 / GEOG3051 Principles & Practice of Remote Sensing (PPRS) 8: RADAR 1 Dr. Mathias (Mat) Disney UCL Geography Office: 113, Pearson Building Tel: 7670 05921 Email: mdisney@ucl.geog.ac.uk www.geog.ucl.ac.uk/~mdisney

More information

Grinding Wheel Condition Prediction and Improvement

Grinding Wheel Condition Prediction and Improvement Grinding Wheel Condition Prediction and Improement Ping Zhang, Michele H. Miller Michigan Technological Uniersity, Houghton, MI Introduction Grinding is regarded as a good way to do ceramics machining

More information

CEPT/ERC Recommendation ERC E (Funchal 1998)

CEPT/ERC Recommendation ERC E (Funchal 1998) Page 1 Distribution: B CEPT/ERC Recommendation ERC 54-01 E (Funchal 1998) METHOD OF MEASURING THE MAXIMUM FREQUENCY DEVIATION OF FM BROADCAST EMISSIONS IN THE BAND 87.5 MHz TO 108 MHz AT MONITORING STATIONS

More information

Wireless Channel Propagation Model Small-scale Fading

Wireless Channel Propagation Model Small-scale Fading Wireless Channel Propagation Model Small-scale Fading Basic Questions T x What will happen if the transmitter - changes transmit power? - changes frequency? - operates at higher speed? Transmit power,

More information

EVALUATION OF RESOLVING POWER AND MTF OF DMC

EVALUATION OF RESOLVING POWER AND MTF OF DMC EVALUATION OF RESOLVING POWER AND MTF OF DMC E. Honkavaara 1, J. Jaakkola 1, L. Markelin 1, S. Becker 2 1 Finnish Geodetic Institute, Masala, Finland (eija.honkavaara, juha.jaakkola, lauri.markelin)@gi.i

More information

Calibration of RF-Voltage on Oscilloscopes

Calibration of RF-Voltage on Oscilloscopes Calibration of RF-oltage on Oscilloscopes 23 st ANAMET Meeting 3 rd /4 th March 2005 Jürg Furrer Swiss Federal Office of Metrology and Accreditation metas indenweg 50, CH-3003 Bern-Wabern, Switzerland

More information

Report No.: HZ c/R1. Total Luminous Flux (Lumens) Stabilization Time (Light & Power) Table 1: Executive Data Summary CRI

Report No.: HZ c/R1. Total Luminous Flux (Lumens) Stabilization Time (Light & Power) Table 1: Executive Data Summary CRI Test Summary Sample Tested: MLLWP40LED50DS Luminous Efficacy (Lumens /Watt) Total Luminous Flux (Lumens) Power (Watts) Power Factor 96.2 3353.0 34.85 0.9900 CCT (K) CRI Stabilization Time (Light & Power)

More information

Frequency-Modulated Continuous-Wave Radar (FM-CW Radar)

Frequency-Modulated Continuous-Wave Radar (FM-CW Radar) Frequency-Modulated Continuous-Wave Radar (FM-CW Radar) FM-CW radar (Frequency-Modulated Continuous Wave radar = FMCW radar) is a special type of radar sensor which radiates continuous transmission power

More information

LM Test Report. for. Philips (China) Investment Co., Ltd. InstantFit LEDtube Model:

LM Test Report. for. Philips (China) Investment Co., Ltd. InstantFit LEDtube Model: LM-79-08 Test Report for Philips (China) Investment Co., Ltd. Building 9, Lane 888, Tianlin Road Shanghai, China InstantFit LEDtube Model: 9290002840 Laboratory: Leading Testing Laboratories NVLAP CODE:

More information

Camera Calibration Certificate No: DMC III 27542

Camera Calibration Certificate No: DMC III 27542 Calibration DMC III Camera Calibration Certificate No: DMC III 27542 For Peregrine Aerial Surveys, Inc. #201 1255 Townline Road Abbotsford, B.C. V2T 6E1 Canada Calib_DMCIII_27542.docx Document Version

More information

Prediction of Radar Cross Section of Target Using Backscattered Phenomenon

Prediction of Radar Cross Section of Target Using Backscattered Phenomenon Prediction of Radar Cross Section of Target Using Backscattered Phenomenon B. Lavanya ECE BITS Vizag Visakhapatnam,India lavanya075@gmail.com V. Appala Raju ECE BITS Vizag Visakhapatnam,India appalarajuvadaboyina@gmail.com

More information

Detection and direction-finding of spread spectrum signals using correlation and narrowband interference rejection

Detection and direction-finding of spread spectrum signals using correlation and narrowband interference rejection Detection and direction-inding o spread spectrum signals using correlation and narrowband intererence rejection Ulrika Ahnström,2,JohanFalk,3, Peter Händel,3, Maria Wikström Department o Electronic Warare

More information

Set No.1. Code No: R

Set No.1. Code No: R Set No.1 IV B.Tech. I Semester Regular Examinations, November -2008 RADAR SYSTEMS ( Common to Electronics & Communication Engineering and Electronics & Telematics) Time: 3 hours Max Marks: 80 Answer any

More information

Radar Methods General Overview

Radar Methods General Overview Environmental and Exploration Geophysics II Radar Methods General Overview tom.h.wilson tom.wilson@mail.wvu.edu Department of Geology and Geography West Virginia University Morgantown, WV Brown (2004)

More information

(Lumens) Stabilization Time CRI (K) (Light & Power) Table 1 Executive Data Summary

(Lumens) Stabilization Time CRI (K) (Light & Power) Table 1 Executive Data Summary Test Summary Sample Tested: LFC41327W/V2 Luminous Efficacy Total Luminous Flux Power (Lumens /Watt) (Lumens) (Watts) Power Factor 45.3 544.6 12.02 0.9892 CCT Stabilization Time CRI (K) (Light & Power)

More information

A HIGHLY ACCURATE ULTRASONIC MEASUREMENT SYSTEM FOR TREMOR USING BINARY AMPLITUDE- SHIFT-KEYING AND PHASE-SHIFT METHOD

A HIGHLY ACCURATE ULTRASONIC MEASUREMENT SYSTEM FOR TREMOR USING BINARY AMPLITUDE- SHIFT-KEYING AND PHASE-SHIFT METHOD APPLICATIONS, BASIS & COMMUNICATIONS 61 A HIGHLY ACCURATE ULTRASONIC MEASUREMENT SYSTEM FOR TREMOR USING BINARY AMPLITUDE- SHIFT-KEYING AND PHASE-SHIFT METHOD MENG-HSIANG YANG 1, K. N. HUANG, C. F. HUANG,

More information

High Precision Wireless Measurement of Temperature by Using Surface Acoustic Waves Sensors

High Precision Wireless Measurement of Temperature by Using Surface Acoustic Waves Sensors B4.2 High Precision Wireless Measurement o Temperature by Using Surace Acoustic Waves Sensors Leonhard Reindl 1), Ismail Shrena 1), Harald Richter 1), Reto Peter 2) 1 ) Clausthal University o Technology,

More information

Measurement Services Optics Laboratory

Measurement Services Optics Laboratory Federal Institute of Metrology METAS CH-3003 Bern-Wabern, 1. February 2018 Measurement Services Optics Laboratory Valid from: 01.02.2018 In our laboratory we perform high accuracy calibrations of your

More information

Photometry. La Palma trip 2014 Lecture 2 Prof. S.C. Trager

Photometry. La Palma trip 2014 Lecture 2 Prof. S.C. Trager Photometry La Palma trip 2014 Lecture 2 Prof. S.C. Trager Photometry is the measurement of magnitude from images technically, it s the measurement of light, but astronomers use the above definition these

More information

EENG473 Mobile Communications Module 3 : Week # (12) Mobile Radio Propagation: Small-Scale Path Loss

EENG473 Mobile Communications Module 3 : Week # (12) Mobile Radio Propagation: Small-Scale Path Loss EENG473 Mobile Communications Module 3 : Week # (12) Mobile Radio Propagation: Small-Scale Path Loss Introduction Small-scale fading is used to describe the rapid fluctuation of the amplitude of a radio

More information

Software Defined Radio Forum Contribution

Software Defined Radio Forum Contribution Committee: Technical Sotware Deined Radio Forum Contribution Title: VITA-49 Drat Speciication Appendices Source Lee Pucker SDR Forum 604-828-9846 Lee.Pucker@sdrorum.org Date: 7 March 2007 Distribution:

More information

Field Calibration of Un-calibrated Antenna

Field Calibration of Un-calibrated Antenna Field Calibration of Un-calibrated Antenna Z Technology Application Note No: 42 Background In a DriveTest situation of measuring several frequencies in a single drive a challenging issue can be what antenna

More information