ECEN 5014, Spring 2013 Special Topics: Active Microwave Circuits and MMICs Zoya Popovic, University of Colorado, Boulder

Size: px
Start display at page:

Download "ECEN 5014, Spring 2013 Special Topics: Active Microwave Circuits and MMICs Zoya Popovic, University of Colorado, Boulder"

Transcription

1 ECEN 5014, Spring 2013 Special Topics: Active Microwave Circuits and MMICs Zoya Popovic, University o Colorado, Boulder LECTURE 13 PHASE NOISE L13.1. INTRODUCTION The requency stability o an oscillator is deined by two parameters: long-terms and short-term stability, as illustrated in Figure L13.1. The irst reers to slow changes in average or nominal requency, while the second reers to instantaneous (a ew seconds or less) requency variations. The border-line between long and short term depends on the application. For example, in a communications applications, long-term would most likely be several periods o the data or the inverse o the tracking loop bandwidth, typically the border line is a raction o a second. On the other hand, in a clock, several day, or even month irregularities might be relevant. 0 days, months, years t seconds t Figure L13.1. Illustration o long-term and short-term stability. Long-term requency instability is usually reerred to as drit, and the ratio / is usually linear or exponential with time. Short-term drit are changes in requency which cannot be described as oset, but are observed as random and/or periodic luctuations about a mean, Figure L13.2. Deterministic requency variations are discrete signals which appear in the spectrum, commonly called spurious signals (or spurs), and are related to things like power line requency, vibration requency, mixer products, etc. Short-term random luctuations is called phase noise. The sources o phase noise are what we studied last time in class: thermal, shot, and licker noise in both active and passive devices. Phase noise is oten the limiting actor in an application. As an example, consider a highperormance superheterodyne receiver with two signals at the input, Figure L13.3. The two signals need to be down-converted to an intermediate requency (IF) where ilters can separate them or detection. There should not be a problem in separating the larger o the two signals. However, since the phase noise o the local oscillator (LO) is translated directly to the mixing products, it may mask the smaller signal. This simpliied example illustrates how the phase noise o the LO determines the receiver s dynamic range and selectivity. It also determines the minimal IF that can be received. 1

2 Res BW 10Hz span 500Hz center 10GHz random short-term luctuations (phase noise) deterministic short-term luctuations (spurious) Figure L13.2. Illustration o deterministic (spurious) short-term requency luctuations and random short-term luctuations (phase noise) as they would be observed on an ideal spectrum analyzer. Intererence Wanted signal Receiver LO Down-converted wanted signal spectrum Down-converted intererence signal spectrum Receiver IF bandwidth Figure L13.3. Spectrum o local oscillator (LO) and wanted RF signal in a superheterodyne receiver. Another application where phase noise determines system perormance is radar. For example, Doppler radar determine the velocity o a target by measuring Doppler shits in the requency o the return echo, which are at a much lower requency than the microwave carrier, illustrated in Figure L13.4. The return signal has a rich content in which the desired Doppler shit is buried. For example, in the case o an airborne radar [Stimpson, IEEE Press], there is large signal due to the echo rom the ground, reerred to as clutter. The ratio o main-beam clutter to desired target signal may be as high as 80dB, making it a challenge to separate the desired signal rom the clutter. The problem is worse when the received spectrum has requency instabilities caused 2

3 by phase noise o either the transmitter power ampliier or the receiver local oscillator. Thereore, speciications or phase noise o radar ront ends are extremely stringent. Transmitter v Moving target clutter D ± D Stationary object Transmitter signal Clutter Down-converted clutter noise ± D Doppler signal D Figure L13.4. Illustration o the eect o carrier phase noise on sensitivity o Doppler radar. L13.2. QUANTIFYING PHASE NOISE Phase noise is described with a power level in a 1Hz bandwidth at some requency oset rom the carrier, in dbc/hz at x Hz away rom carrier, where x can be rom 100Hz to 10MHz, depending on the application. Figure L13.5 illustrates approximately the dierent requirements, and consequently oscillators or these dierent applications will be quite dierent. For example, Figure L13.6 shows a spectrum rom a Gunn-diode (low-cost) oscillator and a synthesized source at 10GHz as measured by a high-quality spectrum analyzer (receiver). The question we try to answer now is how to quantiy this dierence. In the time domain, an ideal carrier is expressed as vt () Vcos2 t, where V is the amplitude and the nominal requency. A realistic carrier signal can be written with AM and phase noise as vt ( ) [ Vnt ( )]cos[2 t ( t)]. In the requency domain, the ideal signal is a delta unction, while the real signal spreads both below and above the nominal requency. 3

4 Single-sideband phase noise to carrier ratio (NCR) Mobile FM Doppler radar Data communications QPSK Oset rom carrier Figure L13.5. Illustration o oset-rom-carrier requency at which phase noise becomes important in dierent applications. Synthesizer Gunn diode Center: 10GHz Span: 20kHz Res BW: 100Hz Noise loor Figure L3.6. Comparing the phase noise o a 10-GHz Gunn diode and a requency synthesizer with a direct measurement on a spectrum analyzer. Phase noise is oten categorized as absolute (total) or two-port (additive, or residual) noise. The latter reers to noise added by devices such as ampliiers, dividers, multipliers and delay lines. This is noise contributed by a device regardless o the phase noise o the oscillator that supplies the signal. For example, in an ampliier, the input noise is thermal noise, and the ampliier adds noise (described by noise igure, as we shall see in the next lecture). The phase noise o the output signal will depend on the level o thermal noise and the noise igure. In addition to thermal (white) noise which is independent in requency, active devices exhibit licker noise below a certain cuto requency, and or oset requencies below this cuto, the noise increases, Figure L13.7. A rule o thumb is that or most components licker noise is at around 120dBc/Hz at 1Hz oset. In an oscillator, the white and licker noise cause even 4

5 greater slopes o the spectral power density as a unction o requency. To understand this, consider a simple eedback model o an oscillator ollowed by a buer ampliier, Figure L13.8. A resonator with some Q actor is added to the ampliier output, and then the output o the resonator is connected back to the ampliier input with phase that ensures positive eedback. 0 1 Consider the white and licker noise (with slopes and ) o the ampliier to be represented with a phase modulator in ront o an ideal ampliier. When the phase in the eedback loop changes, the oscillator requency shits: 0. 2Q Spectral energy random walk --4 licker FM c white FM licker white active device alone Frequency oset rom carrier (Hz) Figure L13.7. Typical phase noise distribution as a unction o oset requency rom carrier. (NIST has a number o detailed technical notes, should you be interested.) oscillator Buer amp 1, 0 1, 0 becomes 3, -2 Figure L13.8. Simple eedback oscillator model with buer ampliier. Since 0 and Q are constant, phase modulation is converted directly to requency modulation. 2 This results in a white FM noise with a slope o 3 and a licker FM noise with a slope. The buer ampliier (present in most oscillators) adds its own white and licker noise, and the 5

6 resulting noise power spectral density as a unction o requency oset rom carrier is as shown in Figure L13.7. Due to its random nature, the phase deviation is represented by a spectral density distribution plot. Four quantities are used to quantiy the spectral density: (1) S ( ), the power spectral density o phase luctuations, is the most basic measure, described in Figure L13.9. (2) L ( ), the single-sideband phase noise is the most commonly used expression or phase noise. It relates the energy in a single phase modulation sideband to the total signal power. (3) S ( ), power spectral density o requency luctuations is used to quantiy the eects o phase noise on FM systems. It is equal to S () ^2. (4) Sy ( ) spectral density o ractional requency luctuations is used to relate phase noise at one carrier requency to phase noise at any other carrier requency. L ( ) is an indirect measure o noise energy and can be easily related to the RF power spectrum as measured by a spectrum analyzer. We can relate L ( ) to S ( ) using simple phase modulation theory. This is illustrated in Figure L V K out in 2 rms ( ) S ( ) BW S ( ) rad Hz 2 Oset rom carrier (Hz) Figure L13.9. Description o S ( ), the power spectral density o phase modulation. In a phase modulated signal spectrum, the sideband amplitudes are Bessel-unction coeicients o an argument that contains the modulation index. L ( ) reers to the power density in one modulation sideband. There will be only one sideband or small modulation indices. With this (relatively strong assumption), L ( ) =1/2 S ( ). 6

7 J 1 (β) J 2 (β) 0 - m m m Figure L Phase modulated signal spectrum. 50 dbc/hz 0 S ( ) dB/decade ( ) valid k 10k 100k 1k, oset rom carrier (Hz) Figure L Region o validity or L ( ) =1/2 S ( ). When is this assumption valid? Figure L13.11 shows this approximately. The measured S ( ) is valid, but the approximation L ( ) =1/2 S ( ) is not valid below a certain oset (otherwise, the noise power would blow up to ininity). The typical limit or the small-signal criterion is a line drawn with a slope o 10dB/decade that passes through a 1Hz oset at 30dBc/Hz. A time domain term used or quantiying requency stability is called the Allan variance, ( ). It is the standard deviation o ractional requency luctuations ( / ). There is a relatively complicated relationship between ( ) and S ( ). An example o typical values is as ollows: 11 or S (1kHz) =-157dBc/Hz, the Allan variance is (1ms) or a carrier requency o 10MHz. An important eect in millimeter-wave circuits is increase in phase noise due to requency multiplication (we will mention multipliers later in the class). For small signals and a good multiplier design, the increase in phase noise is 6dB or a doubler. Thereore, one needs to be careul with multipliers or LOs that require good phase noise. 7

8 The most common methods o measuring phase noise are 1. direct measurement, using a spectrum analyzer. This is an easy measurement to perorm, but is good or relatively poor oscillators 2. phase detector method 3. phase discriminator method. Bellow is copied the relevant portion o a very good Hewlett Packard Application Note on phase noise measurements: 8

9 9

10 10

11 11

APPLICATION NOTE #1. Phase NoiseTheory and Measurement 1 INTRODUCTION

APPLICATION NOTE #1. Phase NoiseTheory and Measurement 1 INTRODUCTION Tommorrow s Phase Noise Testing Today 35 South Service Road Plainview, NY 803 TEL: 56-694-6700 FAX: 56-694-677 APPLICATION NOTE # Phase NoiseTheory and Measurement INTRODUCTION Today, noise measurements

More information

6.976 High Speed Communication Circuits and Systems Lecture 16 Noise in Integer-N Frequency Synthesizers

6.976 High Speed Communication Circuits and Systems Lecture 16 Noise in Integer-N Frequency Synthesizers 6.976 High Speed Communication Circuits and Systems Lecture 16 in Integer-N Frequency Synthesizers Michael Perrott Massachusetts Institute o Technology Copyright 23 by Michael H. Perrott Frequency Synthesizer

More information

Local Oscillator Phase Noise and its effect on Receiver Performance C. John Grebenkemper

Local Oscillator Phase Noise and its effect on Receiver Performance C. John Grebenkemper Watkins-Johnson Company Tech-notes Copyright 1981 Watkins-Johnson Company Vol. 8 No. 6 November/December 1981 Local Oscillator Phase Noise and its effect on Receiver Performance C. John Grebenkemper All

More information

Amplifiers. Department of Computer Science and Engineering

Amplifiers. Department of Computer Science and Engineering Department o Computer Science and Engineering 2--8 Power ampliiers and the use o pulse modulation Switching ampliiers, somewhat incorrectly named digital ampliiers, have been growing in popularity when

More information

Experiment 7: Frequency Modulation and Phase Locked Loops Fall 2009

Experiment 7: Frequency Modulation and Phase Locked Loops Fall 2009 Experiment 7: Frequency Modulation and Phase Locked Loops Fall 2009 Frequency Modulation Normally, we consider a voltage wave orm with a ixed requency o the orm v(t) = V sin(ω c t + θ), (1) where ω c is

More information

PHASE NOISE MEASUREMENT SYSTEMS

PHASE NOISE MEASUREMENT SYSTEMS PHASE NOISE MEASUREMENT SYSTEMS Item Type text; Proceedings Authors Lance, A. L.; Seal, W. D.; Labaar, F. Publisher International Foundation for Telemetering Journal International Telemetering Conference

More information

Measuring the Speed of Light

Measuring the Speed of Light Physics Teaching Laboratory Measuring the peed o Light Introduction: The goal o this experiment is to measure the speed o light, c. The experiment relies on the technique o heterodyning, a very useul tool

More information

Gert Veale / Christo Nel Grintek Ewation

Gert Veale / Christo Nel Grintek Ewation Phase noise in RF synthesizers Gert Veale / Christo Nel Grintek Ewation Introduction & Overview Where are RF synthesizers used? What is phase noise? Phase noise eects Classic RF synthesizer architecture

More information

Instantaneous frequency Up to now, we have defined the frequency as the speed of rotation of a phasor (constant frequency phasor) φ( t) = A exp

Instantaneous frequency Up to now, we have defined the frequency as the speed of rotation of a phasor (constant frequency phasor) φ( t) = A exp Exponential modulation Instantaneous requency Up to now, we have deined the requency as the speed o rotation o a phasor (constant requency phasor) φ( t) = A exp j( ω t + θ ). We are going to generalize

More information

SENSITIVITY IMPROVEMENT IN PHASE NOISE MEASUREMENT

SENSITIVITY IMPROVEMENT IN PHASE NOISE MEASUREMENT SENSITIVITY IMROVEMENT IN HASE NOISE MEASUREMENT N. Majurec, R. Nagy and J. Bartolic University o Zagreb, Faculty o Electrical Engineering and Computing Unska 3, HR-10000 Zagreb, Croatia Abstract: An automated

More information

EE470 Electronic Communication Theory Exam II

EE470 Electronic Communication Theory Exam II EE470 Electronic Communication Theory Exam II Open text, closed notes. For partial credit, you must show all formulas in symbolic form and you must work neatly!!! Date: November 6, 2013 Name: 1. [16%]

More information

Noise. Interference Noise

Noise. Interference Noise Noise David Johns and Ken Martin University o Toronto (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) University o Toronto 1 o 55 Intererence Noise Unwanted interaction between circuit and outside world

More information

SAW STABILIZED MICROWAVE GENERATOR ELABORATION

SAW STABILIZED MICROWAVE GENERATOR ELABORATION SAW STABILIZED MICROWAVE GENERATOR ELABORATION Dobromir Arabadzhiev, Ivan Avramov*, Anna Andonova, Philip Philipov * Institute o Solid State Physics - BAS, 672, Tzarigradsko Choussee, blvd, 1784,Soia,

More information

Traditional Analog Modulation Techniques

Traditional Analog Modulation Techniques Chapter 5 Traditional Analog Modulation Techniques Mikael Olosson 2002 2007 Modulation techniques are mainly used to transmit inormation in a given requency band. The reason or that may be that the channel

More information

IEEE Broadband Wireless Access Working Group <

IEEE Broadband Wireless Access Working Group < Project Title IEEE 80.16 Broadband Wireless Access Working Group Channel and intererence model or 80.16b Physical Layer Date Submitted Source(s) Re: 000-31-09 Tal Kaitz BreezeCOM

More information

High Speed Communication Circuits and Systems Lecture 10 Mixers

High Speed Communication Circuits and Systems Lecture 10 Mixers High Speed Communication Circuits and Systems Lecture Mixers Michael H. Perrott March 5, 24 Copyright 24 by Michael H. Perrott All rights reserved. Mixer Design or Wireless Systems From Antenna and Bandpass

More information

Wireless Channel Modeling (Modeling, Simulation, and Mitigation)

Wireless Channel Modeling (Modeling, Simulation, and Mitigation) Wireless Channel Modeling (Modeling, Simulation, and Mitigation) Dr. Syed Junaid Nawaz Assistant Proessor Department o Electrical Engineering COMSATS Institute o Inormation Technology Islamabad, Paistan.

More information

Consumers are looking to wireless

Consumers are looking to wireless Phase Noise Eects on OFDM Wireless LAN Perormance This article quantiies the eects o phase noise on bit-error rate and oers guidelines or noise reduction By John R. Pelliccio, Heinz Bachmann and Bruce

More information

Frequency Hopped Spread Spectrum

Frequency Hopped Spread Spectrum FH- 5. Frequency Hopped pread pectrum ntroduction n the next ew lessons we will be examining spread spectrum communications. This idea was originally developed or military communication systems. However,

More information

Glossary of VCO terms

Glossary of VCO terms Glossary of VCO terms VOLTAGE CONTROLLED OSCILLATOR (VCO): This is an oscillator designed so the output frequency can be changed by applying a voltage to its control port or tuning port. FREQUENCY TUNING

More information

Spread-Spectrum Technique in Sigma-Delta Modulators

Spread-Spectrum Technique in Sigma-Delta Modulators Spread-Spectrum Technique in Sigma-Delta Modulators by Eric C. Moule Submitted in Partial Fulillment o the Requirements or the Degree Doctor o Philosophy Supervised by Proessor Zeljko Ignjatovic Department

More information

Potentiostat stability mystery explained

Potentiostat stability mystery explained Application Note #4 Potentiostat stability mystery explained I- Introduction As the vast majority o research instruments, potentiostats are seldom used in trivial experimental conditions. But potentiostats

More information

note application Measurement of Frequency Stability and Phase Noise by David Owen

note application Measurement of Frequency Stability and Phase Noise by David Owen application Measurement of Frequency Stability and Phase Noise note by David Owen The stability of an RF source is often a critical parameter for many applications. Performance varies considerably with

More information

Chapter 25: Transmitters and Receivers

Chapter 25: Transmitters and Receivers Chapter 25: Transmitters and Receivers This chapter describes the design o transmitters and receivers or radio transmission. The terms used shall have a deined meaning such that the components rom the

More information

Understanding Low Phase Noise Signals. Presented by: Riadh Said Agilent Technologies, Inc.

Understanding Low Phase Noise Signals. Presented by: Riadh Said Agilent Technologies, Inc. Understanding Low Phase Noise Signals Presented by: Riadh Said Agilent Technologies, Inc. Introduction Instabilities in the frequency or phase of a signal are caused by a number of different effects. Each

More information

OSCILLATORS. Introduction

OSCILLATORS. Introduction OSILLATOS Introduction Oscillators are essential components in nearly all branches o electrical engineering. Usually, it is desirable that they be tunable over a speciied requency range, one example being

More information

Fabricate a 2.4-GHz fractional-n synthesizer

Fabricate a 2.4-GHz fractional-n synthesizer University of Malaya From the SelectedWorks of Professor Mahmoud Moghavvemi Summer June, 2013 Fabricate a 2.4-GHz fractional-n synthesizer H Ameri Mahmoud Moghavvemi, University of Malaya a Attaran Available

More information

Oscillator Phase Noise: A 50-year Retrospective. D. B. Leeson May 21, 2015

Oscillator Phase Noise: A 50-year Retrospective. D. B. Leeson May 21, 2015 Oscillator Phase Noise: A 50-year Retrospective D. B. Leeson May 21, 2015 Some Preliminary Generalities! Communications: Energy efficient! Experiment trumps theory Good theory predicts results! The model

More information

TECH BRIEF Addressing Phase Noise Challenges in Radar and Communication Systems

TECH BRIEF Addressing Phase Noise Challenges in Radar and Communication Systems Addressing Phase Noise Challenges in Radar and Communication Systems Phase noise is rapidly becoming the most critical factor addressed in sophisticated radar and communication systems. This is because

More information

The fourier spectrum analysis of optical feedback self-mixing signal under weak and moderate feedback

The fourier spectrum analysis of optical feedback self-mixing signal under weak and moderate feedback University o Wollongong Research Online Faculty o Inormatics - Papers (Archive) Faculty o Engineering and Inormation Sciences 8 The ourier spectrum analysis o optical eedback sel-mixing signal under weak

More information

Lecture 6. Angle Modulation and Demodulation

Lecture 6. Angle Modulation and Demodulation Lecture 6 and Demodulation Agenda Introduction to and Demodulation Frequency and Phase Modulation Angle Demodulation FM Applications Introduction The other two parameters (frequency and phase) of the carrier

More information

ENSC327 Communications Systems 5: Frequency Translation (3.6) and Superhet Receiver (3.9)

ENSC327 Communications Systems 5: Frequency Translation (3.6) and Superhet Receiver (3.9) ENSC327 Communications Systems 5: Frequency Translation (3.6) and Superhet Receiver (3.9) Jie Liang School o Engineering Science Simon Fraser University 1 Outline Frequency translation (page 128) Superhet

More information

Predicting the performance of a photodetector

Predicting the performance of a photodetector Page 1 Predicting the perormance o a photodetector by Fred Perry, Boston Electronics Corporation, 91 Boylston Street, Brookline, MA 02445 USA. Comments and corrections and questions are welcome. The perormance

More information

A Detailed Lesson on Operational Amplifiers - Negative Feedback

A Detailed Lesson on Operational Amplifiers - Negative Feedback 07 SEE Mid tlantic Section Spring Conerence: Morgan State University, Baltimore, Maryland pr 7 Paper ID #0849 Detailed Lesson on Operational mpliiers - Negative Feedback Dr. Nashwa Nabil Elaraby, Pennsylvania

More information

Preprint. This is the submitted version of a paper published in Electronic environment.

Preprint.   This is the submitted version of a paper published in Electronic environment. http://www.diva-portal.org Preprint This is the submitted version o a paper published in Electronic environment. Citation or the original published paper (version o record): Stranneb, D. (0) A Primer on

More information

A technique for noise measurement optimization with spectrum analyzers

A technique for noise measurement optimization with spectrum analyzers Preprint typeset in JINST style - HYPER VERSION A technique or noise measurement optimization with spectrum analyzers P. Carniti a,b, L. Cassina a,b, C. Gotti a,b, M. Maino a,b and G. Pessina a,b a INFN

More information

ICT 5305 Mobile Communications. Lecture - 3 April Dr. Hossen Asiful Mustafa

ICT 5305 Mobile Communications. Lecture - 3 April Dr. Hossen Asiful Mustafa ICT 5305 Mobile Communications Lecture - 3 April 2016 Dr. Hossen Asiul Mustaa Advanced Phase Shit Keying Q BPSK (Binary Phase Shit Keying): bit value 0: sine wave bit value 1: inverted sine wave very simple

More information

A Physical Sine-to-Square Converter Noise Model

A Physical Sine-to-Square Converter Noise Model A Physical Sine-to-Square Converter Noise Model Attila Kinali Max Planck Institute or Inormatics, Saarland Inormatics Campus, Germany adogan@mpi-in.mpg.de Abstract While sinusoid signal sources are used

More information

Lock-In Amplifiers SR510 and SR530 Analog lock-in amplifiers

Lock-In Amplifiers SR510 and SR530 Analog lock-in amplifiers Lock-In Ampliiers SR510 and SR530 Analog lock-in ampliiers SR510/SR530 Lock-In Ampliiers 0.5 Hz to 100 khz requency range Current and voltage inputs Up to 80 db dynamic reserve Tracking band-pass and line

More information

Estimation and Compensation of IQ-Imbalances in Direct Down Converters

Estimation and Compensation of IQ-Imbalances in Direct Down Converters Estimation and Compensation o IQ-Imbalances in irect own Converters NRES PSCHT, THOMS BITZER and THOMS BOHN lcatel SEL G, Holderaeckerstrasse 35, 7499 Stuttgart GERMNY bstract: - In this paper, a new method

More information

Analog Frequency Synthesizers: A Short Tutorial. IEEE Distinguished Lecture SSCS, Dallas Chapter

Analog Frequency Synthesizers: A Short Tutorial. IEEE Distinguished Lecture SSCS, Dallas Chapter Analog Frequency Synthesizers: A Short Tutorial IEEE Distinguished Lecture SSCS, Dallas Chapter Michael H. Perrott April 2013 Copyright 2013 by Michael H. Perrott All rights reserved. What is a Phase-Locked

More information

Making Noise in RF Receivers Simulate Real-World Signals with Signal Generators

Making Noise in RF Receivers Simulate Real-World Signals with Signal Generators Making Noise in RF Receivers Simulate Real-World Signals with Signal Generators Noise is an unwanted signal. In communication systems, noise affects both transmitter and receiver performance. It degrades

More information

RF Signal Generators. SG380 Series DC to 2 GHz, 4 GHz and 6 GHz analog signal generators. SG380 Series RF Signal Generators

RF Signal Generators. SG380 Series DC to 2 GHz, 4 GHz and 6 GHz analog signal generators. SG380 Series RF Signal Generators RF Signal Generators SG380 Series DC to 2 GHz, 4 GHz and 6 GHz analog signal generators SG380 Series RF Signal Generators DC to 2 GHz, 4 GHz or 6 GHz 1 µhz resolution AM, FM, ΦM, PM and sweeps OCXO timebase

More information

Philadelphia University Faculty of Engineering Communication and Electronics Engineering. Amplifier Circuits-III

Philadelphia University Faculty of Engineering Communication and Electronics Engineering. Amplifier Circuits-III Module: Electronics II Module Number: 6503 Philadelphia University Faculty o Engineering Communication and Electronics Engineering Ampliier Circuits-III Operational Ampliiers (Op-Amps): An operational

More information

ECE5984 Orthogonal Frequency Division Multiplexing and Related Technologies Fall Mohamed Essam Khedr. Channel Estimation

ECE5984 Orthogonal Frequency Division Multiplexing and Related Technologies Fall Mohamed Essam Khedr. Channel Estimation ECE5984 Orthogonal Frequency Division Multiplexing and Related Technologies Fall 2007 Mohamed Essam Khedr Channel Estimation Matlab Assignment # Thursday 4 October 2007 Develop an OFDM system with the

More information

Lecture 6 SIGNAL PROCESSING. Radar Signal Processing Dr. Aamer Iqbal Bhatti. Dr. Aamer Iqbal Bhatti

Lecture 6 SIGNAL PROCESSING. Radar Signal Processing Dr. Aamer Iqbal Bhatti. Dr. Aamer Iqbal Bhatti Lecture 6 SIGNAL PROCESSING Signal Reception Receiver Bandwidth Pulse Shape Power Relation Beam Width Pulse Repetition Frequency Antenna Gain Radar Cross Section of Target. Signal-to-noise ratio Receiver

More information

Agile Low-Noise Frequency Synthesizer A. Ridenour R. Aurand Spectrum Microwave

Agile Low-Noise Frequency Synthesizer A. Ridenour R. Aurand Spectrum Microwave Agile Low-Noise Frequency Synthesizer A. Ridenour R. Aurand Spectrum Microwave Abstract Simultaneously achieving low phase noise, fast switching speed and acceptable levels of spurious outputs in microwave

More information

ELEC3106 Electronics. Lecture notes: non-linearity and noise. Objective. Non-linearity. Non-linearity measures

ELEC3106 Electronics. Lecture notes: non-linearity and noise. Objective. Non-linearity. Non-linearity measures ELEC316 Electronics Lecture notes: non-linearity and noise Objective The objective o these brie notes is to supplement the textbooks used in the course on the topic o non-linearity and electrical noise.

More information

ISSUE: April Fig. 1. Simplified block diagram of power supply voltage loop.

ISSUE: April Fig. 1. Simplified block diagram of power supply voltage loop. ISSUE: April 200 Why Struggle with Loop ompensation? by Michael O Loughlin, Texas Instruments, Dallas, TX In the power supply design industry, engineers sometimes have trouble compensating the control

More information

Introduction to OFDM. Characteristics of OFDM (Orthogonal Frequency Division Multiplexing)

Introduction to OFDM. Characteristics of OFDM (Orthogonal Frequency Division Multiplexing) Introduction to OFDM Characteristics o OFDM (Orthogonal Frequency Division Multiplexing Parallel data transmission with very long symbol duration - Robust under multi-path channels Transormation o a requency-selective

More information

Prof. Paolo Colantonio a.a

Prof. Paolo Colantonio a.a Pro. Paolo Colantonio a.a. 03 4 Operational ampliiers (op amps) are among the most widely used building blocks in electronics they are integrated circuits (ICs) oten DIL (or DIP) or SMT (or SMD) DIL (or

More information

PLANNING AND DESIGN OF FRONT-END FILTERS

PLANNING AND DESIGN OF FRONT-END FILTERS PLANNING AND DESIGN OF FRONT-END FILTERS AND DIPLEXERS FOR RADIO LINK APPLICATIONS Kjetil Folgerø and Jan Kocba Nera Networks AS, N-52 Bergen, NORWAY. Email: ko@nera.no, jko@nera.no Abstract High capacity

More information

Validation of a crystal detector model for the calibration of the Large Signal Network Analyzer.

Validation of a crystal detector model for the calibration of the Large Signal Network Analyzer. Instrumentation and Measurement Technology Conerence IMTC 2007 Warsaw, Poland, May 1-3, 2007 Validation o a crystal detector model or the calibration o the Large Signal Network Analyzer. Liesbeth Gommé,

More information

PXIe Contents SPECIFICATIONS. 14 GHz and 26.5 GHz Vector Signal Analyzer

PXIe Contents SPECIFICATIONS. 14 GHz and 26.5 GHz Vector Signal Analyzer SPECIFICATIONS PXIe-5668 14 GHz and 26.5 GHz Vector Signal Analyzer These specifications apply to the PXIe-5668 (14 GHz) Vector Signal Analyzer and the PXIe-5668 (26.5 GHz) Vector Signal Analyzer with

More information

AN X-BAND FREQUENCY AGILE SOURCE WITH EXTREMELY LOW PHASE NOISE FOR DOPPLER RADAR

AN X-BAND FREQUENCY AGILE SOURCE WITH EXTREMELY LOW PHASE NOISE FOR DOPPLER RADAR AN X-BAND FREQUENCY AGILE SOURCE WITH EXTREMELY LOW PHASE NOISE FOR DOPPLER RADAR H. McPherson Presented at IEE Conference Radar 92, Brighton, Spectral Line Systems Ltd England, UK., October 1992. Pages

More information

DEVELOPMENT OF CARRIER-PHASE-BASED TWO-WAY SATELLITE TIME AND FREQUENCY TRANSFER (TWSTFT)

DEVELOPMENT OF CARRIER-PHASE-BASED TWO-WAY SATELLITE TIME AND FREQUENCY TRANSFER (TWSTFT) 36 th Annual Precise Time and Time Interval (PTTI Meeting DEVELOPMENT OF CARRIER-PHASE-BASED TWO-WAY SATELLITE TIME AND FREQUENCY TRANSFER (TWSTFT Blair Fonville, Demetrios Matsakis Time Service Department

More information

IF/LO Systems for Single Dish Radio Astronomy Centimeter Wave Receivers

IF/LO Systems for Single Dish Radio Astronomy Centimeter Wave Receivers IF/LO Systems for Single Dish Radio Astronomy Centimeter Wave Receivers Lisa Wray NAIC, Arecibo Observatory Abstract. Radio astronomy receivers designed to detect electromagnetic waves from faint celestial

More information

1. Explain how Doppler direction is identified with FMCW radar. Fig Block diagram of FM-CW radar. f b (up) = f r - f d. f b (down) = f r + f d

1. Explain how Doppler direction is identified with FMCW radar. Fig Block diagram of FM-CW radar. f b (up) = f r - f d. f b (down) = f r + f d 1. Explain how Doppler direction is identified with FMCW radar. A block diagram illustrating the principle of the FM-CW radar is shown in Fig. 4.1.1 A portion of the transmitter signal acts as the reference

More information

Communication Systems, 5e

Communication Systems, 5e Communiation Systems, 5e Chapter 7: Analog Communiation Systems A. Brue Carlson Paul B. Crilly 010 The Mraw-Hill Companies Chapter 7: Analog Communiation Systems Reeiver blok diagram design Image requeny

More information

state the transfer function of the op-amp show that, in the ideal op-amp, the two inputs will be equal if the output is to be finite

state the transfer function of the op-amp show that, in the ideal op-amp, the two inputs will be equal if the output is to be finite NTODUCTON The operational ampliier (op-amp) orms the basic building block o many analogue systems. t comes in a neat integrated circuit package and is cheap and easy to use. The op-amp gets its name rom

More information

Satellite Communications: Part 4 Signal Distortions & Errors and their Relation to Communication Channel Specifications. Howard Hausman April 1, 2010

Satellite Communications: Part 4 Signal Distortions & Errors and their Relation to Communication Channel Specifications. Howard Hausman April 1, 2010 Satellite Communications: Part 4 Signal Distortions & Errors and their Relation to Communication Channel Specifications Howard Hausman April 1, 2010 Satellite Communications: Part 4 Signal Distortions

More information

1 Introduction: frequency stability and accuracy

1 Introduction: frequency stability and accuracy Content 1 Introduction: frequency stability and accuracy... Measurement methods... 4 Beat Frequency method... 4 Advantages... 4 Restrictions... 4 Spectrum analyzer method... 5 Advantages... 5 Restrictions...

More information

Philadelphia University Faculty of Engineering Communication and Electronics Engineering. Amplifier Circuits-IV

Philadelphia University Faculty of Engineering Communication and Electronics Engineering. Amplifier Circuits-IV Module: Electronics II Module Number: 6503 Philadelphia University Faculty o Engineering Communication and Electronics Engineering Ampliier Circuits-IV Oscillators and Linear Digital IC's: Oscillators:

More information

Keysight Technologies

Keysight Technologies Keysight Technologies Generating Signals Basic CW signal Block diagram Applications Analog Modulation Types of analog modulation Block diagram Applications Digital Modulation Overview of IQ modulation

More information

DCNTS Phase Noise Analyzer 2 MHz to 1.8 / 26 / 50 / 140 GHz

DCNTS Phase Noise Analyzer 2 MHz to 1.8 / 26 / 50 / 140 GHz DCNTS Phase Noise Analyzer 2 MHz to 1.8 / 26 / 50 / 140 GHz Datasheet The DCNTS is the highest performance Phase Noise Analyzer with unique flexible capabilities as summarized below: Phase Noise Amplitude

More information

레이저의주파수안정화방법및그응용 박상언 ( 한국표준과학연구원, 길이시간센터 )

레이저의주파수안정화방법및그응용 박상언 ( 한국표준과학연구원, 길이시간센터 ) 레이저의주파수안정화방법및그응용 박상언 ( 한국표준과학연구원, 길이시간센터 ) Contents Frequency references Frequency locking methods Basic principle of loop filter Example of lock box circuits Quantifying frequency stability Applications

More information

Accurate Phase Noise Measurements Made Cost Effective

Accurate Phase Noise Measurements Made Cost Effective MTTS 2008 MicroApps Accurate Phase Noise Measurements Made Cost Effective author : Jason Breitbarth, PhD. Boulder, Colorado, USA Presentation Outline Phase Noise Intro Additive and Absolute Oscillator

More information

Signals and Systems II

Signals and Systems II 1 To appear in IEEE Potentials Signals and Systems II Part III: Analytic signals and QAM data transmission Jerey O. Coleman Naval Research Laboratory, Radar Division This six-part series is a mini-course,

More information

Amale Kanj, Joseph Achkar and Daniele Rovera

Amale Kanj, Joseph Achkar and Daniele Rovera Amale Kanj, Joseph Achkar and Daniele Rovera LNE-SYRTE, Observatoire de Paris/LNE/CNRS/UPMC, Paris amale.kanj@obspm.r Introduction and motivation Principle o TWSTFT carrier phase technique TWSTFT equation

More information

Integrated Microwave Assemblies

Integrated Microwave Assemblies Integrated Microwave Assemblies Integrated Microwave Assembly (IMA) Custom Solutions For more information please call us at 888.553.7531 API Technologies, a world class leader in component design and system

More information

Optical Delay Line Application Note

Optical Delay Line Application Note 1 Optical Delay Line Application Note 1.1 General Optical delay lines system (ODL), incorporates a high performance lasers such as DFBs, optical modulators for high operation frequencies, photodiodes,

More information

Angle Modulated Systems

Angle Modulated Systems Angle Modulated Systems Angle of carrier signal is changed in accordance with instantaneous amplitude of modulating signal. Two types Frequency Modulation (FM) Phase Modulation (PM) Use Commercial radio

More information

FCC and ETSI Requirements for Short-Range UHF ASK- Modulated Transmitters

FCC and ETSI Requirements for Short-Range UHF ASK- Modulated Transmitters From December 2005 High Frequency Electronics Copyright 2005 Summit Technical Media FCC and ETSI Requirements for Short-Range UHF ASK- Modulated Transmitters By Larry Burgess Maxim Integrated Products

More information

A Low 1/f Noise CMOS Low-Dropout Regulator with Current-Mode Feedback Buffer Amplifier

A Low 1/f Noise CMOS Low-Dropout Regulator with Current-Mode Feedback Buffer Amplifier A Low 1/ Noise CMOS Low-Dropout Regulator with Current-Mode Feedback Buer Ampliier Wonseok Oh, Bertan Bakkaloglu, Bhaskar Aravind*, Siew Kuok Hoon* Arizona State University *Texas Instruments Inc Motivation

More information

Keysight Technologies Phase Noise X-Series Measurement Application

Keysight Technologies Phase Noise X-Series Measurement Application Keysight Technologies Phase Noise X-Series Measurement Application N9068C Technical Overview Phase noise measurements with log plot and spot frequency views Spectrum and IQ waveform monitoring for quick

More information

Phase Noise and Tuning Speed Optimization of a MHz Hybrid DDS-PLL Synthesizer with milli Hertz Resolution

Phase Noise and Tuning Speed Optimization of a MHz Hybrid DDS-PLL Synthesizer with milli Hertz Resolution Phase Noise and Tuning Speed Optimization of a 5-500 MHz Hybrid DDS-PLL Synthesizer with milli Hertz Resolution BRECHT CLAERHOUT, JAN VANDEWEGE Department of Information Technology (INTEC) University of

More information

Fundamentals of Spectrum Analysis. Christoph Rauscher

Fundamentals of Spectrum Analysis. Christoph Rauscher Fundamentals o Spectrum nalysis Christoph Rauscher Christoph Rauscher Volker Janssen, Roland Minihold Fundamentals o Spectrum nalysis Rohde & Schwarz GmbH & Co. KG, 21 Mühldorstrasse 15 81671 München Germany

More information

Jitter Measurements using Phase Noise Techniques

Jitter Measurements using Phase Noise Techniques Jitter Measurements using Phase Noise Techniques Agenda Jitter Review Time-Domain and Frequency-Domain Jitter Measurements Phase Noise Concept and Measurement Techniques Deriving Random and Deterministic

More information

Fundamentals Of Commercial Doppler Systems

Fundamentals Of Commercial Doppler Systems Fundamentals Of Commercial Doppler Systems Speed, Motion and Distance Measurements I. Introduction MDT manufactures a large variety of microwave oscillators, transceivers, and other components for the

More information

LNS ultra low phase noise Synthesizer 8 MHz to 18 GHz

LNS ultra low phase noise Synthesizer 8 MHz to 18 GHz LNS ultra low phase noise Synthesizer 8 MHz to 18 GHz Datasheet The LNS is an easy to use 18 GHz synthesizer that exhibits outstanding phase noise and jitter performance in a 3U rack mountable chassis.

More information

small signal linear gain G s is: More realistically, oscillation occurs at frequencies where the G 2 Oscillation frequency is controlled by

small signal linear gain G s is: More realistically, oscillation occurs at frequencies where the G 2 Oscillation frequency is controlled by VOLTAGE CONTROLLED OSCILLATORS (VCOs) VCOs are RF oscillators whose actual output frequency can be controlled by the voltage present at a control (tuning) port. Barkhausen Criterion: Systems breaks into

More information

Optimizing Reception Performance of new UWB Pulse shape over Multipath Channel using MMSE Adaptive Algorithm

Optimizing Reception Performance of new UWB Pulse shape over Multipath Channel using MMSE Adaptive Algorithm IOSR Journal o Engineering (IOSRJEN) ISSN (e): 2250-3021, ISSN (p): 2278-8719 Vol. 05, Issue 01 (January. 2015), V1 PP 44-57 www.iosrjen.org Optimizing Reception Perormance o new UWB Pulse shape over Multipath

More information

Simulation of Radio Frequency Integrated Circuits

Simulation of Radio Frequency Integrated Circuits Simulation o Radio Frequency Integrated Circuits Based on: Computer-Aided Circuit Analysis Tools or RFIC Simulation: Algorithms, Features, and Limitations, IEEE Trans. CAS-II, April 2000. Outline Introduction

More information

WAVES BEATS: INTERFERENCE IN TIME

WAVES BEATS: INTERFERENCE IN TIME VISUAL PHYSICS ONLINE WAVES BEATS: INTERFERENCE IN TIME Beats is an example o the intererence o two waves in the time domain. Loud-sot-loud modulations o intensity are produced when waves o slightly dierent

More information

Lecture Topics. Doppler CW Radar System, FM-CW Radar System, Moving Target Indication Radar System, and Pulsed Doppler Radar System

Lecture Topics. Doppler CW Radar System, FM-CW Radar System, Moving Target Indication Radar System, and Pulsed Doppler Radar System Lecture Topics Doppler CW Radar System, FM-CW Radar System, Moving Target Indication Radar System, and Pulsed Doppler Radar System 1 Remember that: An EM wave is a function of both space and time e.g.

More information

SC5307A/SC5308A 100 khz to 6 GHz RF Downconverter. Datasheet SignalCore, Inc.

SC5307A/SC5308A 100 khz to 6 GHz RF Downconverter. Datasheet SignalCore, Inc. SC5307A/SC5308A 100 khz to 6 GHz RF Downconverter Datasheet 2017 SignalCore, Inc. support@signalcore.com P RODUCT S PECIFICATIONS Definition of Terms The following terms are used throughout this datasheet

More information

ECEN474/704: (Analog) VLSI Circuit Design Spring 2016

ECEN474/704: (Analog) VLSI Circuit Design Spring 2016 ECEN474/704: (Analo) LSI Circuit Desin Sprin 016 Lecture 11: Noise Sam Palermo Analo & Mixed-Sinal Center Texas A&M Uniersity Announcements HW3 is due today HW4 is due Mar 30 Exam is on Apr 4 9:10-10:35PM

More information

Technician License Course Chapter 3 Types of Radios and Radio Circuits. Module 7

Technician License Course Chapter 3 Types of Radios and Radio Circuits. Module 7 Technician License Course Chapter 3 Types of Radios and Radio Circuits Module 7 Radio Block Diagrams Radio Circuits can be shown as functional blocks connected together. Knowing the description of common

More information

Analog and Telecommunication Electronics

Analog and Telecommunication Electronics Politecnico di Torino - ICT School Analog and Telecommunication Electronics B1 - Radio systems architecture» Basic radio systems» Image rejection» Digital and SW radio» Functional units AY 2015-16 05/03/2016-1

More information

RF Signal Generators. SG380 Series DC to 2 GHz, 4 GHz and 6 GHz analog signal generators. SG380 Series RF Signal Generators

RF Signal Generators. SG380 Series DC to 2 GHz, 4 GHz and 6 GHz analog signal generators. SG380 Series RF Signal Generators RF Signal Generators SG380 Series DC to 2 GHz, 4 GHz and 6 GHz analog signal generators SG380 Series RF Signal Generators DC to 2 GHz, 4 GHz or 6 GHz 1 μhz resolution AM, FM, ΦM, PM and sweeps OCXO timebase

More information

1. Motivation. 2. Periodic non-gaussian noise

1. Motivation. 2. Periodic non-gaussian noise . Motivation One o the many challenges that we ace in wireline telemetry is how to operate highspeed data transmissions over non-ideal, poorly controlled media. The key to any telemetry system design depends

More information

Detection and direction-finding of spread spectrum signals using correlation and narrowband interference rejection

Detection and direction-finding of spread spectrum signals using correlation and narrowband interference rejection Detection and direction-inding o spread spectrum signals using correlation and narrowband intererence rejection Ulrika Ahnström,2,JohanFalk,3, Peter Händel,3, Maria Wikström Department o Electronic Warare

More information

Lab Assignment #3 Analog Modulation (An Introduction to RF Signal, Noise and Distortion Measurements in the Frequency Domain)

Lab Assignment #3 Analog Modulation (An Introduction to RF Signal, Noise and Distortion Measurements in the Frequency Domain) Lab Assignment #3 Analog Modulation (An Introduction to RF Signal, Noise and Distortion Measurements in the Frequency Domain) By: Timothy X Brown, Olivera Notaros, Nishant Jadhav TLEN 5320 Wireless Systems

More information

Bode Plot based Auto-Tuning Enhanced Solution for High Performance Servo Drives

Bode Plot based Auto-Tuning Enhanced Solution for High Performance Servo Drives Bode lot based Auto-Tuning Enhanced Solution or High erormance Servo Drives. O. Krah Danaher otion GmbH Wachholder Str. 4-4 4489 Düsseldor Germany Email: j.krah@danaher-motion.de Tel. +49 3 9979 133 Fax.

More information

EXPERIMENT 7 NEGATIVE FEEDBACK and APPLICATIONS

EXPERIMENT 7 NEGATIVE FEEDBACK and APPLICATIONS PH315 A. La osa EXPEIMENT 7 NEGATIE FEEDBACK and APPLICATIONS I. PUPOSE: To use various types o eedback with an operational ampliier. To build a gaincontrolled ampliier, an integrator, and a dierentiator.

More information

( ) D. An information signal x( t) = 5cos( 1000πt) LSSB modulates a carrier with amplitude A c

( ) D. An information signal x( t) = 5cos( 1000πt) LSSB modulates a carrier with amplitude A c An inormation signal x( t) 5cos( 1000πt) LSSB modulates a carrier with amplitude A c 1. This signal is transmitted through a channel with 30 db loss. It is demodulated using a synchronous demodulator.

More information

Using The Bessel Null Method To Verify FM Deviation Measurements By Dave Engelder, Agilent Technologies, Inc.

Using The Bessel Null Method To Verify FM Deviation Measurements By Dave Engelder, Agilent Technologies, Inc. Using The Bessel Null Method To Verify FM Deviation Measurements By Dave Engelder, Agilent Technologies, Inc. Frequency modulation (FM) has been used in various radio frequency (RF) transmitters and receivers

More information

Outline. Wireless PHY: Modulation and Demodulation. Admin. Page 1. G[k] = 1 T. g(t)e j2πk t dt. G[k] = = k L. ) = g L (t)e j2π f k t dt.

Outline. Wireless PHY: Modulation and Demodulation. Admin. Page 1. G[k] = 1 T. g(t)e j2πk t dt. G[k] = = k L. ) = g L (t)e j2π f k t dt. Outline Wireless PHY: Modulation and Demodulation Y. Richard Yang Admin and recap Basic concepts o modulation Amplitude modulation Amplitude demodulation requency shiting 9/6/22 2 Admin First assignment

More information

EE-4022 Experiment 3 Frequency Modulation (FM)

EE-4022 Experiment 3 Frequency Modulation (FM) EE-4022 MILWAUKEE SCHOOL OF ENGINEERING 2015 Page 3-1 Student Objectives: EE-4022 Experiment 3 Frequency Modulation (FM) In this experiment the student will use laboratory modules including a Voltage-Controlled

More information

) 3.75 sin 2 10 t 25 sin(6 10 t )

) 3.75 sin 2 10 t 25 sin(6 10 t ) Hoework NAME Solutions EE 442 Hoework #6 Solutions (Spring 2018 Due April 2, 2018 ) Print out hoework and do work on the printed pages. Proble 1 Tone-Modulated FM Signal (12 points) A 100 MHz carrier wave

More information