Making Noise in RF Receivers Simulate Real-World Signals with Signal Generators

Size: px
Start display at page:

Download "Making Noise in RF Receivers Simulate Real-World Signals with Signal Generators"

Transcription

1 Making Noise in RF Receivers Simulate Real-World Signals with Signal Generators Noise is an unwanted signal. In communication systems, noise affects both transmitter and receiver performance. It degrades both the modulation quality of a transmitter and the sensitivity of a receiver. Because of this, noise reduction in electronic devices is in the best interest of R&D engineers. However, to simulate a realistic environment you need to inject a noise signal into your design. The noise signal needs to be simple and based on mathematical models. The additive white Gaussian noise (AWGN) is the most common noise for receiver performance test. Another common noise in RF systems is phase noise. Adding phase noise impairment for accurate signal substitution or tolerance testing is helpful in evaluating and troubleshooting your device under test (DUT). In this white paper, you will learn what the AWGN and phase noise are and how to correctly and accurately apply the noise to your desired signal for receiver performance test. Find us at Page 1

2 Adding Real-Time Noise to a Signal What is AWGN and Why It is Important? Noise is part of all communications channels. The Shannon-Hartley theorem below tells you the maximum rate at which information can be transmitted over a communication channel within a specified bandwidth with the presence of noise. C = B * Log2 (1+S/N) where: C is the channel capacity in bits per second (bit/s). B is the signal bandwidth in Hz. S is the average received power over the bandwidth in watts. N is the average power of the noise over the bandwidth in watts. To simulate realistic channel conditions in a repeatable manner, you must add random noise to the desired signal. AWGN is a mathematical model that is used to simulate the channel between the transmitter and the receiver. The model is a linear addition of wideband noise with a constant spectral density and a Gaussian distribution of amplitude. AWGN does not apply to fading, intermodulation, and interference tests. Taking LTE enb receiver tests (3GPP TS ) as an example, apply AWGN to the desired LTE signal for enb dynamic range test in section 7.3 and all non-multipath receiver performance test cases in clause 8. The dynamic range test is specified as a measurement of the capability of the receiver to receive the desired signal in the presence of an interference (AWGN) in the received channel. Figure 1 illustrates a common receiver performance test setup. It requires a signal generator to generate the wanted signal and another one to generate the AWGN. Use a combiner to combine the signals and connect to a DUT. Ensure the isolation between the two signal generators is good enough so that they do not impact the other unit s ALC (automatic leveling control) operation. Figure 1. Measurement system setup for receiver dynamic range test Find us at Page 2

3 The signal generators for receiver tests need AWGN generation capabilities. The following figure depicts the relationship between the carrier signal, AWGN bandwidth, and power. Carrier bandwidth is the occupied bandwidth of the carrier, and the noise bandwidth is the flat noise bandwidth. The actual flat noise bandwidth should be slightly wider than the carrier bandwidth (typically 1.6 times wider). When you combine the carrier and AWGN signal for receiver tests, the carrier now appears larger because of the added noise power. Figure 2. Add AWGN to the wanted signal for receiver tests Table 1 represents the signal level setup following 3GPP TS section 7.3 receiver dynamic range test for 5 and 10 MHz channel bandwidth. The signal levels depend on the channel bandwidths and base station types. The throughput should be less than 95% of the possible maximum throughput of the reference measurement channel. LTE channel bandwidth (MHz) Reference measurement channel 5 FRC A FRC A2-3 Base station type Wanted signal mean power (dbm) Interfering signal mean power (dbm) Wide area Mid-range BS Local area Home BS Wide area Mid-range BS Local area Home BS C/N (db) Table 1. LTE receiver dynamic range test requirement Find us at Page 3

4 It is important to measure the noise power seen within carrier bandwidth as shown in yellow in Figure 2. By knowing your noise power value, you can calculate the carrier to noise ratio (C/N). Additionally, most standards use energy per bit over noise power density at the receiver (Eb/No) to characterize their receiver as opposed to C/N. However, this requires you to know the carrier bit rate. Below is the equation used to convert C/N to Eb/No. (E b/n o) db = C/N db - 10 log 10 (bit rate/carrier bandwidth) It will be very tedious to create the wanted and interfering signals with the specified C/N for different channel bandwidth and base station type. There are ways you can simplify the measurement setups. Simplify Your Measurement Setup Using Real-Time I/Q Baseband AWGN The additional measurements and calculation required to make receiver measurements setup more tedious. Luckily, with evolving digital signal processing (DSP) technology, signal generators add real-time noise (AWGN) to the baseband waveforms digitally. This provides a very accurate amplitude level for both the carrier and noise signal. You don t need to worry about the correction of external accessories. In addition, you can easily select either C/N or Eb/No as the variable controlling the ratio of the carrier power to noise power in the carrier bandwidth. A vector signal generator (VSG) enables you to add AWGN to a carrier in real time. You can easily apply real-time AWGN to the wanted signal using the signal generator s internal DSP. This can be accomplished by using a single vector signal generator. Figure 3 shows the setup of real-time AWGN. You can select different power control modes as a reference Total, Carrier, Total Noise, and Channel Noise. For example, if you select power control mode Total, the mode makes the total power and C/N (or Eb/No) independent variables, while making the carrier power and total noise power dependent variables. Figure 3. The setup of AWGN on Keysight MXG N5182B Find us at Page 4

5 Test Case Manager for LTE & LTE-Advanced FDD/TDD enb Receiver Tests The Keysight N7649B Test Case Manager software tool offers a simple and easy-to-use user interface and works with the Keysight Signal Studio software to perform standard-required conformance tests. Test Case Manager (TCM) reduces the time you spend on configuration by creating signals that are compliant with the conformance test requirements and automatically setting up the signal generators. Figure 4 shows the user interface for setting the 3GPP TS section 7.3 Receiver Dynamic Range and the base station type Wide area. You just need to configure channel frequency and bandwidth. Figure 4. Test Case Manager setup for 3GPP TS section 7.3 Find us at Page 5

6 Optimize Signal Generator s Phase Noise Profile Signal generators provide several ways to optimize phase noise for your applications. Let s start with signal generators phase noise profile and when the profile impacts your measurements. Then you will learn how to optimize a signal generator s phase noise profile for your applications. What is Phase Noise? Phase noise is a frequency-domain view of the noise spectrum around the oscillator signal. It describes the frequency stability of an oscillator. Frequency stability can be broken into two components: long-term stability and short-term stability. Long-term stability (e.g. accuracy, drift, and aging) is characterized in terms of hours, days, months, or years. Short-term stability (e.g. phase noise) occurs in a few seconds or less. The short-term variations have a greater effect on systems, especially for phase noise. Let s take a closer look at phase noise measurement. Unit of Measure The most commonly used phase noise unit of measure is the single-sideband (SSB) power within onehertz bandwidth at a specific frequency away from the carrier frequency power. (f) = Noise power in a 1-Hz Bandwidth / total signal power where (f) has units of dbc/hz. Figure 5 represents SSB phase noise measurement results. Both frequency and amplitude are in log scale. The log plot shows phase noise measurements over the range of frequencies specified by the minimum and maximum offset frequencies. The yellow trace is a raw measurement result, and the blue trace is a smoothened result. The table below lists the decade frequency offsets and the corresponding noise power (normalized to a 1 Hz bandwidth). Figure 5. SSB phase noise measurement with a log plot and decade table Find us at Page 6

7 Signal Generators Architecture and Phase Noise Most signal generator architecture includes reference oscillator, synthesizer, voltage-controlled/yig oscillator, and output section. Each component has different effects on the phase noise characteristics as shown in Figure 6. For offsets below 1 khz, the noise is dominated by the performance of the reference oscillator, which is multiplied up to the carrier frequency. From offsets 1 khz to roughly 100 khz, synthesizer influences the most. The VCO/YIG oscillator is from 100 khz to 2 MHz, and the output amplifier is at offsets above 2 MHz. Next, we will discuss measurement applications and how to optimize phase noise to meet the test needs. Figure 6. Contributions to the phase noise performance When Phase Noise Matters Signal source phase noise performance is a key factor in obtaining accurate measurements. It can be a limiting factor for specific applications in aerospace and defense, as well as in digital communications. It is important to understand the impact of phase noise on your tests. Radar Applications Radar systems require excellent phase noise performance. A radar transmits pulses at a specific frequency and measures the change of each returning pulse s frequency. Each returning pulse s change in frequency is related to the velocity of the moving object based on the Doppler Effect. If the object moves very slowly, the frequency shift of the returning pulse is small. In Figure 7 below, the returning pulse of a moving object is the signal of interest, and the returning pulse of a fixed object (e.g. ground) is the interfering signal. The radar receiver cannot identify the moving object if the downconverted signal of interest is masked by the phase noise. Find us at Page 7

8 Figure 7. Poor LO phase noise affects radar receiver sensitivity Digital Modulation Let's look at digital modulation. Figure 8 represents a simplified QPSK digital receiver block diagram. The phase noise of the LO signal is translated into the output of the mixers. The direct effect of the phase noise on the constellation diagram is the radial smearing of the symbols (as shown in green). For a high order modulation scheme (e.g. 256 QAM), the symbols are closer, and the symbols smearing results in a bad receiver sensitivity and higher bit error rate (BER). Figure 8. A simplified digital receiver block diagram with a poor phase noise LO Find us at Page 8

9 Orthogonal Frequency-Division Multiplexing (OFDM) OFDM is a popular modulation scheme for wideband digital communication. OFDM uses many closely spaced orthogonal sub-carrier signals to transmit data in parallel as shown in Figure 9 below. During frequency conversion with a poor phase noise LO, the sub-carrier with phase noise spreads into other sub-carriers as interference. The phase noise degrades the modulation quality of the OFDM signal. Figure 9. OFDM signal upconvert with a poor phase noise LO Table 1 below illustrates sub-carrier spacing of modern wireless standards using OFDM modulation scheme. Sub-carrier spacing IEEE ac IEEE ax khz khz LTE/LTE-A 7.5, 15 khz 5G NR 15, 30, 60, 120, 240, 480 khz Table 1. Sub-carrier spacing of OFDM signals. From the above table, the sub-carrier spacings are located in a signal generator s synthesizer or oscillator session. In order to get the best performance of modulation quality, you need to reduce the carrier s phase noise of specific frequency offset as low as possible. Find us at Page 9

10 Optimize Signal Generator s Phase Noise Close to Carrier Phase Noise Reference Phase-Lock Loop (PLL) Bandwidth At frequency offsets below approximately 1 khz, the stability and phase noise are determined by the internal or external frequency reference. It is straightforward to have a stable and extremely low phase noise reference oscillator that improves the carrier s phase noise in the offset frequency range below 1 khz. Keysight PSG signal generator offers options to improve close-in phase noise. The reference oscillator bandwidth (sometimes referred to as loop bandwidth) in the signal generator is adjustable in fixed steps for either an internal or external 10 MHz frequency reference. You can optimize the phase noise performance of the signal generator for your applications. Figure 10 shows phase noise curves with the different setting of oscillator bandwidth. The PSG with Option UNR/UNX/ UNY is adjustable in fixed steps for either an internal or external 10 MHz frequency reference. Figure 10. Reference oscillator s PLL bandwidth adjustments Find us at Page 10

11 Synthesizer Session PLL Bandwidth In the synthesizer session, you can set the phase-lock loop (PLL) bandwidth to optimize phase noise above or below 150 khz on Keysight PSG signal generators, as shown in the figure below. The light blue curve is optimized for < 150 khz frequency offset and the yellow curve is optimized for > 150 khz. Evaluate your application to choose the appropriate phase noise setting for wider offset frequencies. This capability is supported on all PSG models with Option UNY. Figure 11. Optimizing pedestal phase noise Learn about phase noise signal generator fundamentals and ways to optimize phase noise for your application. Download the application note Understanding Phase Noise Needs and Choices in Signal Generation. Find us at Page 11

12 Phase Noise Impairment Optimizing phase noise performance is not always necessary or even desirable. Some applications and tests require a specific amount of phase noise for accurate signal substitution or tolerance testing of phase noise. Keysight RF signal generator N5182B/N5172B allows users to adjust phase noise impairment of the synthesizer section. This feature allows you to degrade the phase noise performance of the signal generator by controlling two frequency points and amplitude values as shown in Figure 12. The signal generator bases the resultant phase noise shape on three settings Lmid (amplitude), f1 (start frequency), and f2 (stop frequency). This customized phase noise is produced by internal algorithms of the signal generator operating on a real-time baseband ASIC and processor accelerator. This allows you to simulate a more realistic signal and is helpful in evaluating and troubleshooting your device under test. This feature is available only in Keysight X-Series vector signal generators. Figure 12. Phase noise impairment setting and measurement Find us at Page 12

13 Conclusion Signal generators provide precise, highly stable test signals for a variety of component and system test applications. Performance requirements vary for different applications. Keysight s signal generators offer flexibility and capabilities to optimize performance and simplify measurement setups. The best solutions will come from your experience, insight, and creativity, combined with signal generators and measurement software that allow you to generate the signals required to effectively test your DUT. For more tips on making better measurements, visit the RF Test blog. For more information about Keysight signal generators, visit Learn more at: For more information on Keysight Technologies products, applications or services, please contact your local Keysight office. The complete list is available at: Find us at Page 13 This information is subject to change without notice. Keysight Technologies, 2018, Published in USA, October 30, 2018, EN

9 Best Practices for Optimizing Your Signal Generator Part 2 Making Better Measurements

9 Best Practices for Optimizing Your Signal Generator Part 2 Making Better Measurements 9 Best Practices for Optimizing Your Signal Generator Part 2 Making Better Measurements In consumer wireless, military communications, or radar, you face an ongoing bandwidth crunch in a spectrum that

More information

Improving Amplitude Accuracy with Next-Generation Signal Generators

Improving Amplitude Accuracy with Next-Generation Signal Generators Improving Amplitude Accuracy with Next-Generation Signal Generators Generate True Performance Signal generators offer precise and highly stable test signals for a variety of components and systems test

More information

The Essential Signal Generator Guide

The Essential Signal Generator Guide The Essential Signal Generator Guide Building a Solid Foundation in RF Part 2 Introduction Having a robust and reliable high-speed wireless connection helps win and retain customers. It has quickly become

More information

Understanding Low Phase Noise Signals. Presented by: Riadh Said Agilent Technologies, Inc.

Understanding Low Phase Noise Signals. Presented by: Riadh Said Agilent Technologies, Inc. Understanding Low Phase Noise Signals Presented by: Riadh Said Agilent Technologies, Inc. Introduction Instabilities in the frequency or phase of a signal are caused by a number of different effects. Each

More information

Transmission Signal Quality Comparison of SCM and OFDM according to the Phase Noise Characteristics of the Local Oscillator

Transmission Signal Quality Comparison of SCM and OFDM according to the Phase Noise Characteristics of the Local Oscillator Transmission Signal Quality Comparison of SCM and OFDM according to the Phase Noise Characteristics of the Local Oscillator Gwang-Yeol You*, Seung-Chul SHIN** * Electronic Measurement Group, Wireless Communication

More information

Keysight Technologies 8 Hints for Making Better Measurements Using RF Signal Generators. Application Note

Keysight Technologies 8 Hints for Making Better Measurements Using RF Signal Generators. Application Note Keysight Technologies 8 Hints for Making Better Measurements Using RF Signal Generators Application Note 02 Keysight 8 Hints for Making Better Measurements Using RF Signal Generators - Application Note

More information

Signal Studio for IoT

Signal Studio for IoT Signal Studio for IoT N7610C TECHNICAL OVERVIEW Create Keysight validated and performance-optimized reference signals compliant to IEEE 802.15.4 (for ZigBee), 802.15.4g (for Wi-SUN), LoRa CSS and ITU-T

More information

LTE: System Specifications and Their Impact on RF & Base Band Circuits Application Note

LTE: System Specifications and Their Impact on RF & Base Band Circuits Application Note LTE: System Specifications and Their Impact on RF & Base Band Circuits Application Note Products: R&S FSW R&S SMU R&S SFU R&S FSV R&S SMJ R&S FSUP RF physical layer specifications (such as 3GPP TS36.104)

More information

Keysight Technologies

Keysight Technologies Keysight Technologies Generating Signals Basic CW signal Block diagram Applications Analog Modulation Types of analog modulation Block diagram Applications Digital Modulation Overview of IQ modulation

More information

TECH BRIEF Addressing Phase Noise Challenges in Radar and Communication Systems

TECH BRIEF Addressing Phase Noise Challenges in Radar and Communication Systems Addressing Phase Noise Challenges in Radar and Communication Systems Phase noise is rapidly becoming the most critical factor addressed in sophisticated radar and communication systems. This is because

More information

Exploring Trends in Technology and Testing in Satellite Communications

Exploring Trends in Technology and Testing in Satellite Communications Exploring Trends in Technology and Testing in Satellite Communications Aerospace Defense Symposium Giuseppe Savoia Keysight Technologies Agenda Page 2 Evolving military and commercial satellite communications

More information

Transmitter Design and Measurement Challenges

Transmitter Design and Measurement Challenges Transmitter Design and Measurement Challenges Based on the book: LTE and the Evolution to 4G Wireless Chapter 6.4 4G World 2009 presented by: David L. Barner www/agilent.com/find/4gworld 1 Agilent Technologies,

More information

Keysight Technologies MIMO Performance and Condition Number in LTE Test. Application Note

Keysight Technologies MIMO Performance and Condition Number in LTE Test. Application Note Keysight Technologies MIMO Performance and Condition Number in LTE Test Application Note Introduction As companies rush to get Long Term Evolution (LTE) products to market, engineers face tough challenges

More information

Satellite Communications: Part 4 Signal Distortions & Errors and their Relation to Communication Channel Specifications. Howard Hausman April 1, 2010

Satellite Communications: Part 4 Signal Distortions & Errors and their Relation to Communication Channel Specifications. Howard Hausman April 1, 2010 Satellite Communications: Part 4 Signal Distortions & Errors and their Relation to Communication Channel Specifications Howard Hausman April 1, 2010 Satellite Communications: Part 4 Signal Distortions

More information

Top 5 Challenges for 5G New Radio Device Designers

Top 5 Challenges for 5G New Radio Device Designers WHITE PAPER Top 5 Challenges for 5G New Radio Device Designers 5G New Radio (NR) Release-15, introduced in December 2017, lays the foundation for ultra-fast download speeds, reliable low latency connections,

More information

2015 The MathWorks, Inc. 1

2015 The MathWorks, Inc. 1 2015 The MathWorks, Inc. 1 What s Behind 5G Wireless Communications? 서기환과장 2015 The MathWorks, Inc. 2 Agenda 5G goals and requirements Modeling and simulating key 5G technologies Release 15: Enhanced Mobile

More information

Recap of Last 2 Classes

Recap of Last 2 Classes Recap of Last 2 Classes Transmission Media Analog versus Digital Signals Bandwidth Considerations Attentuation, Delay Distortion and Noise Nyquist and Shannon Analog Modulation Digital Modulation What

More information

UTILIZATION OF AN IEEE 1588 TIMING REFERENCE SOURCE IN THE inet RF TRANSCEIVER

UTILIZATION OF AN IEEE 1588 TIMING REFERENCE SOURCE IN THE inet RF TRANSCEIVER UTILIZATION OF AN IEEE 1588 TIMING REFERENCE SOURCE IN THE inet RF TRANSCEIVER Dr. Cheng Lu, Chief Communications System Engineer John Roach, Vice President, Network Products Division Dr. George Sasvari,

More information

Waveform Design Choices for Wideband HF

Waveform Design Choices for Wideband HF Waveform Design Choices for Wideband HF J. W. Nieto Harris Corporation RF Communications Division HFIA 2009, #1 Presentation Overview Motivation Waveforms Design Objectives Waveform Choices Summary HFIA

More information

TESTING METHODS AND ERROR BUDGET ANALYSIS OF A SOFTWARE DEFINED RADIO By Richard Overdorf

TESTING METHODS AND ERROR BUDGET ANALYSIS OF A SOFTWARE DEFINED RADIO By Richard Overdorf TESTING METHODS AND ERROR BUDGET ANALYSIS OF A SOFTWARE DEFINED RADIO By Richard Overdorf SDR Considerations Data rates Voice Image Data Streaming Video Environment Distance Terrain High traffic/low traffic

More information

Keysight Technologies Understanding the SystemVue To ADS Simulation Bridge. Application Note

Keysight Technologies Understanding the SystemVue To ADS Simulation Bridge. Application Note Keysight Technologies Understanding the To Simulation Bridge Application Note Introduction The Keysight Technologies, Inc. is a new system-level design environment that enables a top-down, model-based

More information

Lab 3.0. Pulse Shaping and Rayleigh Channel. Faculty of Information Engineering & Technology. The Communications Department

Lab 3.0. Pulse Shaping and Rayleigh Channel. Faculty of Information Engineering & Technology. The Communications Department Faculty of Information Engineering & Technology The Communications Department Course: Advanced Communication Lab [COMM 1005] Lab 3.0 Pulse Shaping and Rayleigh Channel 1 TABLE OF CONTENTS 2 Summary...

More information

Local Oscillator Phase Noise Influence on Single Carrier and OFDM Modulations

Local Oscillator Phase Noise Influence on Single Carrier and OFDM Modulations Local Oscillator Phase Noise Influence on Single Carrier and OFDM Modulations Vitor Fialho,2, Fernando Fortes 2,3, and Manuela Vieira,2 Universidade Nova de Lisboa Faculdade de Ciências e Tecnologia DEE

More information

HD Radio FM Transmission. System Specifications

HD Radio FM Transmission. System Specifications HD Radio FM Transmission System Specifications Rev. G December 14, 2016 SY_SSS_1026s TRADEMARKS HD Radio and the HD, HD Radio, and Arc logos are proprietary trademarks of ibiquity Digital Corporation.

More information

What s Behind 5G Wireless Communications?

What s Behind 5G Wireless Communications? What s Behind 5G Wireless Communications? Marc Barberis 2015 The MathWorks, Inc. 1 Agenda 5G goals and requirements Modeling and simulating key 5G technologies Release 15: Enhanced Mobile Broadband IoT

More information

Agile Low-Noise Frequency Synthesizer A. Ridenour R. Aurand Spectrum Microwave

Agile Low-Noise Frequency Synthesizer A. Ridenour R. Aurand Spectrum Microwave Agile Low-Noise Frequency Synthesizer A. Ridenour R. Aurand Spectrum Microwave Abstract Simultaneously achieving low phase noise, fast switching speed and acceptable levels of spurious outputs in microwave

More information

Integrated Solutions for Testing Wireless Communication Systems

Integrated Solutions for Testing Wireless Communication Systems TOPICS IN RADIO COMMUNICATIONS Integrated Solutions for Testing Wireless Communication Systems Dingqing Lu and Zhengrong Zhou, Agilent Technologies Inc. ABSTRACT Wireless communications standards have

More information

PXI LTE FDD and LTE TDD Measurement Suites Data Sheet

PXI LTE FDD and LTE TDD Measurement Suites Data Sheet PXI LTE FDD and LTE TDD Measurement Suites Data Sheet The most important thing we build is trust A production ready ATE solution for RF alignment and performance verification UE Tx output power Transmit

More information

Local Oscillator Phase Noise and its effect on Receiver Performance C. John Grebenkemper

Local Oscillator Phase Noise and its effect on Receiver Performance C. John Grebenkemper Watkins-Johnson Company Tech-notes Copyright 1981 Watkins-Johnson Company Vol. 8 No. 6 November/December 1981 Local Oscillator Phase Noise and its effect on Receiver Performance C. John Grebenkemper All

More information

B SCITEQ. Transceiver and System Design for Digital Communications. Scott R. Bullock, P.E. Third Edition. SciTech Publishing, Inc.

B SCITEQ. Transceiver and System Design for Digital Communications. Scott R. Bullock, P.E. Third Edition. SciTech Publishing, Inc. Transceiver and System Design for Digital Communications Scott R. Bullock, P.E. Third Edition B SCITEQ PUBLISHtN^INC. SciTech Publishing, Inc. Raleigh, NC Contents Preface xvii About the Author xxiii Transceiver

More information

PXI LTE/LTE-A Downlink (FDD and TDD) Measurement Suite Data Sheet

PXI LTE/LTE-A Downlink (FDD and TDD) Measurement Suite Data Sheet PXI LTE/LTE-A Downlink (FDD and TDD) Measurement Suite Data Sheet The most important thing we build is trust Designed for the production test of the base station RF, tailored for the evolving small cell

More information

Conformity and Interoperability Training Homologation Procedures and Type Approval Testing for Mobile Terminals

Conformity and Interoperability Training Homologation Procedures and Type Approval Testing for Mobile Terminals Conformity and Interoperability Training Homologation Procedures and Type Approval Testing for Mobile Terminals ITU C&I Programme Training Course on Testing Mobile Terminal Schedule RF Tests (Functional)

More information

Decrease Interference Using Adaptive Modulation and Coding

Decrease Interference Using Adaptive Modulation and Coding International Journal of Computer Networks and Communications Security VOL. 3, NO. 9, SEPTEMBER 2015, 378 383 Available online at: www.ijcncs.org E-ISSN 2308-9830 (Online) / ISSN 2410-0595 (Print) Decrease

More information

Advanced RF Measurements You Didn t Know Your Oscilloscope Could Make. Brad Frieden Philip Gresock

Advanced RF Measurements You Didn t Know Your Oscilloscope Could Make. Brad Frieden Philip Gresock Advanced RF Measurements You Didn t Know Your Oscilloscope Could Make Brad Frieden Philip Gresock Agenda RF measurement challenges Oscilloscope platform overview Typical RF characteristics Bandwidth vs.

More information

Understanding RF and Microwave Analysis Basics

Understanding RF and Microwave Analysis Basics Understanding RF and Microwave Analysis Basics Kimberly Cassacia Product Line Brand Manager Keysight Technologies Agenda µw Analysis Basics Page 2 RF Signal Analyzer Overview & Basic Settings Overview

More information

Keysight Technologies Signal Studio for LTE/LTE-Advanced FDD/TDD N7624B/N7625B

Keysight Technologies Signal Studio for LTE/LTE-Advanced FDD/TDD N7624B/N7625B Keysight Technologies Signal Studio for LTE/LTE-Advanced FDD/TDD N7624B/N7625B Technical Overview Create Keysight validated and performance optimized reference signals compliant to 3GPP LTE and LTE-Advanced

More information

PXI WiMAX Measurement Suite Data Sheet

PXI WiMAX Measurement Suite Data Sheet PXI WiMAX Measurement Suite Data Sheet The most important thing we build is trust Transmit power Spectral mask Occupied bandwidth EVM (all, data only, pilots only) Frequency error Gain imbalance, Skew

More information

Simulation for 5G New Radio System Design and Verification

Simulation for 5G New Radio System Design and Verification Simulation for 5G New Radio System Design and Verification WHITE PAPER The Challenge of the First Commercial 5G Service Deployment The 3rd Generation Partnership Project (3GPP) published its very first

More information

Phase Noise and Tuning Speed Optimization of a MHz Hybrid DDS-PLL Synthesizer with milli Hertz Resolution

Phase Noise and Tuning Speed Optimization of a MHz Hybrid DDS-PLL Synthesizer with milli Hertz Resolution Phase Noise and Tuning Speed Optimization of a 5-500 MHz Hybrid DDS-PLL Synthesizer with milli Hertz Resolution BRECHT CLAERHOUT, JAN VANDEWEGE Department of Information Technology (INTEC) University of

More information

Agilent AN 1275 Automatic Frequency Settling Time Measurement Speeds Time-to-Market for RF Designs

Agilent AN 1275 Automatic Frequency Settling Time Measurement Speeds Time-to-Market for RF Designs Agilent AN 1275 Automatic Frequency Settling Time Measurement Speeds Time-to-Market for RF Designs Application Note Fast, accurate synthesizer switching and settling are key performance requirements in

More information

Keysight Technologies N7622B Signal Studio for Toolkit. Technical Overview

Keysight Technologies N7622B Signal Studio for Toolkit. Technical Overview Keysight Technologies N7622B Signal Studio for Toolkit Technical Overview 02 Keysight N7622B Signal Studio for Toolkit - Data Sheet Features Free software utility compatible with multiple hardware platforms

More information

BER ANALYSIS OF WiMAX IN MULTIPATH FADING CHANNELS

BER ANALYSIS OF WiMAX IN MULTIPATH FADING CHANNELS BER ANALYSIS OF WiMAX IN MULTIPATH FADING CHANNELS Navgeet Singh 1, Amita Soni 2 1 P.G. Scholar, Department of Electronics and Electrical Engineering, PEC University of Technology, Chandigarh, India 2

More information

Lecture 15: Introduction to Mixers

Lecture 15: Introduction to Mixers EECS 142 Lecture 15: Introduction to Mixers Prof. Ali M. Niknejad University of California, Berkeley Copyright c 2005 by Ali M. Niknejad A. M. Niknejad University of California, Berkeley EECS 142 Lecture

More information

Signal Studio. for LTE/LTE-Advanced/LTE-Advanced Pro FDD/TDD N7624C/N7625C TECHNICAL OVERVIEW

Signal Studio. for LTE/LTE-Advanced/LTE-Advanced Pro FDD/TDD N7624C/N7625C TECHNICAL OVERVIEW Signal Studio for LTE/LTE-Advanced/LTE-Advanced Pro FDD/TDD TECHNICAL OVERVIEW N7624C/N7625C Create Keysight validated and performance optimized reference signals in compliance with 3GPP LTE, LTE-Advanced,

More information

Ten Things You Should Know About MIMO

Ten Things You Should Know About MIMO Ten Things You Should Know About MIMO 4G World 2009 presented by: David L. Barner www/agilent.com/find/4gworld Copyright 2009 Agilent Technologies, Inc. The Full Agenda Intro System Operation 1: Cellular

More information

Measurement Setup for Phase Noise Test at Frequencies above 50 GHz Application Note

Measurement Setup for Phase Noise Test at Frequencies above 50 GHz Application Note Measurement Setup for Phase Noise Test at Frequencies above 50 GHz Application Note Products: R&S FSWP With recent enhancements in semiconductor technology the microwave frequency range beyond 50 GHz becomes

More information

Keysight Technologies Performing LTE and LTE-Advanced RF Measurements with the E7515A UXM Wireless Test Set

Keysight Technologies Performing LTE and LTE-Advanced RF Measurements with the E7515A UXM Wireless Test Set Keysight Technologies Performing LTE and LTE-Advanced RF Measurements with the E7515A UXM Wireless Test Set Based on 3GPP TS 36.521-1 Application Note 02 Keysight Performing LTE and LTE-Advanced Measurements

More information

2012 LitePoint Corp LitePoint, A Teradyne Company. All rights reserved.

2012 LitePoint Corp LitePoint, A Teradyne Company. All rights reserved. LTE TDD What to Test and Why 2012 LitePoint Corp. 2012 LitePoint, A Teradyne Company. All rights reserved. Agenda LTE Overview LTE Measurements Testing LTE TDD Where to Begin? Building a LTE TDD Verification

More information

Wireless Communication Systems: Implementation perspective

Wireless Communication Systems: Implementation perspective Wireless Communication Systems: Implementation perspective Course aims To provide an introduction to wireless communications models with an emphasis on real-life systems To investigate a major wireless

More information

A new generation Cartesian loop transmitter for fl exible radio solutions

A new generation Cartesian loop transmitter for fl exible radio solutions Electronics Technical A new generation Cartesian loop transmitter for fl exible radio solutions by C.N. Wilson and J.M. Gibbins, Applied Technology, UK The concept software defined radio (SDR) is much

More information

Keysight Technologies Improved Methods for Measuring Distortion in Broadband Devices. Application Note

Keysight Technologies Improved Methods for Measuring Distortion in Broadband Devices. Application Note Keysight Technologies Improved Methods for Measuring Distortion in Broadband Devices Application Note Introduction Recently developed advances in digital modulation and signal processing have enabled commercial

More information

Keysight Technologies 8 Hints for Making Better Measurements Using RF Signal Generators. Application Note

Keysight Technologies 8 Hints for Making Better Measurements Using RF Signal Generators. Application Note Keysight Technologies 8 Hints for Making Better Measurements Using RF Signal Generators Application Note Signal sources provide precise, highly stable test signals for a variety of component and system

More information

Signal Studio for WLAN a/b/g/j/p/n/ac/ah/ax N7617C

Signal Studio for WLAN a/b/g/j/p/n/ac/ah/ax N7617C Signal Studio for WLAN 802.11a/b/g/j/p/n/ac/ah/ax N7617C TECHNICAL OVERVIEW Create Keysight validated and performance optimized reference signals compliant with the IEEE 802.11a/b/g/j/p/n/ac/ah/ax standards

More information

Keysight Technologies Pulsed Antenna Measurements Using PNA Network Analyzers

Keysight Technologies Pulsed Antenna Measurements Using PNA Network Analyzers Keysight Technologies Pulsed Antenna Measurements Using PNA Network Analyzers White Paper Abstract This paper presents advances in the instrumentation techniques that can be used for the measurement and

More information

DIGITAL Radio Mondiale (DRM) is a new

DIGITAL Radio Mondiale (DRM) is a new Synchronization Strategy for a PC-based DRM Receiver Volker Fischer and Alexander Kurpiers Institute for Communication Technology Darmstadt University of Technology Germany v.fischer, a.kurpiers @nt.tu-darmstadt.de

More information

Keysight Technologies Phase Noise X-Series Measurement Application

Keysight Technologies Phase Noise X-Series Measurement Application Keysight Technologies Phase Noise X-Series Measurement Application N9068C Technical Overview Phase noise measurements with log plot and spot frequency views Spectrum and IQ waveform monitoring for quick

More information

MICROWAVE RADIO SYSTEMS GAIN. PENTel.Com Engr. Josephine Bagay, Ece faculty

MICROWAVE RADIO SYSTEMS GAIN. PENTel.Com Engr. Josephine Bagay, Ece faculty MICROWAVE RADIO SYSTEMS GAIN PENTel.Com Engr. Josephine Bagay, Ece faculty SYSTEM GAIN G s is the difference between the nominal output power of a transmitter (P t ) and the minimum input power to a receiver

More information

MIMO RFIC Test Architectures

MIMO RFIC Test Architectures MIMO RFIC Test Architectures Christopher D. Ziomek and Matthew T. Hunter ZTEC Instruments, Inc. Abstract This paper discusses the practical constraints of testing Radio Frequency Integrated Circuit (RFIC)

More information

Performance Evaluation Of Digital Modulation Techniques In Awgn Communication Channel

Performance Evaluation Of Digital Modulation Techniques In Awgn Communication Channel Performance Evaluation Of Digital Modulation Techniques In Awgn Communication Channel Oyetunji S. A 1 and Akinninranye A. A 2 1 Federal University of Technology Akure, Nigeria 2 MTN Nigeria Abstract The

More information

Keysight Technologies N7621B

Keysight Technologies N7621B Keysight Technologies N7621B Signal Studio for Multitone Distortion Technical Overview Create Keysight Technologies, Inc. validated and performance optimized multitone and noise power ratio (NPR) signals

More information

PXA Configuration. Frequency range

PXA Configuration. Frequency range Keysight Technologies Making Wideband Measurements Using the Keysight PXA Signal Analyzer as a Down Converter with Infiniium Oscilloscopes and 89600 VSA Software Application Note Introduction Many applications

More information

Lecture 3: Wireless Physical Layer: Modulation Techniques. Mythili Vutukuru CS 653 Spring 2014 Jan 13, Monday

Lecture 3: Wireless Physical Layer: Modulation Techniques. Mythili Vutukuru CS 653 Spring 2014 Jan 13, Monday Lecture 3: Wireless Physical Layer: Modulation Techniques Mythili Vutukuru CS 653 Spring 2014 Jan 13, Monday Modulation We saw a simple example of amplitude modulation in the last lecture Modulation how

More information

PTX-0350 RF UPCONVERTER, MHz

PTX-0350 RF UPCONVERTER, MHz PTX-0350 RF UPCONVERTER, 300 5000 MHz OPERATING MODES I/Q upconverter RF = LO + IF upconverter RF = LO - IF upconverter Synthesizer 10 MHz REFERENCE INPUT/OUTPUT EXTERNAL LOCAL OSCILLATOR INPUT I/Q BASEBAND

More information

A Flexible Testbed for 5G Waveform Generation & Analysis. Greg Jue Keysight Technologies

A Flexible Testbed for 5G Waveform Generation & Analysis. Greg Jue Keysight Technologies A Flexible Testbed for 5G Waveform Generation & Analysis Greg Jue Keysight Technologies Agenda Introduction 5G Research: Waveforms and Frequencies Desired Testbed Attributes and Proposed Approach Wireless

More information

Modulation and Coding Tradeoffs

Modulation and Coding Tradeoffs 0 Modulation and Coding Tradeoffs Contents 1 1. Design Goals 2. Error Probability Plane 3. Nyquist Minimum Bandwidth 4. Shannon Hartley Capacity Theorem 5. Bandwidth Efficiency Plane 6. Modulation and

More information

A COMPACT, AGILE, LOW-PHASE-NOISE FREQUENCY SOURCE WITH AM, FM AND PULSE MODULATION CAPABILITIES

A COMPACT, AGILE, LOW-PHASE-NOISE FREQUENCY SOURCE WITH AM, FM AND PULSE MODULATION CAPABILITIES A COMPACT, AGILE, LOW-PHASE-NOISE FREQUENCY SOURCE WITH AM, FM AND PULSE MODULATION CAPABILITIES Alexander Chenakin Phase Matrix, Inc. 109 Bonaventura Drive San Jose, CA 95134, USA achenakin@phasematrix.com

More information

DMR Tx Test Solution. Signal Analyzer MS2830A. Reference Specifications

DMR Tx Test Solution. Signal Analyzer MS2830A. Reference Specifications Product Introduction DMR Tx Test Solution Signal Analyzer MS2830A Reference Specifications ETSI EN 300 113 Version 2.1.1 (2016-08) / Technical characteristics of the transmitter ETSI TS 102 361-1 Version

More information

Using a design-to-test capability for LTE MIMO (Part 1 of 2)

Using a design-to-test capability for LTE MIMO (Part 1 of 2) Using a design-to-test capability for LTE MIMO (Part 1 of 2) System-level simulation helps engineers gain valuable insight into the design sensitivities of Long Term Evolution (LTE) Multiple-Input Multiple-Output

More information

Doppler Frequency Effect on Network Throughput Using Transmit Diversity

Doppler Frequency Effect on Network Throughput Using Transmit Diversity International Journal of Sciences: Basic and Applied Research (IJSBAR) ISSN 2307-4531 (Print & Online) http://gssrr.org/index.php?journal=journalofbasicandapplied ---------------------------------------------------------------------------------------------------------------------------

More information

COHERENT DETECTION OPTICAL OFDM SYSTEM

COHERENT DETECTION OPTICAL OFDM SYSTEM 342 COHERENT DETECTION OPTICAL OFDM SYSTEM Puneet Mittal, Nitesh Singh Chauhan, Anand Gaurav B.Tech student, Electronics and Communication Engineering, VIT University, Vellore, India Jabeena A Faculty,

More information

PXIe Contents SPECIFICATIONS. 14 GHz and 26.5 GHz Vector Signal Analyzer

PXIe Contents SPECIFICATIONS. 14 GHz and 26.5 GHz Vector Signal Analyzer SPECIFICATIONS PXIe-5668 14 GHz and 26.5 GHz Vector Signal Analyzer These specifications apply to the PXIe-5668 (14 GHz) Vector Signal Analyzer and the PXIe-5668 (26.5 GHz) Vector Signal Analyzer with

More information

TETRA Tx Test Solution

TETRA Tx Test Solution Product Introduction TETRA Tx Test Solution Signal Analyzer Reference Specifications ETSI EN 300 394-1 V3.3.1(2015-04) / Part1: Radio ETSI TS 100 392-2 V3.6.1(2013-05) / Part2: Air Interface May. 2016

More information

RF/IF Terminology and Specs

RF/IF Terminology and Specs RF/IF Terminology and Specs Contributors: Brad Brannon John Greichen Leo McHugh Eamon Nash Eberhard Brunner 1 Terminology LNA - Low-Noise Amplifier. A specialized amplifier to boost the very small received

More information

VST 6 GHz RF Vector Signal Transceiver (VST)

VST 6 GHz RF Vector Signal Transceiver (VST) VST 6 GHz RF Vector Signal Transceiver (VST) 2016 Datasheet The most important thing we build is trust Key features Vector signal analyser and generator in a single 3U x 3 slot wide PXIe module 65 MHz

More information

3250 Series Spectrum Analyzer

3250 Series Spectrum Analyzer The most important thing we build is trust ADVANCED ELECTRONIC SOLUTIONS AVIATION SERVICES COMMUNICATIONS AND CONNECTIVITY MISSION SYSTEMS 3250 Series Spectrum Analyzer > Agenda Introduction

More information

GSM Transmitter Modulation Quality Measurement Option

GSM Transmitter Modulation Quality Measurement Option Performs all required measurements for GSM transmitters Outputs multiple time mask parameters for process control analysis Obtains frequency error, rms phase error, and peak phase error with one command

More information

INTERFERENCE SELF CANCELLATION IN SC-FDMA SYSTEMS -A CAMPARATIVE STUDY

INTERFERENCE SELF CANCELLATION IN SC-FDMA SYSTEMS -A CAMPARATIVE STUDY INTERFERENCE SELF CANCELLATION IN SC-FDMA SYSTEMS -A CAMPARATIVE STUDY Ms Risona.v 1, Dr. Malini Suvarna 2 1 M.Tech Student, Department of Electronics and Communication Engineering, Mangalore Institute

More information

Digital modulation techniques

Digital modulation techniques Outline Introduction Signal, random variable, random process and spectra Analog modulation Analog to digital conversion Digital transmission through baseband channels Signal space representation Optimal

More information

Performance Evaluation of Wireless Communication System Employing DWT-OFDM using Simulink Model

Performance Evaluation of Wireless Communication System Employing DWT-OFDM using Simulink Model Performance Evaluation of Wireless Communication System Employing DWT-OFDM using Simulink Model M. Prem Anand 1 Rudrashish Roy 2 1 Assistant Professor 2 M.E Student 1,2 Department of Electronics & Communication

More information

Performance Analysis of OFDM for Different Digital Modulation Schemes using Matlab Simulation

Performance Analysis of OFDM for Different Digital Modulation Schemes using Matlab Simulation J. Bangladesh Electron. 10 (7-2); 7-11, 2010 Performance Analysis of OFDM for Different Digital Modulation Schemes using Matlab Simulation Md. Shariful Islam *1, Md. Asek Raihan Mahmud 1, Md. Alamgir Hossain

More information

Agilent Pulsed Measurements Using Narrowband Detection and a Standard PNA Series Network Analyzer

Agilent Pulsed Measurements Using Narrowband Detection and a Standard PNA Series Network Analyzer Agilent Pulsed Measurements Using Narrowband Detection and a Standard PNA Series Network Analyzer White Paper Contents Introduction... 2 Pulsed Signals... 3 Pulsed Measurement Technique... 5 Narrowband

More information

Keysight Technologies NB-IoT System Modeling: Simple Doesn t Mean Easy

Keysight Technologies NB-IoT System Modeling: Simple Doesn t Mean Easy Keysight Technologies NB-IoT System Modeling: Simple Doesn t Mean Easy Device things Must be simulated Before Cloud White Paper Abstract This paper presents a method for modeling and evaluating a new NB-IoT

More information

Carrier Frequency Offset Estimation Algorithm in the Presence of I/Q Imbalance in OFDM Systems

Carrier Frequency Offset Estimation Algorithm in the Presence of I/Q Imbalance in OFDM Systems Carrier Frequency Offset Estimation Algorithm in the Presence of I/Q Imbalance in OFDM Systems K. Jagan Mohan, K. Suresh & J. Durga Rao Dept. of E.C.E, Chaitanya Engineering College, Vishakapatnam, India

More information

Keysight Technologies Making Accurate Intermodulation Distortion Measurements with the PNA-X Network Analyzer, 10 MHz to 26.5 GHz

Keysight Technologies Making Accurate Intermodulation Distortion Measurements with the PNA-X Network Analyzer, 10 MHz to 26.5 GHz Keysight Technologies Making Accurate Intermodulation Distortion Measurements with the PNA-X Network Analyzer, 10 MHz to 26.5 GHz Application Note Overview This application note describes accuracy considerations

More information

SC5407A/SC5408A 100 khz to 6 GHz RF Upconverter. Datasheet. Rev SignalCore, Inc.

SC5407A/SC5408A 100 khz to 6 GHz RF Upconverter. Datasheet. Rev SignalCore, Inc. SC5407A/SC5408A 100 khz to 6 GHz RF Upconverter Datasheet Rev 1.2 2017 SignalCore, Inc. support@signalcore.com P R O D U C T S P E C I F I C A T I O N S Definition of Terms The following terms are used

More information

Wireless Communication: Concepts, Techniques, and Models. Hongwei Zhang

Wireless Communication: Concepts, Techniques, and Models. Hongwei Zhang Wireless Communication: Concepts, Techniques, and Models Hongwei Zhang http://www.cs.wayne.edu/~hzhang Outline Digital communication over radio channels Channel capacity MIMO: diversity and parallel channels

More information

Chapter 2 Channel Equalization

Chapter 2 Channel Equalization Chapter 2 Channel Equalization 2.1 Introduction In wireless communication systems signal experiences distortion due to fading [17]. As signal propagates, it follows multiple paths between transmitter and

More information

Sequential compensation of RF impairments in OFDM systems

Sequential compensation of RF impairments in OFDM systems Sequential compensation of RF impairments in OFDM systems Fernando Gregorio, Juan Cousseau Universidad Nacional del Sur, Dpto. de Ingeniería Eléctrica y Computadoras, DIEC, IIIE-CONICET, Bahía Blanca,

More information

Digital Communications: The ABCs Of Ones And Zeroes

Digital Communications: The ABCs Of Ones And Zeroes Digital Communications: The ABCs Of Ones And Zeroes August 04, 2010 12:00 AM!""#$%%&'&(")*+,(-&.,/+0(*1%2)",('&%(*113+,(2",*+.%-,/,"2'4(*113+,(2",*+.4"!&425(.4*64*+&.42+-47&)*&.02.#8 Electronic Design

More information

Optimal Number of Pilots for OFDM Systems

Optimal Number of Pilots for OFDM Systems IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 8, Issue 6 (Nov. - Dec. 2013), PP 25-31 Optimal Number of Pilots for OFDM Systems Onésimo

More information

Radio Technology and Architectures. 1 ENGN4521/ENGN6521: Embedded Wireless L#1

Radio Technology and Architectures. 1 ENGN4521/ENGN6521: Embedded Wireless L#1 Radio Technology and Architectures 1 ENGN4521/ENGN6521: Embedded Wireless L#1 Radio (Architectures) Spectrum plan and legal issues Radio Architectures and components 2 ENGN4521/ENGN6521: Embedded Wireless

More information

Measuring ACPR of W-CDMA signals with a spectrum analyzer

Measuring ACPR of W-CDMA signals with a spectrum analyzer Measuring ACPR of W-CDMA signals with a spectrum analyzer When measuring power in the adjacent channels of a W-CDMA signal, requirements for the dynamic range of a spectrum analyzer are very challenging.

More information

Berkeley Nucleonics Corporation

Berkeley Nucleonics Corporation Berkeley Nucleonics Corporation A trusted source for quality and innovative instrumentation since 1963 Test And Measurement Nuclear Expertise RF/Microwave BNC at Our Core BNC Mission: Providing our customers

More information

5G 무선통신시스템설계 : WLAN/LTE/5G

5G 무선통신시스템설계 : WLAN/LTE/5G 1 5G 무선통신시스템설계 : WLAN/LTE/5G 김종남 Application Engineer 2017 The MathWorks, Inc. 2 Agenda Innovations in Mobile Communications Waveform Generation and End-to-end Simulation WLAN, LTE, 5G (FBMC, UFMC) RF

More information

8 Hints for Better Spectrum Analysis. Application Note

8 Hints for Better Spectrum Analysis. Application Note 8 Hints for Better Spectrum Analysis Application Note 1286-1 The Spectrum Analyzer The spectrum analyzer, like an oscilloscope, is a basic tool used for observing signals. Where the oscilloscope provides

More information

VIAVI VST. Data Sheet. 6 GHz RF Vector Signal Transceiver (VST)

VIAVI VST. Data Sheet. 6 GHz RF Vector Signal Transceiver (VST) Data Sheet VIAVI 6 GHz RF Vector Signal Transceiver () VIAVI Solutions The Vector Signal Transceiver () is an essential building block in RF communications test solutions supplied by VIAVI Solutions. Overview

More information

FCC and ETSI Requirements for Short-Range UHF ASK- Modulated Transmitters

FCC and ETSI Requirements for Short-Range UHF ASK- Modulated Transmitters From December 2005 High Frequency Electronics Copyright 2005 Summit Technical Media FCC and ETSI Requirements for Short-Range UHF ASK- Modulated Transmitters By Larry Burgess Maxim Integrated Products

More information

Keysight Technologies A Flexible Testbed to Evaluate Potential Co-Existence Issues Between Radar and Wireless

Keysight Technologies A Flexible Testbed to Evaluate Potential Co-Existence Issues Between Radar and Wireless Keysight Technologies A Flexible Testbed to Evaluate Potential Co-Existence Issues Between Radar and Wireless Application Note Photo courtesy US Department of Defense Problem: Radar and wireless may interfere

More information

HD Radio FM Transmission System Specifications

HD Radio FM Transmission System Specifications HD Radio FM Transmission System Specifications Rev. D February 18, 2005 Doc. No. SY_SSS_1026s TRADEMARKS The ibiquity Digital logo and ibiquity Digital are registered trademarks of ibiquity Digital Corporation.

More information

Underwater communication implementation with OFDM

Underwater communication implementation with OFDM Indian Journal of Geo-Marine Sciences Vol. 44(2), February 2015, pp. 259-266 Underwater communication implementation with OFDM K. Chithra*, N. Sireesha, C. Thangavel, V. Gowthaman, S. Sathya Narayanan,

More information