Detection and direction-finding of spread spectrum signals using correlation and narrowband interference rejection

Size: px
Start display at page:

Download "Detection and direction-finding of spread spectrum signals using correlation and narrowband interference rejection"

Transcription

1 Detection and direction-inding o spread spectrum signals using correlation and narrowband intererence rejection Ulrika Ahnström,2,JohanFalk,3, Peter Händel,3, Maria Wikström Department o Electronic Warare Systems, Swedish Deence Research Agency Linköping, Sweden 2 ulrika.ahnstrom@oi.se 3 KTH Signals, Sensors and Systems, Royal Institute o Technology Stockholm, Sweden Abstract An algorithm or correlation-based detection o direct sequence spread spectrum signals with direction inding, including direction-iltering and narrow-band intererence rejection, is implemented and evaluated in MATLAB. An analog noise-ree signal is generated and sampled by a test-bed system. Numerical simulations are run based on data corrupted by mutually uncorrelated white Gaussian noise sequences, and also with recorded noise rom two spatially separated HF radio receivers. The simulations and measurements show promising results or detection and direction-inding o covert wideband signals in low SNR and in presence o narrowband intererers. Direction iltering is shown to improve the results. Keywords detection, correlation, TDOA, DSSS, direction inding, intererence rejection, HF I. Introduction Direct sequence spread spectrum (DSSS) signals oer low probability o detection [] and protection against narrowband intererers. These properties have led to an increased use o DSSS signals in military communication applications during recent years. Thereore, methods or detection o signal presence and direction-inding o covert wideband signals with unknown characteristics are important components in an electronic warare system. The presence o narrowband intererers, as in the HF-band at -3 MHz, complicates the detection o covert signals. The considered method includes narrowband intererence rejection and requires no knowledge o the signal characteristics or detection and/or direction inding, such as bandwidth, modulation or spreading code. The considered correlation-based method or detection and direction-inding uses the outputs o two spatially separated receivers. The cross-correlation unction (CCF) and the cross-spectral density (CSD) are estimated rom the two received sequences. Detection is perormed in the requency domain by analysis o the phase and amplitude o the CSD. Timedierence o arrival (TDOA) based direction-inding Transmitter Intercept Intercept Intended Detection and TDOA estimation Fig.. A transmission system, including a transmitter and an intended receiver. Two intercept receivers are used by an electronic warare system or detection and/or positioning o the transmitter. is perormed in requency domain by estimating the phase-slope o the CSD [2]. Narrowband intererence rejection is implemented using digital notch ilters [3]. II. System overview The considered scenario is depicted in Figure, that is a military communication system consisting o a transmitter, an intended receiver and an electronic wararesystem. Thetransmissionsystemisassumed to use some measures (such as stealth waveorms, power control and directional antennas) to avoid detection and/or positioning by enemy orces. The electronic warare system uses two intercept receivers or detection and/or positioning and has no knowledge o waveorms or other signal characteristics. The transmitted signal s(t) is assumed to be a DSSS signal with unknown characteristics, such as bandwidth, modulation and spreading code. The signal is transmitted through a non-dispersive channel and is received by two synchronous spatially separated receivers. Sampling and quadrature mixing o the receiver outputs give the sequences x [k] and x 2 [k] which contain two noisy and dierent delayed versions o the transmitted signal. The sequences z [k] and z 2 [k] are used in order to describe antenna noise and internal receiver noise, that is

2 X [k] F compl. conj X *[] x [k] = s[k]+z [k] () x 2 [k] = s[k + ]+z 2 [k] (2) X 2 [k] F X 2 [] CSD where is the TDOA and s[k] is the sampled ( s = Hz) and quadrature mixed version o s(t). Theconsidered correlation based method or detection o signal presence and direction-inding uses the CCF and the CSD which are estimated rom the two received sequences x [k] and x 2 [k]. The CCF is deined as φ[m] =E[x [k + m] x 2[k]] (3) Since the involved signals are uncorrelated and s(t) is broadband, it ollows rom () and (2) that φ[m] =φ s (τ) τ=m+ (4) where φ s (τ) is the autocorrelation unction o s(t). TheCSDisthediscreteFouriertransormotheCCF, Φ[n] =F{φ[m]} = e j2π n/n Φ s [n] (5) The phase o Φ[n] reads Γ[n] =6 Φ[n] = 2πn N (6) The CSD is estimated rom {x [],.., x [N ],x 2 [],.., x 2 [N ]} as bφ[n] =F{x [k]} F {x 2 [k]} (7) A straight line Γ[n] b =bαn is itted to the phase slope 6 Φ[n] b within the signal bandwidth by the method o least squares. The linear phase o (6) is used to estimate rom b = bαn (8) 2π This approach is (almost) statistically eicient, in the sense that its error variance coincides with the Cramér-Rao bound [4] or SNRs above the threshold that is present in nonlinear estimation problems. Detection is perormed in requency domain by analysis o the phase and amplitude o the CSD. For covert low SNR signals, the CSD is oten to noisy to yield the inormation needed or detection and direction-inding. Direction-iltering by windowing the CCF improves the SNR in the CSD [5]. This is an eective method or broadband signals like those considered here. Applying the Fourier transorm on the windowed CCF gives the direction-iltered CSD (DFCSD) which is used or the detection and direction inding presented in this paper. A block diagram isgiveninfigure2. I CCF Direction iltering DFCCF DFCSD Fig. 2. The CSD is estimated rom the two received sequences, x [k] and x 2 [k]. Direction iltering by windowing the CCF improves the SNR in the CSD and gives the direction iltered cross spectral density DFCSD which is used or detection and direction inding. III. Intererence rejection The essence in the considered algorithm or detection and direction-inding is that the same signal is received by two spatially separated antennas with uncorrelated noise. This leads to a high correlation between the received sequences. When the received sequences contain narrowband intererers they reslut in a high correlation, similar as or the considered DSSS signal. This leads to a noisy DFCSD, and thus the alse-detection ratio increases as well as the variance in the direction-estimation. Narrowband intererence rejection is implemented using notch ilters [3]. In this paper a requency domain digital notch ilter is implemented to supress all high power (narrowband) signals. That is, all requency bins with an amplitude above a threshold are supressed. As the number o interering transmitters depends on the current requency band the threshold depends on the current CSD estimate. I the number o intererers is large there is a risk that some part o the DSSS signal is supressed as well. Thereore, the treshold must be chosen as a balance between intererence rejection and DSSS signal power. Simulations o typical electronic warare scenarios have shown satisactory results or a threshold that supress 5% o the requency bins. These are the requency bins with the highest amplitude in the received spectrum. Note that this threshold is adjusted to the current requency band. Figures 3-4 show the eects o intererence rejection on the CCF or a DSSS signal. In this example is strongly exaggerated, that is =, to separate the correlation caused by the DSSS signal. In Figure 3, the power spectral density (PSD) and the CCF or the received sequences are shown. It is impossible to distinguish the correlation caused by the DSSS signal. Figure 4 shows the PSD and CCF when the implemented intererence rejection is applied to the received sequences. The threshold or signal suppression is shown as a line in the PSD-plot. In this case the correlation caused by the DSSS signal is clearly separated rom the rest. One may note the dierent scales on the correlation axis.

3 CCF Relative power [db] CCF Relative power [db] abs(dfcsd) -2 3 db Frequency [khz] 2 Frequency x 9 phase(dfcsd) Delay [Number o samples] x 4 Fig. 3. Two dierently delayed versions, =, o a DSSS signal added to noise sequences recorded rom the HF-band gives the PSD and CCF plotted above. It is impossible to distinguish the correlation caused by the DSSS signal. 2 Frequency Fig. 5. Detection is done in two steps. First, the bandwidth o the DSSS signal is estimated by amplitude detection. Astraightlineisitted to the phase within the estimated bandwidth and the phase curve is used to decide whether asignalispresentornot Frequency [khz] x 7 iltering and narrowband intererence rejection, is implemented and evaluated in MATLAB. An analog noise-ree DSSS signal is generated and sampled by an experimental system, developed by the Swedish Deence Research Agency [6]. The experimental system consists o a programmable waveorm generator and a commercial receiver with digital tuner, down converter and A/D-converter, see Table. The generated DSSS signal is similar to a 3G mobile network signal [7]. The bandwidth is 3%. Moreover, the method is also tested on a military stealth signal denoted Delay [Number o samples] x 4 Fig. 4. Ater applying the implemented intererence rejection the correlation caused by the DSSS signal is clearly separated rom the rest. The threshold or signal suppression is shownasalineinthepsd. IV. Phase-analysis based detection Detection is traditionally done by threshold detection within the bandwidth o the DFCSD [5]. Here a method or detection o signal presence is presented that besides amplitude analysis uses the phaselinearity. The bandwidth o the DSSS signal is estimated by amplitude detection o the CSD estimated rom (7), see Figure 5. A straight line is itted to the phase slope within the estimated bandwidth and b is estimated rom (8) [2], [4]. The mean square error between the straight line and the phase curve is used to decide whether a signal is present or not. V. Numerical results The presented algorithm or correlation-based detection with direction-inding, including direction- TABLE I Technical speciications o experimental system Waveorm generator Signal generator Frequency range (receiver) A/D converter Sampel requency Decimation Sample requency ater decimation Eective bandwidth AMIQ (Rhode&Schwarz) SMHU58 (Rhode&Schwarz) SCR5-B (Andrew SciComm) 2-34 MHz 2 bit 28.5 MHz 4times 7.25 MHz 5.7 MHz Numerical simulations are run based on data corrupted by mutually uncorrelated white Gaussian noise sequences, and also with recorded noise rom two spatially separated HF-receivers. Two dierently delayed versions o the signal s[n] represent the signal rom the spatially separated receivers. Sequences representing antenna noise and internal receiver noise are added to the signal parts as shown in Figure 6.

4 Probability o detection MSE [db] Probability o detection noise channel signal present & ^ s[n] s [n] = s[n] Detection & Direction-inding.8 s 2 [n] = s[n- ].6 noise channel 2 signal not present.4 Fig. 6. Noise sequences are added to two dierently delayed versions o the signal, s[n]..2 The signal-to-noise ratio is deined as SNR = log( E s ) E n where E s is the signal power and E n the noise power within signal bandwidth. When the noise contains narrowband intererers the signal-to-intererence ratio (SIR) is deined as SIR = log( E n E s bw s ) bw tot where bw s is the signal bandwidth and bw tot the ull received bandwidth. First simulations are run with white Gaussian noise sequences. The probability o detection based on Monte Carlo simulations is estimated or dierent SNRs. The mean square error o the TDOA-estimate is calculated. As the probability o detection is related to the alse-detection ratio, simulations are run to estimate that as well. Simulations are also run with recorded noise rom two HF-receivers separated by a distance o 75 m. The sample rate is 578 Hz and the center requency 9 MHz. The upper plot in Figure 3 shows a typical spectrum or the received noise sequences. The probability o detection based on 2 dierent recorded noise sequences is estimated or dierent SIRs. The mean square error o b is also calculated. The alsedetection ratio is estimated or the received noise sequences as well. The results o the numerical simulations are shown in Figures SNR [db] Fig. 7. The probability o detection or dierent SNRs, based on Monte Carlo simulations. The alse detection ratio is estimated to 5% SNR [db] Fig. 8. The mean square error o the TDOA-estimate, b, or dierent SNR, based on Monte Carlo simulations VI. Conclusions An algorithm or correlation-based detection o DSSS signals with direction inding, including direction iltering and narrowband intererence rejection is implemented and evaluated in MATLAB. Numerical simulations based on data corrupted by mutually uncorrelated white Gaussian noise sequences shows that the probability o detection is more than 6% or SNRs above -5 db SIR [db] Fig. 9. The probability o detection or dierent SIRs, based on simulations with 2 dierent recorded noise sequences rom the HF-band. The alse detection ratio is estimated to 9%.

5 MSE [db] SIR [db] Fig.. The mean square error o the TDOA-estimate, b, or dierent SIR, based on simulations with 2 dierent recorded noise sequences rom the HF-band. Simulations run with recorded noise rom two separated HF-receivers show that narrowband intererence rejection is necessary when the received sequences contain narrowband intererers. Simulations including intererence rejection by a requency domain digital notch ilter show promising results or detection and direction inding o DSSS signals at the HF-band and in low SIR. Simulations also show that detection and direction inding is improved by direction iltering by windowing the CCF. Reerences [] A. M. Wik, A. L. Lindblad, Novel concept using iltered spreading codes, IEEE Military Communications Conerence MILCOM 96, McLean, VA, Oct. 2-24, 996. [2] A. G. Piersol, Time delay estimation using phase data, IEEE Transaction on Acoustics, Speech, Signal Processing, June 98, Vol. 29, No.3, pt. 2, pp [3] N. Hallqwist, B. Lagerquist, Intererence rejection techniques in a DS spread-spectrum HF radio system, Report FOA-R SE, Deence Research Establishment, Sweden 994. [4] J. Falk, P. Händel, M. Jansson, Direction inding or electronic warare systems using the phase o the cross spectral density, Radiovetenskap och Kommunikation (RVK), Stockholm, Sweden 22. [5] A. W. Houghton, C. D. Reeve, Detection o spreadspectrum signals using the time-domain iltered cross spectral density, IEE Proceedings - Radar, Sonar and Navigation, December 995, Vol. 42, No 6, pp [6] P Johansson, Rasmus - A spread spectrum and modulation evaluation system, Report FOA-R SE, Deence Research Establishment, Sweden 2. [7] 3GPP, Universal Mobile Telecommunications System (UMTS); Spreading and modulation (FDD), TS v3.., ETSI, January 2

Direction Finding for Electronic Warfare Systems Using the Phase of the Cross Spectral Density

Direction Finding for Electronic Warfare Systems Using the Phase of the Cross Spectral Density Direction Finding for Electronic Warfare Systems Using the Phase of the Cross Spectral Density Johan Falk 1,2,, Peter Händel 1,2 and Magnus Jansson 2 1 Department of Electronic Warfare Systems, Swedish

More information

Optimizing Reception Performance of new UWB Pulse shape over Multipath Channel using MMSE Adaptive Algorithm

Optimizing Reception Performance of new UWB Pulse shape over Multipath Channel using MMSE Adaptive Algorithm IOSR Journal o Engineering (IOSRJEN) ISSN (e): 2250-3021, ISSN (p): 2278-8719 Vol. 05, Issue 01 (January. 2015), V1 PP 44-57 www.iosrjen.org Optimizing Reception Perormance o new UWB Pulse shape over Multipath

More information

Introduction to OFDM. Characteristics of OFDM (Orthogonal Frequency Division Multiplexing)

Introduction to OFDM. Characteristics of OFDM (Orthogonal Frequency Division Multiplexing) Introduction to OFDM Characteristics o OFDM (Orthogonal Frequency Division Multiplexing Parallel data transmission with very long symbol duration - Robust under multi-path channels Transormation o a requency-selective

More information

Cyclostationarity-Based Spectrum Sensing for Wideband Cognitive Radio

Cyclostationarity-Based Spectrum Sensing for Wideband Cognitive Radio 9 International Conerence on Communications and Mobile Computing Cyclostationarity-Based Spectrum Sensing or Wideband Cognitive Radio Qi Yuan, Peng Tao, Wang Wenbo, Qian Rongrong Wireless Signal Processing

More information

3.6 Intersymbol interference. 1 Your site here

3.6 Intersymbol interference. 1 Your site here 3.6 Intersymbol intererence 1 3.6 Intersymbol intererence what is intersymbol intererence and what cause ISI 1. The absolute bandwidth o rectangular multilevel pulses is ininite. The channels bandwidth

More information

AN EFFICIENT SET OF FEATURES FOR PULSE REPETITION INTERVAL MODULATION RECOGNITION

AN EFFICIENT SET OF FEATURES FOR PULSE REPETITION INTERVAL MODULATION RECOGNITION AN EFFICIENT SET OF FEATURES FOR PULSE REPETITION INTERVAL MODULATION RECOGNITION J-P. Kauppi, K.S. Martikainen Patria Aviation Oy, Naulakatu 3, 33100 Tampere, Finland, ax +358204692696 jukka-pekka.kauppi@patria.i,

More information

ECE5984 Orthogonal Frequency Division Multiplexing and Related Technologies Fall Mohamed Essam Khedr. Channel Estimation

ECE5984 Orthogonal Frequency Division Multiplexing and Related Technologies Fall Mohamed Essam Khedr. Channel Estimation ECE5984 Orthogonal Frequency Division Multiplexing and Related Technologies Fall 2007 Mohamed Essam Khedr Channel Estimation Matlab Assignment # Thursday 4 October 2007 Develop an OFDM system with the

More information

Outline. Wireless Networks (PHY): Design for Diversity. Admin. Outline. Page 1. Recap: Impact of Channel on Decisions. [hg(t) + w(t)]g(t)dt.

Outline. Wireless Networks (PHY): Design for Diversity. Admin. Outline. Page 1. Recap: Impact of Channel on Decisions. [hg(t) + w(t)]g(t)dt. Wireless Networks (PHY): Design or Diversity Admin and recap Design or diversity Y. Richard Yang 9/2/212 2 Admin Assignment 1 questions Assignment 1 oice hours Thursday 3-4 @ AKW 37A Channel characteristics

More information

1. Motivation. 2. Periodic non-gaussian noise

1. Motivation. 2. Periodic non-gaussian noise . Motivation One o the many challenges that we ace in wireline telemetry is how to operate highspeed data transmissions over non-ideal, poorly controlled media. The key to any telemetry system design depends

More information

ECEN 5014, Spring 2013 Special Topics: Active Microwave Circuits and MMICs Zoya Popovic, University of Colorado, Boulder

ECEN 5014, Spring 2013 Special Topics: Active Microwave Circuits and MMICs Zoya Popovic, University of Colorado, Boulder ECEN 5014, Spring 2013 Special Topics: Active Microwave Circuits and MMICs Zoya Popovic, University o Colorado, Boulder LECTURE 13 PHASE NOISE L13.1. INTRODUCTION The requency stability o an oscillator

More information

A MATLAB Model of Hybrid Active Filter Based on SVPWM Technique

A MATLAB Model of Hybrid Active Filter Based on SVPWM Technique International Journal o Electrical Engineering. ISSN 0974-2158 olume 5, Number 5 (2012), pp. 557-569 International Research Publication House http://www.irphouse.com A MATLAB Model o Hybrid Active Filter

More information

A new zoom algorithm and its use in frequency estimation

A new zoom algorithm and its use in frequency estimation Waves Wavelets Fractals Adv. Anal. 5; :7 Research Article Open Access Manuel D. Ortigueira, António S. Serralheiro, and J. A. Tenreiro Machado A new zoom algorithm and its use in requency estimation DOI.55/wwaa-5-

More information

Consumers are looking to wireless

Consumers are looking to wireless Phase Noise Eects on OFDM Wireless LAN Perormance This article quantiies the eects o phase noise on bit-error rate and oers guidelines or noise reduction By John R. Pelliccio, Heinz Bachmann and Bruce

More information

Chapter 3. System Theory and Technologies. 3.1 Physical Layer. ... How to transport digital symbols...?

Chapter 3. System Theory and Technologies. 3.1 Physical Layer. ... How to transport digital symbols...? Chapter 3 System Theory and Technologies 1 r... How to transport digital symbols...? 3.1.1 Introduction 3.1. Symbols, Bits and Baud 3.1.3 Wired Physical Layers 3.1.4 Radio based physical layer electromagnetic

More information

( ) D. An information signal x( t) = 5cos( 1000πt) LSSB modulates a carrier with amplitude A c

( ) D. An information signal x( t) = 5cos( 1000πt) LSSB modulates a carrier with amplitude A c An inormation signal x( t) 5cos( 1000πt) LSSB modulates a carrier with amplitude A c 1. This signal is transmitted through a channel with 30 db loss. It is demodulated using a synchronous demodulator.

More information

6.976 High Speed Communication Circuits and Systems Lecture 16 Noise in Integer-N Frequency Synthesizers

6.976 High Speed Communication Circuits and Systems Lecture 16 Noise in Integer-N Frequency Synthesizers 6.976 High Speed Communication Circuits and Systems Lecture 16 in Integer-N Frequency Synthesizers Michael Perrott Massachusetts Institute o Technology Copyright 23 by Michael H. Perrott Frequency Synthesizer

More information

Frequency Hopped Spread Spectrum

Frequency Hopped Spread Spectrum FH- 5. Frequency Hopped pread pectrum ntroduction n the next ew lessons we will be examining spread spectrum communications. This idea was originally developed or military communication systems. However,

More information

Noise. Interference Noise

Noise. Interference Noise Noise David Johns and Ken Martin University o Toronto (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) University o Toronto 1 o 55 Intererence Noise Unwanted interaction between circuit and outside world

More information

Nonlinear FM Waveform Design to Reduction of sidelobe level in Autocorrelation Function

Nonlinear FM Waveform Design to Reduction of sidelobe level in Autocorrelation Function 017 5 th Iranian Conerence on Electrical (ICEE) Nonlinear FM Waveorm Design to Reduction o sidelobe level in Autocorrelation Function Roohollah Ghavamirad Department o Electrical K. N. Toosi University

More information

Multiple access techniques

Multiple access techniques Multiple access techniques Narrowband and wideband systems FDMA TDMA CDMA /FHMA SDMA Random-access techniques Summary Wireless Systems 2015 Narrowband and wideband systems Coherence BW B coh 1/σ τ σ τ

More information

SEG/San Antonio 2007 Annual Meeting. Summary. Morlet wavelet transform

SEG/San Antonio 2007 Annual Meeting. Summary. Morlet wavelet transform Xiaogui Miao*, CGGVeritas, Calgary, Canada, Xiao-gui_miao@cggveritas.com Dragana Todorovic-Marinic and Tyler Klatt, Encana, Calgary Canada Summary Most geologic changes have a seismic response but sometimes

More information

Jan M. Kelner, Cezary Ziółkowski, Leszek Kachel The empirical verification of the location method based on the Doppler effect Proceedings:

Jan M. Kelner, Cezary Ziółkowski, Leszek Kachel The empirical verification of the location method based on the Doppler effect Proceedings: Authors: Jan M. Kelner, Cezary Ziółkowski, Leszek Kachel Title: The empirical veriication o the location method based on the Doppler eect Proceedings: Proceedings o MIKON-8 Volume: 3 Pages: 755-758 Conerence:

More information

PLANNING AND DESIGN OF FRONT-END FILTERS

PLANNING AND DESIGN OF FRONT-END FILTERS PLANNING AND DESIGN OF FRONT-END FILTERS AND DIPLEXERS FOR RADIO LINK APPLICATIONS Kjetil Folgerø and Jan Kocba Nera Networks AS, N-52 Bergen, NORWAY. Email: ko@nera.no, jko@nera.no Abstract High capacity

More information

Passive Emitter Geolocation using Agent-based Data Fusion of AOA, TDOA and FDOA Measurements

Passive Emitter Geolocation using Agent-based Data Fusion of AOA, TDOA and FDOA Measurements Passive Emitter Geolocation using Agent-based Data Fusion of AOA, TDOA and FDOA Measurements Alex Mikhalev and Richard Ormondroyd Department of Aerospace Power and Sensors Cranfield University The Defence

More information

Lousy Processing Increases Energy Efficiency in Massive MIMO Systems

Lousy Processing Increases Energy Efficiency in Massive MIMO Systems 1 Lousy Processing Increases Energy Eiciency in Massive MIMO Systems Sara Gunnarsson, Micaela Bortas, Yanxiang Huang, Cheng-Ming Chen, Liesbet Van der Perre and Ove Edors Department o EIT, Lund University,

More information

ELEC3106 Electronics. Lecture notes: non-linearity and noise. Objective. Non-linearity. Non-linearity measures

ELEC3106 Electronics. Lecture notes: non-linearity and noise. Objective. Non-linearity. Non-linearity measures ELEC316 Electronics Lecture notes: non-linearity and noise Objective The objective o these brie notes is to supplement the textbooks used in the course on the topic o non-linearity and electrical noise.

More information

TIME-FREQUENCY ANALYSIS OF NON-STATIONARY THREE PHASE SIGNALS. Z. Leonowicz T. Lobos

TIME-FREQUENCY ANALYSIS OF NON-STATIONARY THREE PHASE SIGNALS. Z. Leonowicz T. Lobos Copyright IFAC 15th Triennial World Congress, Barcelona, Spain TIME-FREQUENCY ANALYSIS OF NON-STATIONARY THREE PHASE SIGNALS Z. Leonowicz T. Lobos Wroclaw University o Technology Pl. Grunwaldzki 13, 537

More information

Fatigue Life Assessment Using Signal Processing Techniques

Fatigue Life Assessment Using Signal Processing Techniques Fatigue Lie Assessment Using Signal Processing Techniques S. ABDULLAH 1, M. Z. NUAWI, C. K. E. NIZWAN, A. ZAHARIM, Z. M. NOPIAH Engineering Faculty, Universiti Kebangsaan Malaysia 43600 UKM Bangi, Selangor,

More information

ICT 5305 Mobile Communications. Lecture - 3 April Dr. Hossen Asiful Mustafa

ICT 5305 Mobile Communications. Lecture - 3 April Dr. Hossen Asiful Mustafa ICT 5305 Mobile Communications Lecture - 3 April 2016 Dr. Hossen Asiul Mustaa Advanced Phase Shit Keying Q BPSK (Binary Phase Shit Keying): bit value 0: sine wave bit value 1: inverted sine wave very simple

More information

High Speed Communication Circuits and Systems Lecture 10 Mixers

High Speed Communication Circuits and Systems Lecture 10 Mixers High Speed Communication Circuits and Systems Lecture Mixers Michael H. Perrott March 5, 24 Copyright 24 by Michael H. Perrott All rights reserved. Mixer Design or Wireless Systems From Antenna and Bandpass

More information

Ricean Parameter Estimation Using Phase Information in Low SNR Environments

Ricean Parameter Estimation Using Phase Information in Low SNR Environments Ricean Parameter Estimation Using Phase Information in Low SNR Environments Andrew N. Morabito, Student Member, IEEE, Donald B. Percival, John D. Sahr, Senior Member, IEEE, Zac M.P. Berkowitz, and Laura

More information

DESIGN AND IMPLEMENTATION OF AN ALGORITHM FOR MODULATION IDENTIFICATION OF ANALOG AND DIGITAL SIGNALS

DESIGN AND IMPLEMENTATION OF AN ALGORITHM FOR MODULATION IDENTIFICATION OF ANALOG AND DIGITAL SIGNALS DESIGN AND IMPLEMENTATION OF AN ALGORITHM FOR MODULATION IDENTIFICATION OF ANALOG AND DIGITAL SIGNALS John Yong Jia Chen (Department of Electrical Engineering, San José State University, San José, California,

More information

A Weighted Least Squares Algorithm for Passive Localization in Multipath Scenarios

A Weighted Least Squares Algorithm for Passive Localization in Multipath Scenarios A Weighted Least Squares Algorithm for Passive Localization in Multipath Scenarios Noha El Gemayel, Holger Jäkel, Friedrich K. Jondral Karlsruhe Institute of Technology, Germany, {noha.gemayel,holger.jaekel,friedrich.jondral}@kit.edu

More information

Spread-Spectrum Technique in Sigma-Delta Modulators

Spread-Spectrum Technique in Sigma-Delta Modulators Spread-Spectrum Technique in Sigma-Delta Modulators by Eric C. Moule Submitted in Partial Fulillment o the Requirements or the Degree Doctor o Philosophy Supervised by Proessor Zeljko Ignjatovic Department

More information

Further developments on gear transmission monitoring

Further developments on gear transmission monitoring Further developments on gear transmission monitoring Niola V., Quaremba G., Avagliano V. Department o Mechanical Engineering or Energetics University o Naples Federico II Via Claudio 21, 80125, Napoli,

More information

Content. Basics of UWB Technologies - Utilization of Wide Spectrum - History and Recent Trend of UWB UWB

Content. Basics of UWB Technologies - Utilization of Wide Spectrum - History and Recent Trend of UWB UWB ontent Basics o UWB Technologies - Utilization o Wide Spectrum - What is UWB History and Recent Trend o UWB Principle o UWB Application o UWB Technical Issues or Antennas & RF ircuits Intererence Problem

More information

The Research of Electric Energy Measurement Algorithm Based on S-Transform

The Research of Electric Energy Measurement Algorithm Based on S-Transform International Conerence on Energy, Power and Electrical Engineering (EPEE 16 The Research o Electric Energy Measurement Algorithm Based on S-Transorm Xiyang Ou1,*, Bei He, Xiang Du1, Jin Zhang1, Ling Feng1,

More information

EEE 311: Digital Signal Processing I

EEE 311: Digital Signal Processing I EEE 311: Digital Signal Processing I Course Teacher: Dr Newaz Md Syur Rahim Associated Proessor, Dept o EEE, BUET, Dhaka 1000 Syllabus: As mentioned in your course calendar Reerence Books: 1 Digital Signal

More information

Determination of Pitch Range Based on Onset and Offset Analysis in Modulation Frequency Domain

Determination of Pitch Range Based on Onset and Offset Analysis in Modulation Frequency Domain Determination o Pitch Range Based on Onset and Oset Analysis in Modulation Frequency Domain A. Mahmoodzadeh Speech Proc. Research Lab ECE Dept. Yazd University Yazd, Iran H. R. Abutalebi Speech Proc. Research

More information

Narrow- and wideband channels

Narrow- and wideband channels RADIO SYSTEMS ETIN15 Lecture no: 3 Narrow- and wideband channels Ove Edfors, Department of Electrical and Information technology Ove.Edfors@eit.lth.se 27 March 2017 1 Contents Short review NARROW-BAND

More information

A Novel Technique or Blind Bandwidth Estimation of the Radio Communication Signal

A Novel Technique or Blind Bandwidth Estimation of the Radio Communication Signal International Journal of ISSN 0974-2107 Systems and Technologies IJST Vol.3, No.1, pp 11-16 KLEF 2010 A Novel Technique or Blind Bandwidth Estimation of the Radio Communication Signal Gaurav Lohiya 1,

More information

Estimation and Compensation of IQ-Imbalances in Direct Down Converters

Estimation and Compensation of IQ-Imbalances in Direct Down Converters Estimation and Compensation o IQ-Imbalances in irect own Converters NRES PSCHT, THOMS BITZER and THOMS BOHN lcatel SEL G, Holderaeckerstrasse 35, 7499 Stuttgart GERMNY bstract: - In this paper, a new method

More information

Narrow- and wideband channels

Narrow- and wideband channels RADIO SYSTEMS ETIN15 Lecture no: 3 Narrow- and wideband channels Ove Edfors, Department of Electrical and Information technology Ove.Edfors@eit.lth.se 2012-03-19 Ove Edfors - ETIN15 1 Contents Short review

More information

SPEECH ENHANCEMENT BASED ON ITERATIVE WIENER FILTER USING COMPLEX SPEECH ANALYSIS

SPEECH ENHANCEMENT BASED ON ITERATIVE WIENER FILTER USING COMPLEX SPEECH ANALYSIS SPEECH ENHANCEMENT BASED ON TERATVE WENER FLTER USNG COMPLEX SPEECH ANALYSS Keiichi Funaki Computing & Networking Center, Univ. o the Ryukyus Senbaru, Nishihara, Okinawa, 93-3, Japan phone: +(8)98-895-8946,

More information

Signal Sampling. Sampling. Sampling. Sampling. Sampling. Sampling

Signal Sampling. Sampling. Sampling. Sampling. Sampling. Sampling Signal Let s sample the signal at a time interval o Dr. Christopher M. Godrey University o North Carolina at Asheville Photo: C. Godrey Let s sample the signal at a time interval o Reconstruct the curve

More information

A Wavelet Approach to Wideband Spectrum Sensing for Cognitive Radios

A Wavelet Approach to Wideband Spectrum Sensing for Cognitive Radios A Wavelet Approach to Wideband Spectrum Sensing or Cognitive Radios Zhi Tian Department o Electrical & Computer Engineering Michigan Technological University Houghton, MI 4993 USA ztian@mtu.edu Georgios

More information

ESTIMATION OF FREQUENCY SELECTIVITY FOR OFDM BASED NEW GENERATION WIRELESS COMMUNICATION SYSTEMS

ESTIMATION OF FREQUENCY SELECTIVITY FOR OFDM BASED NEW GENERATION WIRELESS COMMUNICATION SYSTEMS ESTIMATION OF FREQUENCY SELECTIVITY FOR OFDM BASED NEW GENERATION WIRELESS COMMUNICATION SYSTEMS Hüseyin Arslan and Tevfik Yücek Electrical Engineering Department, University of South Florida 422 E. Fowler

More information

Overlapping Signal Separation in DPX Spectrum Based on EM Algorithm. Chuandang Liu 1, a, Luxi Lu 1, b

Overlapping Signal Separation in DPX Spectrum Based on EM Algorithm. Chuandang Liu 1, a, Luxi Lu 1, b nd International Worshop on Materials Engineering and Coputer Sciences (IWMECS 015) Overlapping Signal Separation in DPX Spectru Based on EM Algorith Chuandang Liu 1, a, Luxi Lu 1, b 1 National Key Laboratory

More information

Noise Power Ratio for the GSPS

Noise Power Ratio for the GSPS Noise Power Ratio for the GSPS ADC Marjorie Plisch 1 Noise Power Ratio (NPR) Overview Concept History Definition Method of Measurement Notch Considerations Theoretical Values RMS Noise Loading Level 2

More information

Assignment 1: Solutions to Problems on Direct Sequence Spread Spectrum

Assignment 1: Solutions to Problems on Direct Sequence Spread Spectrum G. S. Sanyal School of Telecommunications Indian Institute of Technology Kharagpur MOOC: Spread Spectrum Communications & Jamming Assignment 1: Solutions to Problems on Direct Sequence Spread Spectrum

More information

Narrow Band Interference (NBI) Mitigation Technique for TH-PPM UWB Systems in IEEE a Channel Using Wavelet Packet Transform

Narrow Band Interference (NBI) Mitigation Technique for TH-PPM UWB Systems in IEEE a Channel Using Wavelet Packet Transform Narrow Band Interference (NBI) Mitigation Technique for TH-PPM UWB Systems in IEEE 82.15.3a Channel Using Wavelet Pacet Transform Brijesh Kumbhani, K. Sanara Sastry, T. Sujit Reddy and Rahesh Singh Kshetrimayum

More information

Outline. Wireless PHY: Modulation and Demodulation. Admin. Page 1. g(t)e j2πk t dt. G[k] = 1 T. G[k] = = k L. ) = g L (t)e j2π f k t dt.

Outline. Wireless PHY: Modulation and Demodulation. Admin. Page 1. g(t)e j2πk t dt. G[k] = 1 T. G[k] = = k L. ) = g L (t)e j2π f k t dt. Outline Wireless PHY: Modulation and Demodulation Y. Richard Yang Admin and recap Basic concepts o modulation Amplitude demodulation requency shiting 09/6/202 2 Admin First assignment to be posted by this

More information

NOISE, INTERFERENCE, & DATA RATES

NOISE, INTERFERENCE, & DATA RATES COMP 635: WIRELESS NETWORKS NOISE, INTERFERENCE, & DATA RATES Jasleen Kaur Fall 2015 1 Power Terminology db Power expressed relative to reference level (P 0 ) = 10 log 10 (P signal / P 0 ) J : Can conveniently

More information

Outline. Communications Engineering 1

Outline. Communications Engineering 1 Outline Introduction Signal, random variable, random process and spectra Analog modulation Analog to digital conversion Digital transmission through baseband channels Signal space representation Optimal

More information

EXPLOITING RMS TIME-FREQUENCY STRUCTURE FOR DATA COMPRESSION IN EMITTER LOCATION SYSTEMS

EXPLOITING RMS TIME-FREQUENCY STRUCTURE FOR DATA COMPRESSION IN EMITTER LOCATION SYSTEMS NAECON : National Aerospace & Electronics Conerence, October -,, Dayton, Ohio 7 EXPLOITING RMS TIME-FREQUENCY STRUCTURE FOR DATA COMPRESSION IN EMITTER LOCATION SYSTEMS MARK L. FOWLER Department o Electrical

More information

Carrier Frequency Offset Estimation in WCDMA Systems Using a Modified FFT-Based Algorithm

Carrier Frequency Offset Estimation in WCDMA Systems Using a Modified FFT-Based Algorithm Carrier Frequency Offset Estimation in WCDMA Systems Using a Modified FFT-Based Algorithm Seare H. Rezenom and Anthony D. Broadhurst, Member, IEEE Abstract-- Wideband Code Division Multiple Access (WCDMA)

More information

Software Defined Radio Forum Contribution

Software Defined Radio Forum Contribution Committee: Technical Sotware Deined Radio Forum Contribution Title: VITA-49 Drat Speciication Appendices Source Lee Pucker SDR Forum 604-828-9846 Lee.Pucker@sdrorum.org Date: 7 March 2007 Distribution:

More information

APPLICATION NOTE #1. Phase NoiseTheory and Measurement 1 INTRODUCTION

APPLICATION NOTE #1. Phase NoiseTheory and Measurement 1 INTRODUCTION Tommorrow s Phase Noise Testing Today 35 South Service Road Plainview, NY 803 TEL: 56-694-6700 FAX: 56-694-677 APPLICATION NOTE # Phase NoiseTheory and Measurement INTRODUCTION Today, noise measurements

More information

Outline. Wireless PHY: Modulation and Demodulation. Admin. Page 1. G[k] = 1 T. g(t)e j2πk t dt. G[k] = = k L. ) = g L (t)e j2π f k t dt.

Outline. Wireless PHY: Modulation and Demodulation. Admin. Page 1. G[k] = 1 T. g(t)e j2πk t dt. G[k] = = k L. ) = g L (t)e j2π f k t dt. Outline Wireless PHY: Modulation and Demodulation Y. Richard Yang Admin and recap Basic concepts o modulation Amplitude modulation Amplitude demodulation requency shiting 9/6/22 2 Admin First assignment

More information

Content. Basics of UWB Technologies - Utilization of Wide Spectrum - History and Recent Trend of UWB UWB

Content. Basics of UWB Technologies - Utilization of Wide Spectrum - History and Recent Trend of UWB UWB ontent Basics o UWB Technologies - Utilization o Wide Spectrum - What is UWB History and Recent Trend o UWB Principle o UWB Application o UWB Technical Issues or Antennas & RF ircuits Intererence Problem

More information

Amplifiers. Department of Computer Science and Engineering

Amplifiers. Department of Computer Science and Engineering Department o Computer Science and Engineering 2--8 Power ampliiers and the use o pulse modulation Switching ampliiers, somewhat incorrectly named digital ampliiers, have been growing in popularity when

More information

Traditional Analog Modulation Techniques

Traditional Analog Modulation Techniques Chapter 5 Traditional Analog Modulation Techniques Mikael Olosson 2002 2007 Modulation techniques are mainly used to transmit inormation in a given requency band. The reason or that may be that the channel

More information

Statistical Signal Processing. Project: PC-Based Acoustic Radar

Statistical Signal Processing. Project: PC-Based Acoustic Radar Statistical Signal Processing Project: PC-Based Acoustic Radar Mats Viberg Revised February, 2002 Abstract The purpose of this project is to demonstrate some fundamental issues in detection and estimation.

More information

Noise Removal from ECG Signal and Performance Analysis Using Different Filter

Noise Removal from ECG Signal and Performance Analysis Using Different Filter International Journal o Innovative Research in Electronics and Communication (IJIREC) Volume. 1, Issue 2, May 214, PP.32-39 ISSN 2349-442 (Print) & ISSN 2349-45 (Online) www.arcjournal.org Noise Removal

More information

ORTHOGONAL frequency division multiplexing (OFDM)

ORTHOGONAL frequency division multiplexing (OFDM) 144 IEEE TRANSACTIONS ON BROADCASTING, VOL. 51, NO. 1, MARCH 2005 Performance Analysis for OFDM-CDMA With Joint Frequency-Time Spreading Kan Zheng, Student Member, IEEE, Guoyan Zeng, and Wenbo Wang, Member,

More information

Part A: Spread Spectrum Systems

Part A: Spread Spectrum Systems 1 Telecommunication Systems and Applications (TL - 424) Part A: Spread Spectrum Systems Dr. ir. Muhammad Nasir KHAN Department of Electrical Engineering Swedish College of Engineering and Technology March

More information

AN ACCURATE ULTRA WIDEBAND (UWB) RANGING FOR PRECISION ASSET LOCATION

AN ACCURATE ULTRA WIDEBAND (UWB) RANGING FOR PRECISION ASSET LOCATION AN ACCURATE ULTRA WIDEBAND (UWB) RANGING FOR PRECISION ASSET LOCATION Woo Cheol Chung and Dong Sam Ha VTVT (Virginia Tech VLSI for Telecommunications) Laboratory, Bradley Department of Electrical and Computer

More information

Lock-In Amplifiers SR510 and SR530 Analog lock-in amplifiers

Lock-In Amplifiers SR510 and SR530 Analog lock-in amplifiers Lock-In Ampliiers SR510 and SR530 Analog lock-in ampliiers SR510/SR530 Lock-In Ampliiers 0.5 Hz to 100 khz requency range Current and voltage inputs Up to 80 db dynamic reserve Tracking band-pass and line

More information

Lecture 9: Spread Spectrum Modulation Techniques

Lecture 9: Spread Spectrum Modulation Techniques Lecture 9: Spread Spectrum Modulation Techniques Spread spectrum (SS) modulation techniques employ a transmission bandwidth which is several orders of magnitude greater than the minimum required bandwidth

More information

Part A: Spread Spectrum Systems

Part A: Spread Spectrum Systems 1 Telecommunication Systems and Applications (TL - 424) Part A: Spread Spectrum Systems Dr. ir. Muhammad Nasir KHAN Department of Electrical Engineering Swedish College of Engineering and Technology February

More information

Wireless Communication: Concepts, Techniques, and Models. Hongwei Zhang

Wireless Communication: Concepts, Techniques, and Models. Hongwei Zhang Wireless Communication: Concepts, Techniques, and Models Hongwei Zhang http://www.cs.wayne.edu/~hzhang Outline Digital communication over radio channels Channel capacity MIMO: diversity and parallel channels

More information

A Multicarrier CDMA Based Low Probability of Intercept Network

A Multicarrier CDMA Based Low Probability of Intercept Network A Multicarrier CDMA Based Low Probability of Intercept Network Sayan Ghosal Email: sayanghosal@yahoo.co.uk Devendra Jalihal Email: dj@ee.iitm.ac.in Giridhar K. Email: giri@ee.iitm.ac.in Abstract The need

More information

Simulation of Radio Frequency Integrated Circuits

Simulation of Radio Frequency Integrated Circuits Simulation o Radio Frequency Integrated Circuits Based on: Computer-Aided Circuit Analysis Tools or RFIC Simulation: Algorithms, Features, and Limitations, IEEE Trans. CAS-II, April 2000. Outline Introduction

More information

Exploring QAM using LabView Simulation *

Exploring QAM using LabView Simulation * OpenStax-CNX module: m14499 1 Exploring QAM using LabView Simulation * Robert Kubichek This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 2.0 1 Exploring

More information

The Communications Channel (Ch.11):

The Communications Channel (Ch.11): ECE-5 Phil Schniter February 5, 8 The Communications Channel (Ch.): The eects o signal propagation are usually modeled as: ECE-5 Phil Schniter February 5, 8 Filtering due to Multipath Propagation: The

More information

The UMRR-S: A High-Performance 24GHz Multi Mode Automotive Radar Sensor for Comfort and Safety Applications

The UMRR-S: A High-Performance 24GHz Multi Mode Automotive Radar Sensor for Comfort and Safety Applications The UMRR-S: A High-Perormance 24GHz Multi Mode Automotive Radar Sensor or Comort and Saety Applications Ralph Mende*, Marc Behrens*, Marc-Michael Meinecke**, Arne Bartels**, Thanh-Binh To** *smart microwave

More information

System Identification and CDMA Communication

System Identification and CDMA Communication System Identification and CDMA Communication A (partial) sample report by Nathan A. Goodman Abstract This (sample) report describes theory and simulations associated with a class project on system identification

More information

Noise Plus Interference Power Estimation in Adaptive OFDM Systems

Noise Plus Interference Power Estimation in Adaptive OFDM Systems Noise Plus Interference Power Estimation in Adaptive OFDM Systems Tevfik Yücek and Hüseyin Arslan Department of Electrical Engineering, University of South Florida 4202 E. Fowler Avenue, ENB-118, Tampa,

More information

DIGITAL COMMUNICATIONS SYSTEMS. MSc in Electronic Technologies and Communications

DIGITAL COMMUNICATIONS SYSTEMS. MSc in Electronic Technologies and Communications DIGIAL COMMUNICAIONS SYSEMS MSc in Electronic echnologies and Communications Scheme o a communication system Spectrum o electromagnetic requencies Wavelength c Speed o light 3. km/s Frequency Audio khz

More information

Adaptive Systems Homework Assignment 3

Adaptive Systems Homework Assignment 3 Signal Processing and Speech Communication Lab Graz University of Technology Adaptive Systems Homework Assignment 3 The analytical part of your homework (your calculation sheets) as well as the MATLAB

More information

The Metrication Waveforms

The Metrication Waveforms The Metrication of Low Probability of Intercept Waveforms C. Fancey Canadian Navy CFB Esquimalt Esquimalt, British Columbia, Canada cam_fancey@hotmail.com C.M. Alabaster Dept. Informatics & Sensor, Cranfield

More information

Interference of Chirp Sequence Radars by OFDM Radars at 77 GHz

Interference of Chirp Sequence Radars by OFDM Radars at 77 GHz Interference of Chirp Sequence Radars by OFDM Radars at 77 GHz Christina Knill, Jonathan Bechter, and Christian Waldschmidt 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must

More information

Time Delay Estimation: Applications and Algorithms

Time Delay Estimation: Applications and Algorithms Time Delay Estimation: Applications and Algorithms Hing Cheung So http://www.ee.cityu.edu.hk/~hcso Department of Electronic Engineering City University of Hong Kong H. C. So Page 1 Outline Introduction

More information

SPLIT MLSE ADAPTIVE EQUALIZATION IN SEVERELY FADED RAYLEIGH MIMO CHANNELS

SPLIT MLSE ADAPTIVE EQUALIZATION IN SEVERELY FADED RAYLEIGH MIMO CHANNELS SPLIT MLSE ADAPTIVE EQUALIZATION IN SEVERELY FADED RAYLEIGH MIMO CHANNELS RASHMI SABNUAM GUPTA 1 & KANDARPA KUMAR SARMA 2 1 Department of Electronics and Communication Engineering, Tezpur University-784028,

More information

DSP APPLICATION TO THE PORTABLE VIBRATION EXCITER

DSP APPLICATION TO THE PORTABLE VIBRATION EXCITER DSP PPLICTION TO THE PORTBLE VIBRTION EXCITER W. Barwicz 1, P. Panas 1 and. Podgórski 2 1 Svantek Ltd., 01-410 Warsaw, Poland Institute o Radioelectronics, Faculty o Electronics and Inormation Technology

More information

Channel-based Optimization of Transmit-Receive Parameters for Accurate Ranging in UWB Sensor Networks

Channel-based Optimization of Transmit-Receive Parameters for Accurate Ranging in UWB Sensor Networks J. Basic. ppl. Sci. Res., 2(7)7060-7065, 2012 2012, TextRoad Publication ISSN 2090-4304 Journal of Basic and pplied Scientific Research www.textroad.com Channel-based Optimization of Transmit-Receive Parameters

More information

COMPARISON OF CHANNEL ESTIMATION AND EQUALIZATION TECHNIQUES FOR OFDM SYSTEMS

COMPARISON OF CHANNEL ESTIMATION AND EQUALIZATION TECHNIQUES FOR OFDM SYSTEMS COMPARISON OF CHANNEL ESTIMATION AND EQUALIZATION TECHNIQUES FOR OFDM SYSTEMS Sanjana T and Suma M N Department of Electronics and communication, BMS College of Engineering, Bangalore, India ABSTRACT In

More information

ELT Receiver Architectures and Signal Processing Fall Mandatory homework exercises

ELT Receiver Architectures and Signal Processing Fall Mandatory homework exercises ELT-44006 Receiver Architectures and Signal Processing Fall 2014 1 Mandatory homework exercises - Individual solutions to be returned to Markku Renfors by email or in paper format. - Solutions are expected

More information

IEEE Broadband Wireless Access Working Group <

IEEE Broadband Wireless Access Working Group < Project Title IEEE 80.16 Broadband Wireless Access Working Group Channel and intererence model or 80.16b Physical Layer Date Submitted Source(s) Re: 000-31-09 Tal Kaitz BreezeCOM

More information

EENG473 Mobile Communications Module 3 : Week # (12) Mobile Radio Propagation: Small-Scale Path Loss

EENG473 Mobile Communications Module 3 : Week # (12) Mobile Radio Propagation: Small-Scale Path Loss EENG473 Mobile Communications Module 3 : Week # (12) Mobile Radio Propagation: Small-Scale Path Loss Introduction Small-scale fading is used to describe the rapid fluctuation of the amplitude of a radio

More information

Chapter 2 Channel Equalization

Chapter 2 Channel Equalization Chapter 2 Channel Equalization 2.1 Introduction In wireless communication systems signal experiences distortion due to fading [17]. As signal propagates, it follows multiple paths between transmitter and

More information

Channel Modeling ETI 085

Channel Modeling ETI 085 Channel Modeling ETI 085 Overview Lecture no: 9 What is Ultra-Wideband (UWB)? Why do we need UWB channel models? UWB Channel Modeling UWB channel modeling Standardized UWB channel models Fredrik Tufvesson

More information

Sinusoidal signal. Arbitrary signal. Periodic rectangular pulse. Sampling function. Sampled sinusoidal signal. Sampled arbitrary signal

Sinusoidal signal. Arbitrary signal. Periodic rectangular pulse. Sampling function. Sampled sinusoidal signal. Sampled arbitrary signal Techniques o Physics Worksheet 4 Digital Signal Processing 1 Introduction to Digital Signal Processing The ield o digital signal processing (DSP) is concerned with the processing o signals that have been

More information

IEEE C802.16h-05/022r1. IEEE Broadband Wireless Access Working Group <

IEEE C802.16h-05/022r1. IEEE Broadband Wireless Access Working Group < Project IEEE 802.16 Broadband Wireless Access Working Group Title Cognitive radio concepts or 802.16h Date Submitted 2005-07-11 Source(s) Mariana Goldhamer Alvarion Tel Aviv, 21

More information

COMPRESSIVE CLASSIFICATION FOR THROUGH-THE-WALL RADAR IMAGING. Mark R. Balthasar, Michael Leigsnering, Abdelhak M. Zoubir

COMPRESSIVE CLASSIFICATION FOR THROUGH-THE-WALL RADAR IMAGING. Mark R. Balthasar, Michael Leigsnering, Abdelhak M. Zoubir 20th European Signal Processing Conerence (EUSIPCO 2012) Bucharest, Romania, August 27-31, 2012 COMPRESSIVE CLASSIFICATION FOR THROUGH-THE-WALL RADAR IMAGING Mark R. Balthasar, Michael Leigsnering, Abdelhak

More information

UMRR: A 24GHz Medium Range Radar Platform

UMRR: A 24GHz Medium Range Radar Platform UMRR: A 24GHz Medium Range Radar Platorm Dr.-Ing. Ralph Mende, Managing Director smart microwave sensors GmbH Phone: +49 (531) 39023 0 / Fax: +49 (531) 39023 58 / ralph.mende@smartmicro.de Mittelweg 7

More information

On the Optimality of Single-Carrier Transmission in Large-Scale Antenna Systems

On the Optimality of Single-Carrier Transmission in Large-Scale Antenna Systems On the Optimality o Single-Carrier Transmission in Large-Scale Antenna Systems Antonios Pitarokoilis, Sai han Mohammed and Erik G. Larsson Linköping University Post Print N.B.: When citing this work, cite

More information

DARK CURRENT ELIMINATION IN CHARGED COUPLE DEVICES

DARK CURRENT ELIMINATION IN CHARGED COUPLE DEVICES DARK CURRENT ELIMINATION IN CHARGED COUPLE DEVICES L. Kňazovická, J. Švihlík Department o Computing and Control Engineering, ICT Prague Abstract Charged Couple Devices can be ound all around us. They are

More information

Performance of Wideband Mobile Channel with Perfect Synchronism BPSK vs QPSK DS-CDMA

Performance of Wideband Mobile Channel with Perfect Synchronism BPSK vs QPSK DS-CDMA Performance of Wideband Mobile Channel with Perfect Synchronism BPSK vs QPSK DS-CDMA By Hamed D. AlSharari College of Engineering, Aljouf University, Sakaka, Aljouf 2014, Kingdom of Saudi Arabia, hamed_100@hotmail.com

More information

Validation of a crystal detector model for the calibration of the Large Signal Network Analyzer.

Validation of a crystal detector model for the calibration of the Large Signal Network Analyzer. Instrumentation and Measurement Technology Conerence IMTC 2007 Warsaw, Poland, May 1-3, 2007 Validation o a crystal detector model or the calibration o the Large Signal Network Analyzer. Liesbeth Gommé,

More information