Estimation and Compensation of IQ-Imbalances in Direct Down Converters

Size: px
Start display at page:

Download "Estimation and Compensation of IQ-Imbalances in Direct Down Converters"

Transcription

1 Estimation and Compensation o IQ-Imbalances in irect own Converters NRES PSCHT, THOMS BITZER and THOMS BOHN lcatel SEL G, Holderaeckerstrasse 35, 7499 Stuttgart GERMNY bstract: - In this paper, a new method or the estimation and the compensation o IQ-imbalances in direct down conversion receivers is presented. The considerations are based on a receiver structure that is developed or the simultaneous down conversion o up to our neighbouring carriers in UMTS base stations. The suppression o such a system must achieve 6dB at least. This reuirement is not ulilled by the analogue part and hence, an error estimation and compensation in the digital domain is necessary. In laboratory measurements using a W-CM signal, the suppression could be improved by 5.3 db to a resulting value o 75. db. Key-Words: - irect down conversion, suppression, IQ-imbalance. Introduction ue to high pressure towards cost reductions on the telecommunication market, a goal o the development is the integration o analogue parts, e.g. o the base station receiver, on SICs []. irect down converters or the single carrier reception in mobiles like [] are already existing. However or base stations, there is a demand to process up to our carriers simultaneously which reuires a higher bandwidth. ccording to the 3GPP speciications, e.g. a blocking intererer signal can occur in the receive band. Since the power level o this blocking signal can be much higher than that o the user signal, a high suppression must be ensured. Receiver Structure The receiver architecture comparable to [3]-[4] is shown in Fig.. It extracts the real and imaginary part rom a complex signal converting it directly down rom the RF domain to the base band. In the present case, the ield o application is the reception o a multi carrier W-CM signal in UMTS base stations. The antenna signal is iltered by a bandpass and ampliied by a low noise ampliier and a variable gain ampliier. The signal path is divided into the in-phase (I) and the uadrature (Q) paths, each containing a mixer, a lowpass and an ampliier stage. The LO ports o the mixers are driven by CW signals with a reuency eual to the centre reuency o the received multi carrier band. Thus, one o the mixing products occurs around the reuency while the other one occurs in the baseband. The LO input signals o the mixers must dier by a phase shit o 9. t the output o the mixers, the baseband signals are lowpass iltered and ampliied. terwards they are -converted. In the subseuent digital domain, the particular channels are separated and the error estimation and compensation is done. Fig. RF SIC 9 Q-Path I-Path LO Block diagram o a direct down conversion receiver. 3 Imbalance Problem Since in analogue IQ-demodulators, the I and Q paths cannot be built identically and the 9 -phase shiter is not ideal, gain and phase imbalances between the I and the Q signals occur. Thus the ollowing channel separation algorithm cannot separate the particular channels without mutual intererence caused by signals. The power level o these unwanted s depends on the occurring IQ-imbalances as described in [5]. n example in the case o the 3GPP blocking speciication is shown in Fig.. It represents the worst case o the problem in the considered base station receiver. In order to detect the channels correctly, the s and thereore the IQimbalances must not exceed certain limits. With the approach shown in Fig. 3, the dependency o the suppression on the gain and phase imbalance can be calculated.

2 RF domain IF domain Spectrum Blocking signal, level: -4 dbm LO - oset User signal, level: -5 dbm LO Freuency LO + oset Spectrum Image o the Blocking signal oset User signal, level: -5 dbm Freuency Fig. Illustration o the problem in the 3GPP blocking speciication. Fig. 3 pproach or the calculation o the suppression. The parameters k and k model the gain imbalances o the transmitter and receiver and the parameters p and p model the phase imbalances o the transmitter and the receiver respectively. The transer unction o the chain is. i i p k i p k cos sin (a) (b) i and are the inphase and uadrature input signals in the time domain and i and k are the inphase and uadrature output signals in the time domain. In the ollowing the actors / in (a) and (b) will be neglected or simpliication and only the demodulator or the receiver is considered. The suppression can be derived by eeding the demodulator with a CW signal. i cos t (a) sin t (b) With (a) and (b) the output signal can be calculated. i cos t (3a) k sin t p (3b) The coeicients or the wanted and the reuency can be calculated via ourier transorm o the signal in the time domain. The ourier coeicients are. d d k k p jk p cos sin p jk p cos sin (4a) (4b) d + is the ourier coeicient at the wanted signal and d - the ourier coeicient at the signal respectively.

3 With euation (4a) and euation (4b) the suppression can be derived. a Image d log aim d k cos log k age p k p k a Im age cos (5a) (5b) With euation (5b) the suppression can be calculated or given amplitude and phase imbalances o a demodulator. The result can be seen in Fig. 4. In order to obtain an suppression o 6 db or more which is reuired e.g. or the correct detection o the UMTS channels, the gain imbalance must not exceed. db and the phase imbalance must not exceed. degrees. 3 4 ntenna & uplex Filter c Receiver SIC I Q FPG Channel Separation (Channels & ) Channel Separation (Channels 3 & 4) Error Estimation & Compensation Error Estimation & Compensation Channel (I, Q) Channel (I, Q) Channel 3 (I3, Q3) Channel 4 (I4, Q4) Fig. 5 Block diagram o the complete receiver structure with channel separation and error correction.. Indirect Error Compensation The term "indirect error compensation" is used or a method to compensate the IQ demodulator errors by subtracting the error signal introduced by the IQ demodulator at the output o the digital down conversion (C). Because these errors are related to the insuicient rejection o the IQ demodulator they are correlated to the "reuency inverted" output o a down converted channel tuned to the channel. "Freuency inverted" means that the error signal within the wanted channel has an inverted rotation with respect to the channel signal. The transer unction o the indirect error compensation stage could be written as. 3 4 s out s * s in, wanted in, c (6a) i i a bi out in, wanted in, in, (6b) Fig. 4 Image suppression versus IQ-gain and phase imbalance. 4 Error Compensation and Estimation ue to the imbalance problem mentioned above, a method was developed or the estimation and correction o the signal errors ater the channel separation in the digital domain. The error estimation is done with a calculation o the crosscorrelation between two channels that are symmetric about C. Furthermore, the channel power o each channel is determined. From that, a complex correction actor is extracted that is used in the ollowing error compensation. The error compensation is carried out by weighted subtraction o the band rom the wanted band. Fig. 5 shows the block diagram o the resulting structure with channel separation as well as error estimation and compensation in the case o a our carrier receiver. ai b out in, wanted in, in, c a jb (6c) (6d) s out is the wanted complex output signal ater correction, s in,wanted is the wanted complex input signal beore correction and s * in, is the reuency inverted complex input signal. c is the complex scaling actor and i x is the real part and x the imaginary part o the signal. Fig. 6 shows a possible indirect compensator block diagram. For every wanted channel such a stage is necessary. The channel must also be available or the indirect error compensation. Fig. 7 shows a block diagram o a our channel multicarrier receiver with symmetrically spaced reuency channels. In this case the o one channel is the wanted signal o its counterpart, so that there is no need or implementing extra downconverters to obtain the signals needed or the compensators. Only two sets o scaling actors are needed or this case.

4 xy xxw c.5 xxi xxi or xxi xxw (9a) xy xxi c.5 xxw xxw or xxi xxw (9b) k.47 Im c p Re c (a) (b) Fig. 6 Block diagram o the indirect compensator stage. xy is the complex correlation coeicient between the wanted and the signal. xxw is the energy o the wanted signal seuence and xxi is the energy o the signal seuence respectively. i i and i are the inphase and uadrature components o the sample i and n is the number o samples taken or correlation. The second term in euation (9a,b) has been ound empirically. It has a signiicant contribution only i the power o the wanted and signal is about the same. Euation (a,b) is also ound empirically. The number o samples taken or the computations has been varied between one radio timeslot and / o a timeslot with no signiicant dierence. Fig. 7 receiver. Indirect compensation or a reuency symmetric our channel B. Error Estimation The error estimation unctionality is needed to estimate the unknown complex scaling actor. The error estimation is done by correlating the "reuency inverted" signal o the corresponding channel with the signal o the wanted channel ater the direct down conversion stages. The scaled complex correlation coeicient is used to compute the scaling actor used or indirect compensation. lso the amplitude and phase imbalance o the IQ demodulator could be calculated rom the scaled correlation coeicient. xy xxw n i, i j i ii, i i, i, n i i (7) i i,, (8a) wanted i wanted 5 Simulation Results In Fig. 8, a simulation result obtained with S rom gilent Technologies is shown. s an example, the suppression with and without error compensation is plotted versus the gain imbalance. The analogue part o the Receiver is included or the simulations. Compared to the suppression without compensation an theoretical improvement o up to 45 db can be achieved. s expected, the supppression is decreasing with increasing gain imbalance. For small imbalance values a saturation o the suppression occurs. The suppression is suicient or gain imbalances up to 4.5 db. xxi n i i i,, (8b) i Fig. 8 Simulated suppression with and without error compensation.

5 Fig. 9 shows the with and without compensator. Without compensator, the rejection is about 3 db which is the one o the uncompensated IQ demodulator. With compensator, the is totally masked by the noise loor. t least 3 db improvement is achieved in this case. Fig Main channel and, with and without compensator. 6 Measurement Results Measurements have been perormed to show the unctionality o the error compensation using a set-up shown in Fig.. Fig. PC Ring Buer I,Q digital FPG Channel Separation Evaluation o signal data Upper channel beore EEC Lower channel beore EEC Set-up used or laboratory measurements. Error Estimation& Compensation (EEC) Upper channel ater EEC Lower channel ater EEC The input o the FPG is connected to the digital data source which can be used or a CW as well as or a W- CM signal. The signal data in the upper and lower channel are read out rom the FPG beore and ater the error estimation and compensation part. Finally the data are post-processed in a PC in order to obtain the spectra o the particular channels. The irst measurement is perormed using a CW input signal with an amplitude imbalance o db that was.9 MHz above the receiver LO reuency o 95 MHz. In the error estimation algorithm, 89 data samples were averaged to calculate the cross-correlation and the channel power values. The spectra o the CW signal in the upper band and its unwanted in the lower band can be seen in Fig.. Spectrum / db signal at input and output beore compensation reuired limit ater compensation Freuency / MHz Fig. Spectra o the CW signal in the upper band and its beore and ater compensation. The CW signal is passed through without a noticeable power level change. The is 4.8 db below the original CW signal beore the error compensation. ter the error compensation, the suppression has reached 7.3 db. That means that the error estimation and compensation algorithm has increased the suppression by 45.5 db. The second measurement was done with a W-CM input signal with a bandwith o 3.84 MHz and an amplitude imbalance o db. In the error estimation algorithm, again 89 data samples were averaged to calculate the crosscorrelation and the channel power values. The spectra o the W-CM signal in the upper band and its unwanted in the lower band can be seen in Fig.. Spectrum / db signal at input and output beore compensation reuired limit ater compensation Freuency / MHz Fig. Spectra o the WCM-signal in the upper band and its beore and ater compensation.

6 The W-CM signal is also passed through without a signiicant power level change. The is 4.8 db below the original W-CM signal beore the error compensation. ter the error compensation, the suppression has reached 75. db. That means that the error estimation and compensation algorithm has increased the suppression by 5.3 db in this case. Fig. 3 shows a comparison between measurement and simulation o the suppression depending on the gain imbalance. gain a W-CM signal with 3.84 MHz bandwidth is used. In the error estimation algorithm, again 89 data samples were averaged to calculate the crosscorrelation and the channel power values. The simulation shows good agreement with the measured values even or large imbalances. 7 Conclusion This work presents a new method or the estimation and compensation o signal errors resulting rom imbalances between the I and Q paths in direct down converters. The unctionality is shown in S simulations as well as by a laboratory measurements. cknowledgement The author would like to thank Mr. Bergmann and Mr. Karthaus rom the tmel company who provided us with a receiver test SIC. Reerences [] U. Karthaus, F. Gruson, T. Bitzer, H. Vogelmann, G. Bergmann, N. lomari, K. Weese and. Pascht, Fully integrated, 4-channel, direct conversion SiGe receiver IC or UMTS base stations, IEEE European Microwave Conerence, Munich, Oct. 3. [].. bidi, irect-conversion Radio Transceivers or igital Communications, IEEE Journal o Solid-State Circuits, vol. 3, pp , ec [3] T. Bitzer, U. Karthaus,. Pascht and K. Weese, Realisation o a SiGe-HBT irect own Conversion Receiver or UMTS Base Stations, IEEE EMO Symposium, Manchester, pp , Nov.. [4] J. K. Cavers, daptive Compensation or Imbalance and Oset Losses in irect Conversion Transceivers, IEEE Transactions on Vehicular Technology, vol. 4, pp , Nov [5] J. Jussila, J. Ryynänen, K. Kivekäs, L. Sumanen,. Pärssinen and K.. I. Halonen, -m 3.-dB NF irect Conversion Receiver or 3G WCM, IEEE Journal o Solid-State Circuits, vol. 36, pp. 5-9, ec.. Fig. 3 Comparison between measurement and simulation or the gain imbalance dependent suppression.

High Speed Communication Circuits and Systems Lecture 10 Mixers

High Speed Communication Circuits and Systems Lecture 10 Mixers High Speed Communication Circuits and Systems Lecture Mixers Michael H. Perrott March 5, 24 Copyright 24 by Michael H. Perrott All rights reserved. Mixer Design or Wireless Systems From Antenna and Bandpass

More information

ECEN 5014, Spring 2013 Special Topics: Active Microwave Circuits and MMICs Zoya Popovic, University of Colorado, Boulder

ECEN 5014, Spring 2013 Special Topics: Active Microwave Circuits and MMICs Zoya Popovic, University of Colorado, Boulder ECEN 5014, Spring 2013 Special Topics: Active Microwave Circuits and MMICs Zoya Popovic, University o Colorado, Boulder LECTURE 13 PHASE NOISE L13.1. INTRODUCTION The requency stability o an oscillator

More information

An image rejection re-configurable multi-carrier 3G base-station transmitter

An image rejection re-configurable multi-carrier 3G base-station transmitter An image rejection reconigurable multicarrier 3G basestation transmitter Dimitrios Estathiou Analog Devices, 79 Triad Center Drive, Greensboro, NC 2749, USA email: dimitrios.estathiou@analog.com ABSTRACT

More information

McGill University. Department. of Electrical and Computer Engineering. Communications systems A

McGill University. Department. of Electrical and Computer Engineering. Communications systems A McGill University Department. o Electrical and Computer Engineering Communications systems 304-411A 1 The Super-heterodyne Receiver 1.1 Principle and motivation or the use o the super-heterodyne receiver

More information

PLANNING AND DESIGN OF FRONT-END FILTERS

PLANNING AND DESIGN OF FRONT-END FILTERS PLANNING AND DESIGN OF FRONT-END FILTERS AND DIPLEXERS FOR RADIO LINK APPLICATIONS Kjetil Folgerø and Jan Kocba Nera Networks AS, N-52 Bergen, NORWAY. Email: ko@nera.no, jko@nera.no Abstract High capacity

More information

A technique for noise measurement optimization with spectrum analyzers

A technique for noise measurement optimization with spectrum analyzers Preprint typeset in JINST style - HYPER VERSION A technique or noise measurement optimization with spectrum analyzers P. Carniti a,b, L. Cassina a,b, C. Gotti a,b, M. Maino a,b and G. Pessina a,b a INFN

More information

Analog and Telecommunication Electronics

Analog and Telecommunication Electronics Politecnico di Torino - ICT School Analog and Telecommunication Electronics B1 - Radio systems architecture» Basic radio systems» Image rejection» Digital and SW radio» Functional units 19/03/2012-1 ATLCE

More information

Complex RF Mixers, Zero-IF Architecture, and Advanced Algorithms: The Black Magic in Next-Generation SDR Transceivers

Complex RF Mixers, Zero-IF Architecture, and Advanced Algorithms: The Black Magic in Next-Generation SDR Transceivers Complex RF Mixers, Zero-F Architecture, and Advanced Algorithms: The Black Magic in Next-Generation SDR Transceivers By Frank Kearney and Dave Frizelle Share on ntroduction There is an interesting interaction

More information

Page 1. Telecommunication Electronics TLCE - A1 03/05/ DDC 1. Politecnico di Torino ICT School. Lesson A1

Page 1. Telecommunication Electronics TLCE - A1 03/05/ DDC 1. Politecnico di Torino ICT School. Lesson A1 Politecnico di Torino ICT School Lesson A1 A1 Telecommunication Electronics Radio systems architecture» Basic radio systems» Image rejection» Digital and SW radio» Functional units Basic radio systems

More information

Software Defined Radio Forum Contribution

Software Defined Radio Forum Contribution Committee: Technical Sotware Deined Radio Forum Contribution Title: VITA-49 Drat Speciication Appendices Source Lee Pucker SDR Forum 604-828-9846 Lee.Pucker@sdrorum.org Date: 7 March 2007 Distribution:

More information

SENSITIVITY IMPROVEMENT IN PHASE NOISE MEASUREMENT

SENSITIVITY IMPROVEMENT IN PHASE NOISE MEASUREMENT SENSITIVITY IMROVEMENT IN HASE NOISE MEASUREMENT N. Majurec, R. Nagy and J. Bartolic University o Zagreb, Faculty o Electrical Engineering and Computing Unska 3, HR-10000 Zagreb, Croatia Abstract: An automated

More information

Analog and Telecommunication Electronics

Analog and Telecommunication Electronics Politecnico di Torino - ICT School Analog and Telecommunication Electronics B1 - Radio systems architecture» Basic radio systems» Image rejection» Digital and SW radio» Functional units AY 2015-16 05/03/2016-1

More information

Chapter 25: Transmitters and Receivers

Chapter 25: Transmitters and Receivers Chapter 25: Transmitters and Receivers This chapter describes the design o transmitters and receivers or radio transmission. The terms used shall have a deined meaning such that the components rom the

More information

Issues for Multi-Band Multi-Access Radio Circuits in 5G Mobile Communication

Issues for Multi-Band Multi-Access Radio Circuits in 5G Mobile Communication Issues or Multi-Band Multi-Access Radio Circuits in 5G Mobile Communication Yasushi Yamao AWCC The University o Electro-Communications LABORATORY Outline Background Requirements or 5G Hardware Issues or

More information

Receiver Architecture

Receiver Architecture Receiver Architecture Receiver basics Channel selection why not at RF? BPF first or LNA first? Direct digitization of RF signal Receiver architectures Sub-sampling receiver noise problem Heterodyne receiver

More information

ECE5984 Orthogonal Frequency Division Multiplexing and Related Technologies Fall Mohamed Essam Khedr. Channel Estimation

ECE5984 Orthogonal Frequency Division Multiplexing and Related Technologies Fall Mohamed Essam Khedr. Channel Estimation ECE5984 Orthogonal Frequency Division Multiplexing and Related Technologies Fall 2007 Mohamed Essam Khedr Channel Estimation Matlab Assignment # Thursday 4 October 2007 Develop an OFDM system with the

More information

Consumers are looking to wireless

Consumers are looking to wireless Phase Noise Eects on OFDM Wireless LAN Perormance This article quantiies the eects o phase noise on bit-error rate and oers guidelines or noise reduction By John R. Pelliccio, Heinz Bachmann and Bruce

More information

6.976 High Speed Communication Circuits and Systems Lecture 16 Noise in Integer-N Frequency Synthesizers

6.976 High Speed Communication Circuits and Systems Lecture 16 Noise in Integer-N Frequency Synthesizers 6.976 High Speed Communication Circuits and Systems Lecture 16 in Integer-N Frequency Synthesizers Michael Perrott Massachusetts Institute o Technology Copyright 23 by Michael H. Perrott Frequency Synthesizer

More information

Fundamentals of Spectrum Analysis. Christoph Rauscher

Fundamentals of Spectrum Analysis. Christoph Rauscher Fundamentals o Spectrum nalysis Christoph Rauscher Christoph Rauscher Volker Janssen, Roland Minihold Fundamentals o Spectrum nalysis Rohde & Schwarz GmbH & Co. KG, 21 Mühldorstrasse 15 81671 München Germany

More information

Lousy Processing Increases Energy Efficiency in Massive MIMO Systems

Lousy Processing Increases Energy Efficiency in Massive MIMO Systems 1 Lousy Processing Increases Energy Eiciency in Massive MIMO Systems Sara Gunnarsson, Micaela Bortas, Yanxiang Huang, Cheng-Ming Chen, Liesbet Van der Perre and Ove Edors Department o EIT, Lund University,

More information

High Speed Communication Circuits and Systems Lecture 15 VCO Examples Mixers

High Speed Communication Circuits and Systems Lecture 15 VCO Examples Mixers 6. 776 High Speed Communication Circuits and Systems Lecture 15 VCO Examples Mixers Massachusetts Institute o Technology March 31, 2005 Copyright 2005 by Hae-Seung Lee and Michael H. Perrott Voltage Controlled

More information

1. Motivation. 2. Periodic non-gaussian noise

1. Motivation. 2. Periodic non-gaussian noise . Motivation One o the many challenges that we ace in wireline telemetry is how to operate highspeed data transmissions over non-ideal, poorly controlled media. The key to any telemetry system design depends

More information

Detection and direction-finding of spread spectrum signals using correlation and narrowband interference rejection

Detection and direction-finding of spread spectrum signals using correlation and narrowband interference rejection Detection and direction-inding o spread spectrum signals using correlation and narrowband intererence rejection Ulrika Ahnström,2,JohanFalk,3, Peter Händel,3, Maria Wikström Department o Electronic Warare

More information

Lock-In Amplifiers SR510 and SR530 Analog lock-in amplifiers

Lock-In Amplifiers SR510 and SR530 Analog lock-in amplifiers Lock-In Ampliiers SR510 and SR530 Analog lock-in ampliiers SR510/SR530 Lock-In Ampliiers 0.5 Hz to 100 khz requency range Current and voltage inputs Up to 80 db dynamic reserve Tracking band-pass and line

More information

All Digital Phase-Locked Loops, its Advantages and Performance Limitations

All Digital Phase-Locked Loops, its Advantages and Performance Limitations All Digital Phase-Locked Loops, its Advantages and Perormance Limitations Win Chaivipas, Philips Oh, and Akira Matsuawa Matsuawa Laboratory, Department o Physical Electronics, Tokyo Institute o Technology

More information

Optimizing Reception Performance of new UWB Pulse shape over Multipath Channel using MMSE Adaptive Algorithm

Optimizing Reception Performance of new UWB Pulse shape over Multipath Channel using MMSE Adaptive Algorithm IOSR Journal o Engineering (IOSRJEN) ISSN (e): 2250-3021, ISSN (p): 2278-8719 Vol. 05, Issue 01 (January. 2015), V1 PP 44-57 www.iosrjen.org Optimizing Reception Perormance o new UWB Pulse shape over Multipath

More information

Traditional Analog Modulation Techniques

Traditional Analog Modulation Techniques Chapter 5 Traditional Analog Modulation Techniques Mikael Olosson 2002 2007 Modulation techniques are mainly used to transmit inormation in a given requency band. The reason or that may be that the channel

More information

Experiment 7: Frequency Modulation and Phase Locked Loops Fall 2009

Experiment 7: Frequency Modulation and Phase Locked Loops Fall 2009 Experiment 7: Frequency Modulation and Phase Locked Loops Fall 2009 Frequency Modulation Normally, we consider a voltage wave orm with a ixed requency o the orm v(t) = V sin(ω c t + θ), (1) where ω c is

More information

APPLICATION NOTE #1. Phase NoiseTheory and Measurement 1 INTRODUCTION

APPLICATION NOTE #1. Phase NoiseTheory and Measurement 1 INTRODUCTION Tommorrow s Phase Noise Testing Today 35 South Service Road Plainview, NY 803 TEL: 56-694-6700 FAX: 56-694-677 APPLICATION NOTE # Phase NoiseTheory and Measurement INTRODUCTION Today, noise measurements

More information

Instantaneous frequency Up to now, we have defined the frequency as the speed of rotation of a phasor (constant frequency phasor) φ( t) = A exp

Instantaneous frequency Up to now, we have defined the frequency as the speed of rotation of a phasor (constant frequency phasor) φ( t) = A exp Exponential modulation Instantaneous requency Up to now, we have deined the requency as the speed o rotation o a phasor (constant requency phasor) φ( t) = A exp j( ω t + θ ). We are going to generalize

More information

A Detailed Lesson on Operational Amplifiers - Negative Feedback

A Detailed Lesson on Operational Amplifiers - Negative Feedback 07 SEE Mid tlantic Section Spring Conerence: Morgan State University, Baltimore, Maryland pr 7 Paper ID #0849 Detailed Lesson on Operational mpliiers - Negative Feedback Dr. Nashwa Nabil Elaraby, Pennsylvania

More information

ECE 5655/4655 Laboratory Problems

ECE 5655/4655 Laboratory Problems Assignment #4 ECE 5655/4655 Laboratory Problems Make Note o the Following: Due Monday April 15, 2019 I possible write your lab report in Jupyter notebook I you choose to use the spectrum/network analyzer

More information

The fourier spectrum analysis of optical feedback self-mixing signal under weak and moderate feedback

The fourier spectrum analysis of optical feedback self-mixing signal under weak and moderate feedback University o Wollongong Research Online Faculty o Inormatics - Papers (Archive) Faculty o Engineering and Inormation Sciences 8 The ourier spectrum analysis o optical eedback sel-mixing signal under weak

More information

Gert Veale / Christo Nel Grintek Ewation

Gert Veale / Christo Nel Grintek Ewation Phase noise in RF synthesizers Gert Veale / Christo Nel Grintek Ewation Introduction & Overview Where are RF synthesizers used? What is phase noise? Phase noise eects Classic RF synthesizer architecture

More information

Amplifiers. Department of Computer Science and Engineering

Amplifiers. Department of Computer Science and Engineering Department o Computer Science and Engineering 2--8 Power ampliiers and the use o pulse modulation Switching ampliiers, somewhat incorrectly named digital ampliiers, have been growing in popularity when

More information

A UHF CMOS Variable Gain LNA with Wideband Input Impedance Matching and GSM Interoperability

A UHF CMOS Variable Gain LNA with Wideband Input Impedance Matching and GSM Interoperability JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.17, NO.4, AUGUST, 2017 ISSN(Print) 1598-1657 https://doi.org/10.5573/jsts.2017.17.4.499 ISSN(Online) 2233-4866 A UHF CMOS Variable Gain LNA with Wideband

More information

Complex Spectrum. Box Spectrum. Im f. Im f. Sine Spectrum. Cosine Spectrum 1/2 1/2 1/2. f C -f C 1/2

Complex Spectrum. Box Spectrum. Im f. Im f. Sine Spectrum. Cosine Spectrum 1/2 1/2 1/2. f C -f C 1/2 ECPE 364: view o Small-Carrier Amplitude Modulation his handout is a graphical review o small-carrier amplitude modulation techniques that we studied in class. A Note on Complex Signal Spectra All o the

More information

CX On the Direct Conversion Receiver. Abstract. Traditional Reception Techniques. Introduction

CX On the Direct Conversion Receiver. Abstract. Traditional Reception Techniques. Introduction CX747 Abstract Increased pressure or low power, small orm actor, low cost, and reduced bill o materials in such radio applications as mobile communications has driven academia and industry to resurrect

More information

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 678A 40MHZ TO 900MHZ DIRECT CONVERSION QUADRATURE DEMODULATOR

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 678A 40MHZ TO 900MHZ DIRECT CONVERSION QUADRATURE DEMODULATOR DESCRIPTION QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 678A LT5517 Demonstration circuit 678A is a 40MHz to 900MHz Direct Conversion Quadrature Demodulator featuring the LT5517. The LT 5517 is a direct

More information

Indoor GPS Technology Frank van Diggelen and Charles Abraham Global Locate, Inc.

Indoor GPS Technology Frank van Diggelen and Charles Abraham Global Locate, Inc. 011003 Indoor GPS Technology Indoor GPS Technology Frank van Diggelen and Charles Abraham Global Locate, Inc. Abstract It is well known that GPS, when used outdoors, meets all the location requirements

More information

Signals and Systems II

Signals and Systems II 1 To appear in IEEE Potentials Signals and Systems II Part III: Analytic signals and QAM data transmission Jerey O. Coleman Naval Research Laboratory, Radar Division This six-part series is a mini-course,

More information

Outline. Wireless PHY: Modulation and Demodulation. Admin. Page 1. G[k] = 1 T. g(t)e j2πk t dt. G[k] = = k L. ) = g L (t)e j2π f k t dt.

Outline. Wireless PHY: Modulation and Demodulation. Admin. Page 1. G[k] = 1 T. g(t)e j2πk t dt. G[k] = = k L. ) = g L (t)e j2π f k t dt. Outline Wireless PHY: Modulation and Demodulation Y. Richard Yang Admin and recap Basic concepts o modulation Amplitude modulation Amplitude demodulation requency shiting 9/6/22 2 Admin First assignment

More information

ATLCE - B5 07/03/2016. Analog and Telecommunication Electronics 2016 DDC 1. Politecnico di Torino - ICT School. Lesson B5: multipliers and mixers

ATLCE - B5 07/03/2016. Analog and Telecommunication Electronics 2016 DDC 1. Politecnico di Torino - ICT School. Lesson B5: multipliers and mixers Politecnico di Torino - ICT School Lesson B5: multipliers and mixers Analog and Telecommunication Electronics B5 - Multipliers/mixer circuits» Error taxonomy» Basic multiplier circuits» Gilbert cell» Bridge

More information

Spread-Spectrum Technique in Sigma-Delta Modulators

Spread-Spectrum Technique in Sigma-Delta Modulators Spread-Spectrum Technique in Sigma-Delta Modulators by Eric C. Moule Submitted in Partial Fulillment o the Requirements or the Degree Doctor o Philosophy Supervised by Proessor Zeljko Ignjatovic Department

More information

MULTI-BAND and multimode wireless terminals have

MULTI-BAND and multimode wireless terminals have IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES 1 A General T-Stub Circuit or Decoupling o Two Dual-Band Antennas Jiangwei Sui and Ke-Li Wu, Fellow, IEEE Abstract This paper presents a novel technique

More information

ELEN 701 RF & Microwave Systems Engineering. Lecture 2 September 27, 2006 Dr. Michael Thorburn Santa Clara University

ELEN 701 RF & Microwave Systems Engineering. Lecture 2 September 27, 2006 Dr. Michael Thorburn Santa Clara University ELEN 701 RF & Microwave Systems Engineering Lecture 2 September 27, 2006 Dr. Michael Thorburn Santa Clara University Lecture 2 Radio Architecture and Design Considerations, Part I Architecture Superheterodyne

More information

SAW STABILIZED MICROWAVE GENERATOR ELABORATION

SAW STABILIZED MICROWAVE GENERATOR ELABORATION SAW STABILIZED MICROWAVE GENERATOR ELABORATION Dobromir Arabadzhiev, Ivan Avramov*, Anna Andonova, Philip Philipov * Institute o Solid State Physics - BAS, 672, Tzarigradsko Choussee, blvd, 1784,Soia,

More information

state the transfer function of the op-amp show that, in the ideal op-amp, the two inputs will be equal if the output is to be finite

state the transfer function of the op-amp show that, in the ideal op-amp, the two inputs will be equal if the output is to be finite NTODUCTON The operational ampliier (op-amp) orms the basic building block o many analogue systems. t comes in a neat integrated circuit package and is cheap and easy to use. The op-amp gets its name rom

More information

Architectural benefits of wide bandgap RF power transistors for frequency agile basestation systems Fischer G., Member IEEE

Architectural benefits of wide bandgap RF power transistors for frequency agile basestation systems Fischer G., Member IEEE Architectural beneits o wide bandgap RF power transistors or requency agile basestation systems Fischer G., Member IEEE Lucent Technologies, Bell Labs Advanced Technologies EMEA, Thurn-und-Taxis-Straße

More information

Prof. Paolo Colantonio a.a

Prof. Paolo Colantonio a.a Pro. Paolo Colantonio a.a. 03 4 Operational ampliiers (op amps) are among the most widely used building blocks in electronics they are integrated circuits (ICs) oten DIL (or DIP) or SMT (or SMD) DIL (or

More information

Outline. Wireless PHY: Modulation and Demodulation. Admin. Page 1. g(t)e j2πk t dt. G[k] = 1 T. G[k] = = k L. ) = g L (t)e j2π f k t dt.

Outline. Wireless PHY: Modulation and Demodulation. Admin. Page 1. g(t)e j2πk t dt. G[k] = 1 T. G[k] = = k L. ) = g L (t)e j2π f k t dt. Outline Wireless PHY: Modulation and Demodulation Y. Richard Yang Admin and recap Basic concepts o modulation Amplitude demodulation requency shiting 09/6/202 2 Admin First assignment to be posted by this

More information

Simulation of Radio Frequency Integrated Circuits

Simulation of Radio Frequency Integrated Circuits Simulation o Radio Frequency Integrated Circuits Based on: Computer-Aided Circuit Analysis Tools or RFIC Simulation: Algorithms, Features, and Limitations, IEEE Trans. CAS-II, April 2000. Outline Introduction

More information

Interference Issues between UMTS & WLAN in a Multi-Standard RF Receiver

Interference Issues between UMTS & WLAN in a Multi-Standard RF Receiver Interference Issues between UMTS & WLAN in a Multi-Standard RF Receiver Nastaran Behjou, Basuki E. Priyanto, Ole Kiel Jensen, and Torben Larsen RISC Division, Department of Communication Technology, Aalborg

More information

THE BASICS OF RADIO SYSTEM DESIGN

THE BASICS OF RADIO SYSTEM DESIGN THE BASICS OF RADIO SYSTEM DESIGN Mark Hunter * Abstract This paper is intended to give an overview of the design of radio transceivers to the engineer new to the field. It is shown how the requirements

More information

Sampling and Multirate Techniques for Complex and Bandpass Signals

Sampling and Multirate Techniques for Complex and Bandpass Signals Sampling and Multirate Techniques or Complex and Bandpass Signals TLT-586/IQ/1 M. Renors, TUT/DCE 21.9.21 Sampling and Multirate Techniques or Complex and Bandpass Signals Markku Renors Department o Communications

More information

A Physical Sine-to-Square Converter Noise Model

A Physical Sine-to-Square Converter Noise Model A Physical Sine-to-Square Converter Noise Model Attila Kinali Max Planck Institute or Inormatics, Saarland Inormatics Campus, Germany adogan@mpi-in.mpg.de Abstract While sinusoid signal sources are used

More information

Linearity Improvement Techniques for Wireless Transmitters: Part 1

Linearity Improvement Techniques for Wireless Transmitters: Part 1 From May 009 High Frequency Electronics Copyright 009 Summit Technical Media, LLC Linearity Improvement Techniques for Wireless Transmitters: art 1 By Andrei Grebennikov Bell Labs Ireland In modern telecommunication

More information

Noise. Interference Noise

Noise. Interference Noise Noise David Johns and Ken Martin University o Toronto (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) University o Toronto 1 o 55 Intererence Noise Unwanted interaction between circuit and outside world

More information

( ) D. An information signal x( t) = 5cos( 1000πt) LSSB modulates a carrier with amplitude A c

( ) D. An information signal x( t) = 5cos( 1000πt) LSSB modulates a carrier with amplitude A c An inormation signal x( t) 5cos( 1000πt) LSSB modulates a carrier with amplitude A c 1. This signal is transmitted through a channel with 30 db loss. It is demodulated using a synchronous demodulator.

More information

Potentiostat stability mystery explained

Potentiostat stability mystery explained Application Note #4 Potentiostat stability mystery explained I- Introduction As the vast majority o research instruments, potentiostats are seldom used in trivial experimental conditions. But potentiostats

More information

Validation of a crystal detector model for the calibration of the Large Signal Network Analyzer.

Validation of a crystal detector model for the calibration of the Large Signal Network Analyzer. Instrumentation and Measurement Technology Conerence IMTC 2007 Warsaw, Poland, May 1-3, 2007 Validation o a crystal detector model or the calibration o the Large Signal Network Analyzer. Liesbeth Gommé,

More information

RADIO RECEIVERS ECE 3103 WIRELESS COMMUNICATION SYSTEMS

RADIO RECEIVERS ECE 3103 WIRELESS COMMUNICATION SYSTEMS RADIO RECEIVERS ECE 3103 WIRELESS COMMUNICATION SYSTEMS FUNCTIONS OF A RADIO RECEIVER The main functions of a radio receiver are: 1. To intercept the RF signal by using the receiver antenna 2. Select the

More information

Measurement Setup for Phase Noise Test at Frequencies above 50 GHz Application Note

Measurement Setup for Phase Noise Test at Frequencies above 50 GHz Application Note Measurement Setup for Phase Noise Test at Frequencies above 50 GHz Application Note Products: R&S FSWP With recent enhancements in semiconductor technology the microwave frequency range beyond 50 GHz becomes

More information

IEEE Broadband Wireless Access Working Group <

IEEE Broadband Wireless Access Working Group < Project Title IEEE 80.16 Broadband Wireless Access Working Group Channel and intererence model or 80.16b Physical Layer Date Submitted Source(s) Re: 000-31-09 Tal Kaitz BreezeCOM

More information

Thinking Outside the Band: Absorptive Filtering Matthew A. Morgan

Thinking Outside the Band: Absorptive Filtering Matthew A. Morgan Thinking Outside the Band: Absorptive Filtering Matthew A. Morgan Introduction Today's high-requency radio system engineer has at his ingertips an encyclopedic body o work to draw upon or his iltering

More information

Microwave Metrology -ECE 684 Spring Lab Exercise I&Q.v3: I&Q Time and Frequency Domain Measurements

Microwave Metrology -ECE 684 Spring Lab Exercise I&Q.v3: I&Q Time and Frequency Domain Measurements Lab Exercise I&Q.v3: I&Q Time and Frequency Domain Measurements In this lab exercise you will perform measurements both in time and in frequency to establish the relationship between these two dimension

More information

Study on 3D CFBG Vibration Sensor and Its Application

Study on 3D CFBG Vibration Sensor and Its Application PHOTONIC SENSORS / Vol. 6, No. 1, 2016: 90 96 Study on 3D CFBG Vibration Sensor and Its Application Qiuming NAN 1,2* and Sheng LI 1,2 1 National Engineering Laboratory or Fiber Optic Sensing Technology,

More information

Analysis of RF transceivers used in automotive

Analysis of RF transceivers used in automotive Scientific Bulletin of Politehnica University Timisoara TRANSACTIONS on ELECTRONICS and COMMUNICATIONS Volume 60(74), Issue, 0 Analysis of RF transceivers used in automotive Camelia Loredana Ţeicu Abstract

More information

Some Radio Implementation Challenges in 3G-LTE Context

Some Radio Implementation Challenges in 3G-LTE Context 1 (12) Dirty-RF Theme Some Radio Implementation Challenges in 3G-LTE Context Dr. Mikko Valkama Tampere University of Technology Institute of Communications Engineering mikko.e.valkama@tut.fi 2 (21) General

More information

New metallic mesh designing with high electromagnetic shielding

New metallic mesh designing with high electromagnetic shielding MATEC Web o Conerences 189, 01003 (018) MEAMT 018 https://doi.org/10.1051/mateccon/01818901003 New metallic mesh designing with high electromagnetic shielding Longjia Qiu 1,,*, Li Li 1,, Zhieng Pan 1,,

More information

Frequency Hopped Spread Spectrum

Frequency Hopped Spread Spectrum FH- 5. Frequency Hopped pread pectrum ntroduction n the next ew lessons we will be examining spread spectrum communications. This idea was originally developed or military communication systems. However,

More information

Co-existence. DECT/CAT-iq vs. other wireless technologies from a HW perspective

Co-existence. DECT/CAT-iq vs. other wireless technologies from a HW perspective Co-existence DECT/CAT-iq vs. other wireless technologies from a HW perspective Abstract: This White Paper addresses three different co-existence issues (blocking, sideband interference, and inter-modulation)

More information

Sinusoidal signal. Arbitrary signal. Periodic rectangular pulse. Sampling function. Sampled sinusoidal signal. Sampled arbitrary signal

Sinusoidal signal. Arbitrary signal. Periodic rectangular pulse. Sampling function. Sampled sinusoidal signal. Sampled arbitrary signal Techniques o Physics Worksheet 4 Digital Signal Processing 1 Introduction to Digital Signal Processing The ield o digital signal processing (DSP) is concerned with the processing o signals that have been

More information

Introduction to Receivers

Introduction to Receivers Introduction to Receivers Purpose: translate RF signals to baseband Shift frequency Amplify Filter Demodulate Why is this a challenge? Interference Large dynamic range required Many receivers must be capable

More information

Jan M. Kelner, Cezary Ziółkowski, Leszek Kachel The empirical verification of the location method based on the Doppler effect Proceedings:

Jan M. Kelner, Cezary Ziółkowski, Leszek Kachel The empirical verification of the location method based on the Doppler effect Proceedings: Authors: Jan M. Kelner, Cezary Ziółkowski, Leszek Kachel Title: The empirical veriication o the location method based on the Doppler eect Proceedings: Proceedings o MIKON-8 Volume: 3 Pages: 755-758 Conerence:

More information

INTRODUCTION TO TRANSCEIVER DESIGN ECE3103 ADVANCED TELECOMMUNICATION SYSTEMS

INTRODUCTION TO TRANSCEIVER DESIGN ECE3103 ADVANCED TELECOMMUNICATION SYSTEMS INTRODUCTION TO TRANSCEIVER DESIGN ECE3103 ADVANCED TELECOMMUNICATION SYSTEMS FUNCTIONS OF A TRANSMITTER The basic functions of a transmitter are: a) up-conversion: move signal to desired RF carrier frequency.

More information

OSCILLATORS. Introduction

OSCILLATORS. Introduction OSILLATOS Introduction Oscillators are essential components in nearly all branches o electrical engineering. Usually, it is desirable that they be tunable over a speciied requency range, one example being

More information

Low Jitter Circuits in Digital System using Phase Locked Loop

Low Jitter Circuits in Digital System using Phase Locked Loop Proceedings o the World Congress on Engineering 013 Vol II, WCE 013, July 3-5, 013, London, U.K. Low Jitter Circuits in Digital System using Phase Locked Loop Ahmed Telba, Member, IAENG Abstract It is

More information

6.976 High Speed Communication Circuits and Systems Lecture 20 Performance Measures of Wireless Communication

6.976 High Speed Communication Circuits and Systems Lecture 20 Performance Measures of Wireless Communication 6.976 High Speed Communication Circuits and Systems Lecture 20 Performance Measures of Wireless Communication Michael Perrott Massachusetts Institute of Technology Copyright 2003 by Michael H. Perrott

More information

Philadelphia University Faculty of Engineering Communication and Electronics Engineering. Amplifier Circuits-III

Philadelphia University Faculty of Engineering Communication and Electronics Engineering. Amplifier Circuits-III Module: Electronics II Module Number: 6503 Philadelphia University Faculty o Engineering Communication and Electronics Engineering Ampliier Circuits-III Operational Ampliiers (Op-Amps): An operational

More information

Finding Loop Gain in Circuits with Embedded Loops

Finding Loop Gain in Circuits with Embedded Loops Finding oop Gain in Circuits with Embedded oops Sstematic pproach to Multiple-oop nalsis bstract Stabilit analsis in eedback sstems is complicated b non-ideal behaior o circuit elements and b circuit topolog.

More information

Transceiver Architectures (III)

Transceiver Architectures (III) Image-Reject Receivers Transceiver Architectures (III) Since the image and the signal lie on the two sides of the LO frequency, it is possible to architect the RX so that it can distinguish between the

More information

Carrier Frequency Offset Estimation Algorithm in the Presence of I/Q Imbalance in OFDM Systems

Carrier Frequency Offset Estimation Algorithm in the Presence of I/Q Imbalance in OFDM Systems Carrier Frequency Offset Estimation Algorithm in the Presence of I/Q Imbalance in OFDM Systems K. Jagan Mohan, K. Suresh & J. Durga Rao Dept. of E.C.E, Chaitanya Engineering College, Vishakapatnam, India

More information

EXPLOITING RMS TIME-FREQUENCY STRUCTURE FOR DATA COMPRESSION IN EMITTER LOCATION SYSTEMS

EXPLOITING RMS TIME-FREQUENCY STRUCTURE FOR DATA COMPRESSION IN EMITTER LOCATION SYSTEMS NAECON : National Aerospace & Electronics Conerence, October -,, Dayton, Ohio 7 EXPLOITING RMS TIME-FREQUENCY STRUCTURE FOR DATA COMPRESSION IN EMITTER LOCATION SYSTEMS MARK L. FOWLER Department o Electrical

More information

Further developments on gear transmission monitoring

Further developments on gear transmission monitoring Further developments on gear transmission monitoring Niola V., Quaremba G., Avagliano V. Department o Mechanical Engineering or Energetics University o Naples Federico II Via Claudio 21, 80125, Napoli,

More information

Flexible Coherent Digital Transceiver for Low Power Space Missions 1, 2

Flexible Coherent Digital Transceiver for Low Power Space Missions 1, 2 Flexible Coherent Digital Transceiver or Low Power Space Missions, Christopher B. Haskins, Wesley P. Millard, J. obert Jensen Johns Hopkins University ~ Applied Physics Laboratory (JHU/APL) 00 Johns Hopkins

More information

Amplitude and Phase Distortions in MIMO and Diversity Systems

Amplitude and Phase Distortions in MIMO and Diversity Systems Amplitude and Phase Distortions in MIMO and Diversity Systems Christiane Kuhnert, Gerd Saala, Christian Waldschmidt, Werner Wiesbeck Institut für Höchstfrequenztechnik und Elektronik (IHE) Universität

More information

Introduction to OFDM. Characteristics of OFDM (Orthogonal Frequency Division Multiplexing)

Introduction to OFDM. Characteristics of OFDM (Orthogonal Frequency Division Multiplexing) Introduction to OFDM Characteristics o OFDM (Orthogonal Frequency Division Multiplexing Parallel data transmission with very long symbol duration - Robust under multi-path channels Transormation o a requency-selective

More information

IMPLEMENTATION ASPECTS OF GENERALIZED BANDPASS SAMPLING

IMPLEMENTATION ASPECTS OF GENERALIZED BANDPASS SAMPLING 15th European Signal Processing Conerence (EUSIPCO 27), Poznan, Poland, September 3-7, 27, copyright by EURASIP IMPLEMENTATION ASPECTS OF GENERALIZED BANDPASS SAMPLING Yi-Ran Sun and Svante Signell, Senior

More information

Combining filters and self-interference cancellation for mixer-first receivers in Full Duplex and Frequency-Division Duplex transceiver systems

Combining filters and self-interference cancellation for mixer-first receivers in Full Duplex and Frequency-Division Duplex transceiver systems Combining filters and self-interference cancellation for mixer-first receivers in Full Duplex and Frequency-Division Duplex transceiver systems Gert-Jan Groot Wassink, bachelor student Electrical Engineering

More information

HY448 Sample Problems

HY448 Sample Problems HY448 Sample Problems 10 November 2014 These sample problems include the material in the lectures and the guided lab exercises. 1 Part 1 1.1 Combining logarithmic quantities A carrier signal with power

More information

A 900MHz / 1.8GHz CMOS Receiver for Dual Band Applications*

A 900MHz / 1.8GHz CMOS Receiver for Dual Band Applications* FA 8.2: S. Wu, B. Razavi A 900MHz / 1.8GHz CMOS Receiver for Dual Band Applications* University of California, Los Angeles, CA This dual-band CMOS receiver for GSM and DCS1800 applications incorporates

More information

Generalized Frequency Division Multiplexing: Analysis of an Alternative Multi-Carrier Technique for Next Generation Cellular Systems

Generalized Frequency Division Multiplexing: Analysis of an Alternative Multi-Carrier Technique for Next Generation Cellular Systems Generalized Frequency Division Multiplexing: Analysis o an Alternative Multi-Carrier Technique or Next Generation Cellular Systems Nicola Michailow, Ivan Gaspar, Stean Krone, Michael Lentmaier, Gerhard

More information

Chapter 3. System Theory and Technologies. 3.1 Physical Layer. ... How to transport digital symbols...?

Chapter 3. System Theory and Technologies. 3.1 Physical Layer. ... How to transport digital symbols...? Chapter 3 System Theory and Technologies 1 r... How to transport digital symbols...? 3.1.1 Introduction 3.1. Symbols, Bits and Baud 3.1.3 Wired Physical Layers 3.1.4 Radio based physical layer electromagnetic

More information

Single Conversion LF Upconverter Andy Talbot G4JNT Jan 2009

Single Conversion LF Upconverter Andy Talbot G4JNT Jan 2009 Single Conversion LF Upconverter Andy Talbot G4JNT Jan 2009 Mark 2 Version Oct 2010, see Appendix, Page 8 This upconverter is designed to directly translate the output from a soundcard from a PC running

More information

AN ITERATIVE FEEDBACK ALGORITHM FOR CORRECTING THE I/Q IMBALANCE IN DVB-S RECEIVERS

AN ITERATIVE FEEDBACK ALGORITHM FOR CORRECTING THE I/Q IMBALANCE IN DVB-S RECEIVERS AN ITATIV FDBACK ALGOITHM FO COCTING TH I/Q IMBALANC IN DVB- CIV lias Nemer and Ahmed aid Advanced Technology Office, Consumer lectronics Group, Intel Corporation 35 Plumeria Drive, an Jose, CA 9534 UA

More information

Third-Method Narrowband Direct Upconverter for the LF / MF Bands

Third-Method Narrowband Direct Upconverter for the LF / MF Bands Third-Method Narrowband Direct Upconverter for the LF / MF Bands Introduction Andy Talbot G4JNT February 2016 Previous designs for upconverters from audio generated from a soundcard to RF have been published

More information

Wireless Channel Modeling (Modeling, Simulation, and Mitigation)

Wireless Channel Modeling (Modeling, Simulation, and Mitigation) Wireless Channel Modeling (Modeling, Simulation, and Mitigation) Dr. Syed Junaid Nawaz Assistant Proessor Department o Electrical Engineering COMSATS Institute o Inormation Technology Islamabad, Paistan.

More information

Characterization of IIP2 and DC-Offsets in Transconductance Mixers

Characterization of IIP2 and DC-Offsets in Transconductance Mixers 1028 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 48, NO. 11, NOVEMBER 2001 Characterization of IIP2 and DC-Offsets in Transconductance Mixers Kalle Kivekäs,

More information

TestData Summary of 5.2GHz WLAN Direct Conversion RF Transceiver Board

TestData Summary of 5.2GHz WLAN Direct Conversion RF Transceiver Board Page 1 of 16 ========================================================================================= TestData Summary of 5.2GHz WLAN Direct Conversion RF Transceiver Board =========================================================================================

More information