The UMRR-S: A High-Performance 24GHz Multi Mode Automotive Radar Sensor for Comfort and Safety Applications

Size: px
Start display at page:

Download "The UMRR-S: A High-Performance 24GHz Multi Mode Automotive Radar Sensor for Comfort and Safety Applications"

Transcription

1 The UMRR-S: A High-Perormance 24GHz Multi Mode Automotive Radar Sensor or Comort and Saety Applications Ralph Mende*, Marc Behrens*, Marc-Michael Meinecke**, Arne Bartels**, Thanh-Binh To** *smart microwave sensors GmbH Phone: +49 (531) / Fax: +49 (531) / ralph.mende@smartmicro.de Mittelweg Braunschweig - Germany **Volkswagen AG Phone: +49 (5361) / Fax: +49 (5361) / marc-michael.meinecke@volkswagen.de Letter Box Wolsburg - Germany Abstract The paper describes the UMRR-S sensor, which has been developed or automotive applications in a co-operation between Volkswagen AG and smart microwave sensors GmbH as a derivative o the UMRR platorm. The sensor is able to operate in the 24GHz ISM band and is applicable or Advanced Driver Assistance System unctions. It can run both in UWB Pulse- and in a number o Narrowband FMCW Modes. It can be part o a network ormed o several UMRR-S sensors, or integrated into an existing sensor network, or instance in combination with a 77GHz long range radar. Dierent types o antennae are available. Concept, technical and perormance data o the sensor are given. Advanced eatures like object generation out o individual radar relectors rom one physical object are described. I. Concept and Technical Data The name UMRR stands or Universal Medium Range Radar. The design targets o the UMRR sensor platorm were mainly lexibility and perormance. Flexibility: - UWB Pulse- and FMCW narrowband operation possible. - Multiple planar antenna designs available (independent o microwave module). - Stand alone or network operation. - No central ECU required or network operation. Perormance: - Direct an simultaneous measurement o range, velocity and angle. - Short measurement time. - Reasonable Minimum Range (0.75m), Medium maximum range (typ m). - Conormity with RegTP / ETSI EN requency regulations in FMCW narrowband mode. - One-Box-Design with integrated detection, tracking and communication sotware. Sensor-Processor #1 RF Board DSP Board Mixer Ampl. A DSP TX RXA RXB D SPI Data Logging CAN Power Internal System Communication Figure 1: Bloc Diagram and Photograph o the UMRR Radar Sensor

2 A sensor unit consists o two components: RF rontend module and DSP module. The planar antenna structure is made as the outermost layer o the microwave board. A dual RX antenna setup was selected to allow or monopulse based direct angle measurement. UMRR-S is a derivative o the UMRR platorm, and was customized or Volkswagen AG. A number o waveorms are selectable. Among those, UWB pulse mode and the FMSK-2 narrowband mode are o importance. The technical data o those example modes are provided below. It is possible to switch between the modes, the switching dead-time has a duration o one cycle. Parameter UWB Pulse Mode Narrowband Mode Operation Principle UWB Pulsed FMSK-2 3dB Bandwidth < 3GHz < 200MHz Minimum Range 0.25m 0.75m Maximum Range 15m 60m+ Cycle Time 8ms 25ms Velocity Interval m/s m/s Carrier Frequency GHz Maximum Transmit Power 20dBm Antenna Type Patch Antenna Field o View (Example) 40 (Azimut) x 13 (Elevation) Size (including processor) 94x78x31mm (WxHxD) Supply/Interace 12V/CAN Table 1: UMRR-S Technical Data No description o the UWB Pulsed operation shall be given here, or details o a similar system see [1]. The more interesting waveorm is the narrowband FMSK-2 signal, which is reerred to in most o the ollowing text. FMSK-2: this combination o FSK and LFM waveorm design principle oers the possibility o an unambiguous and simultaneous target range and velocity measurement. The transmit waveorm consist in this case o at least two linear requency modulated up-chirp or downchirp signals (the intertwined signal sequences are called A and B). The two chirp signals will be transmitted in an intertwined sequence (ABABAB...), where the stepwise requency modulated sequence A is used as a reerence signal while the second up-chirp signal is shited in requency with. The received Shit signal is down converted into base band and directly sampled at the end o each requency step. The combined and intertwined waveorm concept is depicted in Figure 3. T (t) T, B T, A A 0 B A B A Shit B Incr = N Sweep 1 Sweep t T Chirp As an example, the waveorm can be conigured as ollows: FMSK-2 (that means two intertwined chirps), = 200MHz, = 1MHz, N = 256. One o the outstanding advantages o this sweep Shit Figure 3: FMSK-2 Transmit Waveorm type o waveorm is the act that all parameters (range, velocity, angle) can be deduced in one measurement cycle rom only one intertwined chirp [2]. Beside the operational modes, the ield o view can easily be customized by selecting an appropriate antenna pattern. An example o a single sensor wide beam setup and a two sensor narrow ield o view setup can be seen in the pictures. One o the advantageous eatures is that the measurement o all parameters is possible even in the side lobe zones, this eect being very welcome, or in many applications the desired ield o view is deined in Cartesian co-ordinates as a rectangle in ront o a vehicle. Thereore antennae with intentionally designed side lobes can useully be applied.

3 Superposed Individual Sensors;UM RR-Fern01;25-Oct Y-Co-ordinate[m] X-Co-ordinate[m ] Figure 4: Example Single and Dual Sensor coniguration. Parameter Antenna Type 2 (let) Antenna Type 8 (right) 3dB Azimuth dB Elevation Table 2: Example Antenna Data II. Perormance Data To demonstrate the sensitivity o UMRR-S, the ollowing numbers can be given. The typ. max. range on pedestrians is 45m, on bicycles 50m and on passenger cars 60-70m. The speed o the object has no inluence on the maximum range. Typical Accuracy data are: Range: Typical < 0.5m (under 10m, 10m max. range: better than +-2%). Velocity: Typical < 0.25km/h. Angle: Typical < 0.5 degree. The radar is able to resolve (separate), handle and track multiple targets. To be separately detectable, two objects o identical relectivity must be dierent in at least one o the ollowing parameters: Range Dierence >= 1.75m Speed Dierence >= 1.94km/h. Figure 5: Range Error [m] given or dierent positions. A separation in angle is not possible with the actual simple monopulse antenna concept. The graphics provide an impression o the accuracy igures o a single sensor. The wavy appearance o the results occur due to multi-path eects in the measurement scenario, using a corner relector. Accuracy is similar at higher ranges, while the data in the plots end at 15m.

4 Figure 6: Angular Error [deg] given or dierent positions. III. Special Features Length Estimation While a standard target detection procedure would normally search or peaks in a spectrum, the UMRR- S sotware uses more sophisticated algorithms. As an example, the radial extension (length) o a relector is estimated. Other than point relectors, normal relectors in an automotive environment (passenger cars, trucks etc.) usually have more than just one scatterer, hence more than one peak in a spectrum. The relectors o one physical object basically have the same relative velocity (it still depends on the illumination angle). To estimate the length o an object, an algorithm searches or a chain o local peaks. See Figures 7 and 8 or an example. In Figure 7 the blue lines indicate the estimated length value, the red lines correspond to the relative velocity. The (uniltered) length values show a reasonable correlation with the video picture. Figure 7: Length Estimation Demonstration Object Generation As a number o parameters (range, velocity, angle, level, length etc., it becomes possible to apply algorithms which interpret the detected set o relectors in each measurement cycle and estimate beside the accurate position and velocity vector - the shape (length and width) o the physical objects which consist o a set o individual scatterers. Beside the radar data, vehicle dynamics data are required. A sensor usion algorithm is applied. One good example or the object generation (in this case

5 it is even a classiication) is the detection o crashor other barriers at the edges o the road. Position, length and curve radius can be measured using radar only. The object generation in this case is simple, because a row o poles or other relectors can easily be detected by UMRR-S. Thereore in practice good results are achieved or guard rail detection and classiication (see also Figure 9). Vehicles and trucks can also be interpreted as objects and displayed as rectangles. IV. Automotive Applications or UMRR-S UMRR-S sensors have been installed in several test vehicles or various applications. As an example, a radar network consisting o two UMRR sensors has been implemented in an experimental car or testing the new technology in real street situations. The coniguration is depicted in Figure 4 on the right. A Figure 8: Spectrum, used or length estimation normal Autobahn situation was recorded, the interpreted data being shown in the ollowing igures (graphic: 60x40m). Figure 9: Interpreted Objects and photograph o the situation. A number o applications that require short or medium range coverage can be ulilled without violation o actual ETSI and FCC requency allocation rules. More applications, their requirements, typical practical problems o dierent 24GHz sensor designs are given in [3] and [4]. The perormanceoptimized UMRR-S sensor has been tested and can be applied or the unctions listed below. Sensor and Display (Comort): Vehicle Control related (Comort + Control): Restraint Systems related (Saety): Blind Spot Surveillance. ACC plus Stop & Go. Closing Velocity Sensing. Pre-Crash Firing or Reversible Restraints. V. Recent Developments The next step in the development o the UMRR platorm would be the modiication o the antenna concept to allow or angle measurement principles that provide true resolution (target separation) in angle. Furthermore it is possible to implement additional waveorms and signal processing principles, like or instance a Pulse Doppler measurement mode. The multi-mode capability being available, strategies need to be developed to exploit the advantages o their combination.

6 VI. Reerences [1] Klotz, Michael; Rohling, Hermann: "A high range resolution radar system network or parking aid applications" International Conerence on Radar Systems, Brest/France [2] Meinecke, Marc-Michael; Rohling, Hermann: Waveorm Design Principles or Automotive Radar Systems German Radar Symposium, Berlin [3] Moritz; Pre-Crash Sensing Its unctional evaluation based on a platorm radar sensor ; SAE Technical Paper Series [4] Hoess et. al.; The RadarNet Project 7 th ITS World Congress, Torino, November 2000

UMRR: A 24GHz Medium Range Radar Platform

UMRR: A 24GHz Medium Range Radar Platform UMRR: A 24GHz Medium Range Radar Platorm Dr.-Ing. Ralph Mende, Managing Director smart microwave sensors GmbH Phone: +49 (531) 39023 0 / Fax: +49 (531) 39023 58 / ralph.mende@smartmicro.de Mittelweg 7

More information

New Automotive Applications for Smart Radar Systems

New Automotive Applications for Smart Radar Systems New Automotive Applications for Smart Radar Systems Ralph Mende*, Hermann Rohling** *s.m.s smart microwave sensors GmbH Phone: +49 (531) 39023 0 / Fax: +49 (531) 39023 58 / ralph.mende@smartmicro.de Mittelweg

More information

Switched Monopulse Radar for Automotive Applications SLR. Tyco Electronics M/A-COM European Technology & Application Center Schweinfurt, Germany

Switched Monopulse Radar for Automotive Applications SLR. Tyco Electronics M/A-COM European Technology & Application Center Schweinfurt, Germany Switched Monopulse Radar for Automotive Applications SLR Tyco Electronics M/A-COM European Technology & Application Center Schweinfurt, Germany Typical Applications Blind Spot Detection Improved ACC Functionality

More information

Scalable Front-End Digital Signal Processing for a Phased Array Radar Demonstrator. International Radar Symposium 2012 Warsaw, 24 May 2012

Scalable Front-End Digital Signal Processing for a Phased Array Radar Demonstrator. International Radar Symposium 2012 Warsaw, 24 May 2012 Scalable Front-End Digital Signal Processing for a Phased Array Radar Demonstrator F. Winterstein, G. Sessler, M. Montagna, M. Mendijur, G. Dauron, PM. Besso International Radar Symposium 2012 Warsaw,

More information

Software Defined Radio Forum Contribution

Software Defined Radio Forum Contribution Committee: Technical Sotware Deined Radio Forum Contribution Title: VITA-49 Drat Speciication Appendices Source Lee Pucker SDR Forum 604-828-9846 Lee.Pucker@sdrorum.org Date: 7 March 2007 Distribution:

More information

ELEC RADAR FRONT-END SUMMARY

ELEC RADAR FRONT-END SUMMARY ELEC Radar Front-End is designed for FMCW (including CW) radar application. The output frequency of each RX provides range, speed, and amplitude information to DSP. It will detect target azimuth angle

More information

ECEN 5014, Spring 2013 Special Topics: Active Microwave Circuits and MMICs Zoya Popovic, University of Colorado, Boulder

ECEN 5014, Spring 2013 Special Topics: Active Microwave Circuits and MMICs Zoya Popovic, University of Colorado, Boulder ECEN 5014, Spring 2013 Special Topics: Active Microwave Circuits and MMICs Zoya Popovic, University o Colorado, Boulder LECTURE 13 PHASE NOISE L13.1. INTRODUCTION The requency stability o an oscillator

More information

Project Documentation UMRR Automotive Type 146 Data Sheet

Project Documentation UMRR Automotive Type 146 Data Sheet Project Documentation UMRR Automotive Type 146 Data Sheet Project Number: SMS Project Number: Project Title: Automotive Radar Sensor Keyword(s): UMRR Automotive Sensor Data Sheet Blind Spot Detection Radar

More information

Effective Collision Avoidance System Using Modified Kalman Filter

Effective Collision Avoidance System Using Modified Kalman Filter Effective Collision Avoidance System Using Modified Kalman Filter Dnyaneshwar V. Avatirak, S. L. Nalbalwar & N. S. Jadhav DBATU Lonere E-mail : dvavatirak@dbatu.ac.in, nalbalwar_sanjayan@yahoo.com, nsjadhav@dbatu.ac.in

More information

Optimizing Reception Performance of new UWB Pulse shape over Multipath Channel using MMSE Adaptive Algorithm

Optimizing Reception Performance of new UWB Pulse shape over Multipath Channel using MMSE Adaptive Algorithm IOSR Journal o Engineering (IOSRJEN) ISSN (e): 2250-3021, ISSN (p): 2278-8719 Vol. 05, Issue 01 (January. 2015), V1 PP 44-57 www.iosrjen.org Optimizing Reception Perormance o new UWB Pulse shape over Multipath

More information

Applications of Millimeter-Wave Sensors in ITS

Applications of Millimeter-Wave Sensors in ITS Applications of Millimeter-Wave Sensors in ITS by Shigeaki Nishikawa* and Hiroshi Endo* There is considerable public and private support for intelligent transport systems ABSTRACT (ITS), which promise

More information

Message points from SARA Active Safety through Automotive UWB Short Range Radar (SRR)

Message points from SARA Active Safety through Automotive UWB Short Range Radar (SRR) Message points from SARA Active Safety through Automotive UWB Short Range Radar (SRR) 1. Information about Automotive UWB SRR 2. Worldwide Regulatory Situation 3. Proposals for Japan Dr. Gerhard Rollmann

More information

Jan M. Kelner, Cezary Ziółkowski, Leszek Kachel The empirical verification of the location method based on the Doppler effect Proceedings:

Jan M. Kelner, Cezary Ziółkowski, Leszek Kachel The empirical verification of the location method based on the Doppler effect Proceedings: Authors: Jan M. Kelner, Cezary Ziółkowski, Leszek Kachel Title: The empirical veriication o the location method based on the Doppler eect Proceedings: Proceedings o MIKON-8 Volume: 3 Pages: 755-758 Conerence:

More information

Bode Plot based Auto-Tuning Enhanced Solution for High Performance Servo Drives

Bode Plot based Auto-Tuning Enhanced Solution for High Performance Servo Drives Bode lot based Auto-Tuning Enhanced Solution or High erormance Servo Drives. O. Krah Danaher otion GmbH Wachholder Str. 4-4 4489 Düsseldor Germany Email: j.krah@danaher-motion.de Tel. +49 3 9979 133 Fax.

More information

K-LC2 RADAR TRANSCEIVER

K-LC2 RADAR TRANSCEIVER Features 24 GHz K-band miniature I/Q transceiver 140MHz sweep FM input 2 x 4 patch antenna 2 balanced mixer with 50MHz bandwidth Excellent noise cancelling ability though I/Q technology Beam aperture 80

More information

Evaluation of Millimeter wave Radar using Stepped Multiple Frequency Complementary Phase Code modulation

Evaluation of Millimeter wave Radar using Stepped Multiple Frequency Complementary Phase Code modulation Evaluation of Millimeter wave Radar using Stepped Multiple Frequency Complementary Phase Code modulation Masato WATANABE and Takayuki INABA Graduate School of Electro-Communications, The University of

More information

Development of a 24 GHz Band Peripheral Monitoring Radar

Development of a 24 GHz Band Peripheral Monitoring Radar Special Issue OneF Automotive Technology Development of a 24 GHz Band Peripheral Monitoring Radar Yasushi Aoyagi * In recent years, the safety technology of automobiles has evolved into the collision avoidance

More information

White paper on SP25 millimeter wave radar

White paper on SP25 millimeter wave radar White paper on SP25 millimeter wave radar Hunan Nanoradar Science and Technology Co.,Ltd. Version history Date Version Version description 2016-08-22 1.0 the 1 st version of white paper on SP25 Contents

More information

mmwave Automotive Radar and Antenna System Development

mmwave Automotive Radar and Antenna System Development Application Note mmwave Automotive Radar and Antenna System Development Overview As modern vehicle development expands to include more and more sophisticated electronics, automobile manufacturers are equipping

More information

A Universal Motor Performance Test System Based on Virtual Instrument

A Universal Motor Performance Test System Based on Virtual Instrument Sensors & Transducers 2014 by IFSA Publishing, S. L. http://www.sensorsportal.com A Universal Motor Perormance Test System Based on Virtual Instrument Wei Li, Mengzhu Li, Qiang Xiao School o Instrument

More information

Project Documentation UMRR Traffic Management Sensor Data Sheet

Project Documentation UMRR Traffic Management Sensor Data Sheet Project Documentation UMRR Traffic Management Sensor Data Sheet Project Number: SMS Project Number: Project Title: Traffic Management Sensor Keyword(s): UMRR Traffic Management Sensor Data Sheet 3D/HD

More information

Systems characteristics of automotive radars operating in the frequency band GHz for intelligent transport systems applications

Systems characteristics of automotive radars operating in the frequency band GHz for intelligent transport systems applications Recommendation ITU-R M.257-1 (1/218) Systems characteristics of automotive s operating in the frequency band 76-81 GHz for intelligent transport systems applications M Series Mobile, radiodetermination,

More information

Chapter 3. System Theory and Technologies. 3.1 Physical Layer. ... How to transport digital symbols...?

Chapter 3. System Theory and Technologies. 3.1 Physical Layer. ... How to transport digital symbols...? Chapter 3 System Theory and Technologies 1 r... How to transport digital symbols...? 3.1.1 Introduction 3.1. Symbols, Bits and Baud 3.1.3 Wired Physical Layers 3.1.4 Radio based physical layer electromagnetic

More information

Multi-Doppler Resolution Automotive Radar

Multi-Doppler Resolution Automotive Radar 217 2th European Signal Processing Conference (EUSIPCO) Multi-Doppler Resolution Automotive Radar Oded Bialer and Sammy Kolpinizki General Motors - Advanced Technical Center Israel Abstract Automotive

More information

Interference of Chirp Sequence Radars by OFDM Radars at 77 GHz

Interference of Chirp Sequence Radars by OFDM Radars at 77 GHz Interference of Chirp Sequence Radars by OFDM Radars at 77 GHz Christina Knill, Jonathan Bechter, and Christian Waldschmidt 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must

More information

Project Documentation UMRR Traffic Management Sensor Data Sheet

Project Documentation UMRR Traffic Management Sensor Data Sheet Project Documentation UMRR Traffic Management Sensor Data Sheet Project Number: SMS Project Number: Project Title: Traffic Management Sensor Keyword(s): UMRR Traffic Management Sensor Data Sheet Date:

More information

White paper on CAR28T millimeter wave radar

White paper on CAR28T millimeter wave radar White paper on CAR28T millimeter wave radar Hunan Nanoradar Science and Technology Co., Ltd. Version history Date Version Version description 2017-07-13 1.0 the 1st version of white paper on CAR28T Contents

More information

Prototype Software-based Receiver for Remote Sensing using Reflected GPS Signals. Dinesh Manandhar The University of Tokyo

Prototype Software-based Receiver for Remote Sensing using Reflected GPS Signals. Dinesh Manandhar The University of Tokyo Prototype Software-based Receiver for Remote Sensing using Reflected GPS Signals Dinesh Manandhar The University of Tokyo dinesh@qzss.org 1 Contents Background Remote Sensing Capability System Architecture

More information

Detection and direction-finding of spread spectrum signals using correlation and narrowband interference rejection

Detection and direction-finding of spread spectrum signals using correlation and narrowband interference rejection Detection and direction-inding o spread spectrum signals using correlation and narrowband intererence rejection Ulrika Ahnström,2,JohanFalk,3, Peter Händel,3, Maria Wikström Department o Electronic Warare

More information

Frequently asked questions for 24 GHz industrial radar

Frequently asked questions for 24 GHz industrial radar Frequently asked questions for 24 GHz industrial radar What is radar? Radar is an object-detection system that uses radio waves to determine the range, angle, or velocity of objects. A radar system consists

More information

EG 1 Millimeter-wave & Integrated Antennas

EG 1 Millimeter-wave & Integrated Antennas EuCAP 2010 ARTIC Workshop 5-12 July, San Diego, California EG 1 Millimeter-wave & Integrated Antennas Ronan SAULEAU Ronan.Sauleau@univ-rennes1.fr IETR (Institute of Electronics and Telecommunications,

More information

High Precision Wireless Measurement of Temperature by Using Surface Acoustic Waves Sensors

High Precision Wireless Measurement of Temperature by Using Surface Acoustic Waves Sensors B4.2 High Precision Wireless Measurement o Temperature by Using Surace Acoustic Waves Sensors Leonhard Reindl 1), Ismail Shrena 1), Harald Richter 1), Reto Peter 2) 1 ) Clausthal University o Technology,

More information

Adaptive Antennas for Wireless Communications

Adaptive Antennas for Wireless Communications Adaptive Antennas or Wireless Communications Jan Hesselbarth University o Stuttgart Institute or Radio Frequency Technology < 1 > Adaptive Antennas or Wireless Communications outline: mobile data growth

More information

Complex RF Mixers, Zero-IF Architecture, and Advanced Algorithms: The Black Magic in Next-Generation SDR Transceivers

Complex RF Mixers, Zero-IF Architecture, and Advanced Algorithms: The Black Magic in Next-Generation SDR Transceivers Complex RF Mixers, Zero-F Architecture, and Advanced Algorithms: The Black Magic in Next-Generation SDR Transceivers By Frank Kearney and Dave Frizelle Share on ntroduction There is an interesting interaction

More information

This article reports on

This article reports on Millimeter-Wave FMCW Radar Transceiver/Antenna for Automotive Applications A summary of the design and performance of a 77 GHz radar unit David D. Li, Sam C. Luo and Robert M. Knox Epsilon Lambda Electronics

More information

Increasing Automotive Safety with 77/79 GHz Radar Solutions for ADAS Applications

Increasing Automotive Safety with 77/79 GHz Radar Solutions for ADAS Applications Increasing Automotive Safety with 77/79 GHz Radar Solutions for ADAS Applications FTF-AUT-F0086 Patrick Morgan Director, Safety Systems Business Unit Ralf Reuter Manager, Radar Applications and Systems

More information

Simulation the Hybrid Combinations of 24GHz and 77GHz Automotive Radar

Simulation the Hybrid Combinations of 24GHz and 77GHz Automotive Radar Simulation the Hybrid Combinations of 4GHz and 77GHz Automotive Radar Yahya S. H. Khraisat Electrical and Electronics Department Al-Huson University College/ Al-Balqa' AppliedUniversity P.O. Box 5, 5,

More information

PLANNING AND DESIGN OF FRONT-END FILTERS

PLANNING AND DESIGN OF FRONT-END FILTERS PLANNING AND DESIGN OF FRONT-END FILTERS AND DIPLEXERS FOR RADIO LINK APPLICATIONS Kjetil Folgerø and Jan Kocba Nera Networks AS, N-52 Bergen, NORWAY. Email: ko@nera.no, jko@nera.no Abstract High capacity

More information

White paper on CAR150 millimeter wave radar

White paper on CAR150 millimeter wave radar White paper on CAR150 millimeter wave radar Hunan Nanoradar Science and Technology Co.,Ltd. Version history Date Version Version description 2017-02-23 1.0 The 1 st version of white paper on CAR150 Contents

More information

Method to Improve Range and Velocity Error Using De-interleaving and Frequency Interpolation for Automotive FMCW Radars

Method to Improve Range and Velocity Error Using De-interleaving and Frequency Interpolation for Automotive FMCW Radars International Journal o Signal Proceing, Image Proceing and Pattern Recognition Vol. 2, No. 2, June 2009 Method to Improve Range and Velocity Error Uing De-interleaving and Frequency Interpolation or Automotive

More information

Continuous Wave Radar

Continuous Wave Radar Continuous Wave Radar CW radar sets transmit a high-frequency signal continuously. The echo signal is received and processed permanently. One has to resolve two problems with this principle: Figure 1:

More information

Moving from legacy 24 GHz to state-of-the-art 77 GHz radar

Moving from legacy 24 GHz to state-of-the-art 77 GHz radar Moving from legacy 24 GHz to state-of-the-art 77 GHz radar Karthik Ramasubramanian, Radar Systems Manager Texas Instruments Kishore Ramaiah, Product Manager, Automotive Radar Texas Instruments Artem Aginskiy,

More information

Waveform Multiplexing using Chirp Rate Diversity for Chirp-Sequence based MIMO Radar Systems

Waveform Multiplexing using Chirp Rate Diversity for Chirp-Sequence based MIMO Radar Systems Waveform Multiplexing using Chirp Rate Diversity for Chirp-Sequence based MIMO Radar Systems Fabian Roos, Nils Appenrodt, Jürgen Dickmann, and Christian Waldschmidt c 218 IEEE. Personal use of this material

More information

DOWNLOAD OR READ : 24 GHZ RADAR SENSOR EMPIRE XPU PDF EBOOK EPUB MOBI

DOWNLOAD OR READ : 24 GHZ RADAR SENSOR EMPIRE XPU PDF EBOOK EPUB MOBI DOWNLOAD OR READ : 24 GHZ RADAR SENSOR EMPIRE XPU PDF EBOOK EPUB MOBI Page 1 Page 2 24 ghz radar sensor empire xpu 24 ghz radar sensor pdf 24 ghz radar sensor empire xpu A 24 GHz ACC Radar Sensor. Article

More information

Application Note AN027

Application Note AN027 Temperature compensation by indirect method By S. Hellan, S. Namtvedt Keywords Temperature compensation Frequency error Crystal oscillators Initial crystal tolerance Crystal temperature drit Crystal aging

More information

Millimeter Wave Radar using Stepped Multiple Frequency. Complementary Phase Code Modulation

Millimeter Wave Radar using Stepped Multiple Frequency. Complementary Phase Code Modulation Millimeter Wave Radar using Stepped Multiple Frequency Complementary Phase Code Modulation Masato Watanabe Manabu Akita Takayuki Inaba Graduate School of Electro-Communications, The University of Electro-Communications

More information

Frequency-Modulated Continuous-Wave Radar (FM-CW Radar)

Frequency-Modulated Continuous-Wave Radar (FM-CW Radar) Frequency-Modulated Continuous-Wave Radar (FM-CW Radar) FM-CW radar (Frequency-Modulated Continuous Wave radar = FMCW radar) is a special type of radar sensor which radiates continuous transmission power

More information

Interference Mitigation in Automotive Radars

Interference Mitigation in Automotive Radars Interference Mitigation in Automotive Radars Shunqiao Sun Department of Electrical & Computer Engineering Rutgers, The State University of New Jersey Email: shunq.sun@rutgers.edu 1 Abstract We study the

More information

Ultra-small, economical and cheap radar made possible thanks to chip technology

Ultra-small, economical and cheap radar made possible thanks to chip technology Edition March 2018 Radar technology, Smart Mobility Ultra-small, economical and cheap radar made possible thanks to chip technology By building radars into a car or something else, you are able to detect

More information

APPLICATION NOTE II. Detection and ranging of moving and stationary objects by using the FMCW radar principle.

APPLICATION NOTE II. Detection and ranging of moving and stationary objects by using the FMCW radar principle. APPLICATION NOTE II Detection and ranging of moving and stationary objects by using the FMCW radar principle www.innosent.de Editorial InnoSenT GmbH want provide to beginners and first-time users an easy

More information

Enabling autonomous driving

Enabling autonomous driving Automotive fuyu liu / Shutterstock.com Enabling autonomous driving Autonomous vehicles see the world through sensors. The entire concept rests on their reliability. But the ability of a radar sensor to

More information

Project Documentation UMRR Traffic Management Sensor Data Sheet

Project Documentation UMRR Traffic Management Sensor Data Sheet Project Documentation UMRR Traffic Management Sensor Data Sheet Project Number: SMS Project Number: Project Title: Traffic Management Sensor Keyword(s): UMRR Traffic Management Sensor Data Sheet Date:

More information

Experimental Study of Infrastructure Radar Modulation for. Vehicle and Pedestrian Detection

Experimental Study of Infrastructure Radar Modulation for. Vehicle and Pedestrian Detection Experimental Study of Infrastructure Radar Modulation for Vehicle and Pedestrian Detection Takayuki INABA *1, Tetsuya MURANAGA *2, Ikumi JINBO *3, Kento HIHARA *4 Shouhei OGAWA *5, Masaya YAMADA *6, Akihiro

More information

Project Documentation UMRR Traffic Management Sensor Data Sheet

Project Documentation UMRR Traffic Management Sensor Data Sheet Project Documentation UMRR Traffic Management Sensor Data Sheet Project Number: SMS Project Number: Project Title: Traffic Management Sensor Keyword(s): UMRR Traffic Management Sensor Data Sheet Date:

More information

ECE5984 Orthogonal Frequency Division Multiplexing and Related Technologies Fall Mohamed Essam Khedr. Channel Estimation

ECE5984 Orthogonal Frequency Division Multiplexing and Related Technologies Fall Mohamed Essam Khedr. Channel Estimation ECE5984 Orthogonal Frequency Division Multiplexing and Related Technologies Fall 2007 Mohamed Essam Khedr Channel Estimation Matlab Assignment # Thursday 4 October 2007 Develop an OFDM system with the

More information

Space Frequency Coordination Group

Space Frequency Coordination Group Space Frequency Coordination Group Report SFCG 38-1 POTENTIAL RFI TO EESS (ACTIVE) CLOUD PROFILE RADARS IN 94.0-94.1 GHZ FREQUENCY BAND FROM OTHER SERVICES Abstract This new SFCG report analyzes potential

More information

A new Sensor for the detection of low-flying small targets and small boats in a cluttered environment

A new Sensor for the detection of low-flying small targets and small boats in a cluttered environment UNCLASSIFIED /UNLIMITED Mr. Joachim Flacke and Mr. Ryszard Bil EADS Defence & Security Defence Electronics Naval Radar Systems (OPES25) Woerthstr 85 89077 Ulm Germany joachim.flacke@eads.com / ryszard.bil@eads.com

More information

Project Documentation UMRR Automotive Type 132 Data Sheet

Project Documentation UMRR Automotive Type 132 Data Sheet Project Documentation UMRR Automotive Type 132 Data Sheet Project Number: SMS Project Number: Project Title: Automotive Radar Sensor Keyword(s): UMRR Automotive Sensor Data Sheet Collision Warning Radar

More information

Solid State Relays & Its

Solid State Relays & Its Solid State Relays & Its Applications Presented By Dr. Mostaa Abdel-Geliel Course Objectives Know new techniques in relay industries. Understand the types o static relays and its components. Understand

More information

Project Documentation UMRR Automotive Sensor Data Sheet

Project Documentation UMRR Automotive Sensor Data Sheet Project Documentation UMRR Automotive Sensor Data Sheet Project Number: SMS Project Number: Project Title: Automotive Sensor Keyword(s): UMRR Automotive Sensor Data Sheet Date: January 5, 2016 Document:

More information

Radar Echo Generator Application Note

Radar Echo Generator Application Note Radar Echo Generator Application Note Products: R&S FSW R&S SMW200A R&S ZVA R&S RTO Radar test systems are essential in research, development, production and maintenance of radar systems. Most radar tests

More information

K-MC2 RADAR TRANSCEIVER Replaced by K-MC3 Datasheet. Features. Applications. Description. Blockdiagram

K-MC2 RADAR TRANSCEIVER Replaced by K-MC3 Datasheet. Features. Applications. Description. Blockdiagram Features 24 GHz short range transceiver 90MHz sweep FM input High sensitivity, integrated RF/IF amplifier Dual 62 patch narrow beam antenna Buffered, gain adjustable I/Q IF outputs Additional DC IF outputs

More information

Frequency Hopped Spread Spectrum

Frequency Hopped Spread Spectrum FH- 5. Frequency Hopped pread pectrum ntroduction n the next ew lessons we will be examining spread spectrum communications. This idea was originally developed or military communication systems. However,

More information

Sinusoidal signal. Arbitrary signal. Periodic rectangular pulse. Sampling function. Sampled sinusoidal signal. Sampled arbitrary signal

Sinusoidal signal. Arbitrary signal. Periodic rectangular pulse. Sampling function. Sampled sinusoidal signal. Sampled arbitrary signal Techniques o Physics Worksheet 4 Digital Signal Processing 1 Introduction to Digital Signal Processing The ield o digital signal processing (DSP) is concerned with the processing o signals that have been

More information

Estimation and Compensation of IQ-Imbalances in Direct Down Converters

Estimation and Compensation of IQ-Imbalances in Direct Down Converters Estimation and Compensation o IQ-Imbalances in irect own Converters NRES PSCHT, THOMS BITZER and THOMS BOHN lcatel SEL G, Holderaeckerstrasse 35, 7499 Stuttgart GERMNY bstract: - In this paper, a new method

More information

MR24-01 FMCW Radar for the Detection of Moving Targets (Persons)

MR24-01 FMCW Radar for the Detection of Moving Targets (Persons) MR24-01 FMCW Radar for the Detection of Moving Targets (Persons) Inras GmbH Altenbergerstraße 69 4040 Linz, Austria Email: office@inras.at Phone: +43 732 2468 6384 Linz, September 2015 1 Measurement Setup

More information

Automotive Radar Sensors and Congested Radio Spectrum: An Urban Electronic Battlefield?

Automotive Radar Sensors and Congested Radio Spectrum: An Urban Electronic Battlefield? Automotive Radar Sensors and Congested Radio Spectrum: An Urban Electronic Battlefield? By Sefa Tanis Share on As automotive radars become more widespread, the heavily occupied RF spectrum will resemble

More information

Ka-Band Systems and Processing Approaches for Simultaneous High-Resolution Wide-Swath SAR Imaging and Ground Moving Target Indication

Ka-Band Systems and Processing Approaches for Simultaneous High-Resolution Wide-Swath SAR Imaging and Ground Moving Target Indication Ka-Band Systems and Processing Approaches for Simultaneous High-Resolution Wide-Swath SAR Imaging and Ground Moving Target Indication Advanced RF Sensors and Remote Sensing Instruments 2014 Ka-band Earth

More information

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists 3,500 108,000 1.7 M Open access books available International authors and editors Downloads Our

More information

Project Documentation UMRR Automotive Sensor Data Sheet

Project Documentation UMRR Automotive Sensor Data Sheet Project Documentation UMRR Automotive Sensor Data Sheet Project Title: Automotive Radar Sensor Keyword(s): UMRR Automotive Sensor Data Sheet Collision Warning Radar Forward Collision Warning 4D/HD Date:

More information

DIGITAL BEAM-FORMING ANTENNA OPTIMIZATION FOR REFLECTOR BASED SPACE DEBRIS RADAR SYSTEM

DIGITAL BEAM-FORMING ANTENNA OPTIMIZATION FOR REFLECTOR BASED SPACE DEBRIS RADAR SYSTEM DIGITAL BEAM-FORMING ANTENNA OPTIMIZATION FOR REFLECTOR BASED SPACE DEBRIS RADAR SYSTEM A. Patyuchenko, M. Younis, G. Krieger German Aerospace Center (DLR), Microwaves and Radar Institute, Muenchner Strasse

More information

3D radar imaging based on frequency-scanned antenna

3D radar imaging based on frequency-scanned antenna LETTER IEICE Electronics Express, Vol.14, No.12, 1 10 3D radar imaging based on frequency-scanned antenna Sun Zhan-shan a), Ren Ke, Chen Qiang, Bai Jia-jun, and Fu Yun-qi College of Electronic Science

More information

Commercial Radar Sensors and Applications

Commercial Radar Sensors and Applications Commercial Radar Sensors and Applications Thilo Lenhard InnoSenT GmbH, Am Roedertor 30, D-97499 Donnersdorf thilo.lenhard@innosent.de Abstract: The rapidly increasing automation - e.g. the developments

More information

Simulating and Testing of Signal Processing Methods for Frequency Stepped Chirp Radar

Simulating and Testing of Signal Processing Methods for Frequency Stepped Chirp Radar Test & Measurement Simulating and Testing of Signal Processing Methods for Frequency Stepped Chirp Radar Modern radar systems serve a broad range of commercial, civil, scientific and military applications.

More information

RADWIN SOLUTIONS. ENTRPRISE Broadband Wireless Access. Video Surveillance. Remote area BB Connectivity. Small Cell Backhaul

RADWIN SOLUTIONS. ENTRPRISE Broadband Wireless Access. Video Surveillance. Remote area BB Connectivity. Small Cell Backhaul RADWIN SOLUTIONS ENTRPRISE Broadband Wireless Access Video Surveillance Remote area BB Connectivity Small Cell Backhaul Multipath/LOS/nLOS/NLOS 7/22/2015 2 Confidential Information Small Cell Deployment

More information

AIR ROUTE SURVEILLANCE 3D RADAR

AIR ROUTE SURVEILLANCE 3D RADAR AIR TRAFFIC MANAGEMENT AIR ROUTE SURVEILLANCE 3D RADAR Supplying ATM systems around the world for more than 30 years indracompany.com ARSR-10D3 AIR ROUTE SURVEILLANCE 3D RADAR ARSR 3D & MSSR Antenna Medium

More information

Measuring the Speed of Light

Measuring the Speed of Light Physics Teaching Laboratory Measuring the peed o Light Introduction: The goal o this experiment is to measure the speed o light, c. The experiment relies on the technique o heterodyning, a very useul tool

More information

Project Documentation UMRR Traffic Management Sensor Data Sheet

Project Documentation UMRR Traffic Management Sensor Data Sheet Project Documentation UMRR Traffic Management Sensor Data Sheet Project Number: SMS Project Number: Project Title: Traffic Management Sensor 3D/UHD Keyword(s): UMRR Traffic Management Sensor Data Sheet

More information

Indirect transitions of a signal interacting with a moving refractive index front

Indirect transitions of a signal interacting with a moving refractive index front Invited Paper Indirect transitions o a signal interacting with a moving reractive index ront Michel Castellanos Muñoz, Alexander Yu. Petrov, Liam O Faolain, Juntao Li 3, Thomas F. Krauss 4, and Manred

More information

Fundamentals of Spectrum Analysis. Christoph Rauscher

Fundamentals of Spectrum Analysis. Christoph Rauscher Fundamentals o Spectrum nalysis Christoph Rauscher Christoph Rauscher Volker Janssen, Roland Minihold Fundamentals o Spectrum nalysis Rohde & Schwarz GmbH & Co. KG, 21 Mühldorstrasse 15 81671 München Germany

More information

OPTIMAL MODULATION SCHEME FOR ENERGY EFFICIENT WIRELESS SENSOR NETWORKS

OPTIMAL MODULATION SCHEME FOR ENERGY EFFICIENT WIRELESS SENSOR NETWORKS OTIMA MODUATION SCHM FOR NRGY FFICINT WIRSS SNSOR NTWORKS Rajoua Anane 1,, Kosai Raoo 1, Maha Ben Zid 3, Ridha Bouallegue 1 aboratory o Acoustics at University o Maine, AUM UMR CNRS no. 6613, e Mans, France

More information

FLY EYE RADAR MINE DETECTION GROUND PENETRATING RADAR ON TETHERED DRONE PASSIVE RADAR FOR SMALL UAS PASSIVE SMALL PROJECTILE TRACKING RADAR

FLY EYE RADAR MINE DETECTION GROUND PENETRATING RADAR ON TETHERED DRONE PASSIVE RADAR FOR SMALL UAS PASSIVE SMALL PROJECTILE TRACKING RADAR PASSIVE RADAR FOR SMALL UAS PLANAR MONOLITHICS INDUSTRIES, INC. East Coast: 7311F GROVE ROAD, FREDERICK, MD 21704 USA PHONE: 301-662-5019 FAX: 301-662-2029 West Coast: 4921 ROBERT J. MATHEWS PARKWAY, SUITE

More information

Wireless Channel Modeling (Modeling, Simulation, and Mitigation)

Wireless Channel Modeling (Modeling, Simulation, and Mitigation) Wireless Channel Modeling (Modeling, Simulation, and Mitigation) Dr. Syed Junaid Nawaz Assistant Proessor Department o Electrical Engineering COMSATS Institute o Inormation Technology Islamabad, Paistan.

More information

Projects LOTHAR and LOTHAR-fatt

Projects LOTHAR and LOTHAR-fatt Appendix B Projects LOTHAR and LOTHAR-fatt From 2008 to 2011 the National Laboratory RAdar and Surveillance Systems (RaSS) of the National Inter-universitary Consortium for the Telecommunications (CNIT)

More information

Development of a novel radar sensor for monitoring the vibration characteristics of structures at short ranges

Development of a novel radar sensor for monitoring the vibration characteristics of structures at short ranges Development o a novel radar sensor or monitoring the vibration characteristics o structures at short ranges G. Luzi, M. Crosetto, D. Calero, E. Fernández Geomatics Division, Centre Tecnològic de Telecomunicacions

More information

SENSITIVITY IMPROVEMENT IN PHASE NOISE MEASUREMENT

SENSITIVITY IMPROVEMENT IN PHASE NOISE MEASUREMENT SENSITIVITY IMROVEMENT IN HASE NOISE MEASUREMENT N. Majurec, R. Nagy and J. Bartolic University o Zagreb, Faculty o Electrical Engineering and Computing Unska 3, HR-10000 Zagreb, Croatia Abstract: An automated

More information

New metallic mesh designing with high electromagnetic shielding

New metallic mesh designing with high electromagnetic shielding MATEC Web o Conerences 189, 01003 (018) MEAMT 018 https://doi.org/10.1051/mateccon/01818901003 New metallic mesh designing with high electromagnetic shielding Longjia Qiu 1,,*, Li Li 1,, Zhieng Pan 1,,

More information

RF and Microwave Test and Design Roadshow 5 Locations across Australia and New Zealand

RF and Microwave Test and Design Roadshow 5 Locations across Australia and New Zealand RF and Microwave Test and Design Roadshow 5 Locations across Australia and New Zealand ni.com Design and test of RADAR systems Agenda Radar Overview Tools Overview VSS LabVIEW PXI Design and Simulation

More information

DOPPLER RADAR. Doppler Velocities - The Doppler shift. if φ 0 = 0, then φ = 4π. where

DOPPLER RADAR. Doppler Velocities - The Doppler shift. if φ 0 = 0, then φ = 4π. where Q: How does the radar get velocity information on the particles? DOPPLER RADAR Doppler Velocities - The Doppler shift Simple Example: Measures a Doppler shift - change in frequency of radiation due to

More information

Introduction to OFDM. Characteristics of OFDM (Orthogonal Frequency Division Multiplexing)

Introduction to OFDM. Characteristics of OFDM (Orthogonal Frequency Division Multiplexing) Introduction to OFDM Characteristics o OFDM (Orthogonal Frequency Division Multiplexing Parallel data transmission with very long symbol duration - Robust under multi-path channels Transormation o a requency-selective

More information

Application Note. StarMIMO. RX Diversity and MIMO OTA Test Range

Application Note. StarMIMO. RX Diversity and MIMO OTA Test Range Application Note StarMIMO RX Diversity and MIMO OTA Test Range Contents Introduction P. 03 StarMIMO setup P. 04 1/ Multi-probe technology P. 05 Cluster vs Multiple Cluster setups Volume vs Number of probes

More information

Using Frequency Diversity to Improve Measurement Speed Roger Dygert MI Technologies, 1125 Satellite Blvd., Suite 100 Suwanee, GA 30024

Using Frequency Diversity to Improve Measurement Speed Roger Dygert MI Technologies, 1125 Satellite Blvd., Suite 100 Suwanee, GA 30024 Using Frequency Diversity to Improve Measurement Speed Roger Dygert MI Technologies, 1125 Satellite Blvd., Suite 1 Suwanee, GA 324 ABSTRACT Conventional antenna measurement systems use a multiplexer or

More information

ICT 5305 Mobile Communications. Lecture - 3 April Dr. Hossen Asiful Mustafa

ICT 5305 Mobile Communications. Lecture - 3 April Dr. Hossen Asiful Mustafa ICT 5305 Mobile Communications Lecture - 3 April 2016 Dr. Hossen Asiul Mustaa Advanced Phase Shit Keying Q BPSK (Binary Phase Shit Keying): bit value 0: sine wave bit value 1: inverted sine wave very simple

More information

77GHz single chip radar sensor enables automotive body and chassis applications

77GHz single chip radar sensor enables automotive body and chassis applications 77GHz single chip radar sensor enables automotive body and chassis applications Sandeep Rao Radar Systems Architect Adeel Ahmad Systems Engineer Dr. June Chul Roh Senior Systems Architect Sachin Bharadwaj

More information

WiMAX Summit Testing Requirements for Successful WiMAX Deployments. Fanny Mlinarsky. 28-Feb-07

WiMAX Summit Testing Requirements for Successful WiMAX Deployments. Fanny Mlinarsky. 28-Feb-07 WiMAX Summit 2007 Testing Requirements for Successful WiMAX Deployments Fanny Mlinarsky 28-Feb-07 Municipal Multipath Environment www.octoscope.com 2 WiMAX IP-Based Architecture * * Commercial off-the-shelf

More information

INTERFERENCE effects of wind turbines on communication

INTERFERENCE effects of wind turbines on communication TCOM-TPS-13-144.R 1 A Measurement-based Multipath Channel Model or Signal Propagation in Presence o Wind Farms in the UHF Band Itziar Angulo, Member, IEEE, Jon Montalbán, Graduate Student Member, IEEE,

More information

Detection of Multipath Propagation Effects in SAR-Tomography with MIMO Modes

Detection of Multipath Propagation Effects in SAR-Tomography with MIMO Modes Detection of Multipath Propagation Effects in SAR-Tomography with MIMO Modes Tobias Rommel, German Aerospace Centre (DLR), tobias.rommel@dlr.de, Germany Gerhard Krieger, German Aerospace Centre (DLR),

More information

K-MC1 RADAR TRANSCEIVER. Features. Applications. Description. Blockdiagram. Datasheet

K-MC1 RADAR TRANSCEIVER. Features. Applications. Description. Blockdiagram. Datasheet Features 24 GHz short range transceiver 180 MHz sweep FM input High sensitivity, with integrated RF/IF amplifier Dual 30 patch antenna Buffered I/Q IF outputs Additional DC IF outputs Beam aperture 25

More information

COMPRESSIVE CLASSIFICATION FOR THROUGH-THE-WALL RADAR IMAGING. Mark R. Balthasar, Michael Leigsnering, Abdelhak M. Zoubir

COMPRESSIVE CLASSIFICATION FOR THROUGH-THE-WALL RADAR IMAGING. Mark R. Balthasar, Michael Leigsnering, Abdelhak M. Zoubir 20th European Signal Processing Conerence (EUSIPCO 2012) Bucharest, Romania, August 27-31, 2012 COMPRESSIVE CLASSIFICATION FOR THROUGH-THE-WALL RADAR IMAGING Mark R. Balthasar, Michael Leigsnering, Abdelhak

More information

AN EFFICIENT SET OF FEATURES FOR PULSE REPETITION INTERVAL MODULATION RECOGNITION

AN EFFICIENT SET OF FEATURES FOR PULSE REPETITION INTERVAL MODULATION RECOGNITION AN EFFICIENT SET OF FEATURES FOR PULSE REPETITION INTERVAL MODULATION RECOGNITION J-P. Kauppi, K.S. Martikainen Patria Aviation Oy, Naulakatu 3, 33100 Tampere, Finland, ax +358204692696 jukka-pekka.kauppi@patria.i,

More information