1 PERFORMANCE COMPARISION BETWEEN HIGHER-ORDER AND RWG BASIS FUNCTIONS

Size: px
Start display at page:

Download "1 PERFORMANCE COMPARISION BETWEEN HIGHER-ORDER AND RWG BASIS FUNCTIONS"

Transcription

1 1 PERFORMANCE COMPARISION BETWEEN HIGHER-ORDER AND RWG BASIS FUNCTIONS Two monopoles are mounted on a PEC cylinder oriented along the z axis. The length and radius of the cylinder are 5. m and 1. m, respectively. The surface of the cylinder is meshed into bilinear surfaces for higher-order basis functions in TIDES and into the triangular patches for RWG basis functions at 4 MHz. The S parameters of the antenna network are calculated in the frequency band of 2 4 MHz using 21 sampling frequencies. (a) (b) Figure 1. Simulation model: (a) bilinear patch model for TIDES; (b) triangular patch model for RWG basis functions. x z y

2 S parameter magnitude (db) S 11 (TIDES) S 11 (MLFMA) S 21 (TIDES) S 21 (MLFMA) Frequency (MHz) Figure 2. Magnitude of the S parameters. S parameter phase (degree) S 11 (TIDES) S 11 (MLFMA) S 21 (TIDES) S 21 (MLFMA) Frequency (MHz) Figure 3. Phase of the S parameters. Detailed information about this simulation is listed in Table 1. Only the maximum amount of RAM used is listed. The two codes are executed on a PC with a Pentium P4 chip of 3. GHz CPU, 1. GB RAM, and using the Microsoft Windows XP 32-bit operating system.

3 TABLE 1. Performance Comparison for the Coupling Calculations Algorithm /Equation Basis Function NUN Solver (Preconditioner) RAM (MB) Time (seconds) MoM /EFIE Higher-order 3,66 LU decomposition (no preconditioner) MLFMA /EFIE RWG 15,58 BiCGStab (ILU) EMC PREDICTION FOR MULTIPLE ANTENNAS MOUNTED ON AN ELECTRICALLY LARGE PLATFORM The isolations between the four antennas mounted on a full-size aircraft model are calculated. The full-size aircraft model is meshed at 1.5 GHz and is 58 wavelengths long at this frequency. This simulation employed 7,853 unknowns to discretize the structure into quadrilaterals Antenna 2 Antenna 3 Antenna 1 Antenna 4 Figure 4. Four antennas mounted on a full-size airplane model. To assess the accuracy of the numerical results, isolations between three pair of antennas are plotted together in Figure 5. In the legend of Figure 5, the first number in each pair represents the antenna acting as a transmitter, and the second, represents the antenna used as a receiver.

4 8 Isolation (db) Frequency (GHz) Figure 5. Isolation between different pairs of antennas. 3 ANALYSIS OF COMPLEX COMPOSITE ANTENNA ARRAY Modeling a 112-element Vivaldi array at 4.7 GHz requires 63,938 geometric elements. The total number of unknowns for this array is 89,124. All the elements are excited with amplitude of 1. V. Figure 6. A 112-element Vivaldi array.

5 Figure 7. Azimuth pattern of the Vivaldi antenna array ( starts from x axis in the xoy plane). Figure 8. Elevation pattern of the Vivaldi antenna array ( starts from x axis in the xoz plane). 4 ARRAY CALIBRATION FOR DIRECTION-OF-ARRIVAL ESTIMATION In this application, 176 dipole antennas are put on each side of the Global Hawk unmanned aerial vehicle (UAV) for DOA estimation. The structure is analyzed at 1. GHz. There are 11 rows and 16 columns of antennas on each side of the aircraft.

6 .5.5 Figure 9. Layout of the dipole array at one side of the UAV. Figure 1. Two signals incident on the array. The array calibration is performed at 1. GHz, which creates 68,133 unknowns using the MoM procedure. Table 2 shows the exact and estimated directions of arrival along with the amplitudes of the signal.

7 TABLE 2. Estimated Direction of Arrival of the Signal and Their Amplitudes exact est. θ exact θ est. α exact α est. Signal j 1.5+j.4 Signal j 1.+j.33 5 RADAR CROSS SECTION (RCS) CALCULATION OF COMPLEX TARGETS 5.1 RCS Calculation of a Squadron of Tanks The dimensions of the tanks are 8. m 3.7 m 2.75 m. The simulation for the five tanks at 1 MHz leads to 15,673 unknowns. The distances between the tanks are 5. m each along both the length and width of the tank, respectively. Figure 11. A tank illuminated by a plane wave. Figure 12. Formation of five tanks.

8 One tank Five tanks / 2 (db) Figure 13. Bistatic RCS in the xoz plane ( starts from x axis in the xoz plane). 9 One tank Five tanks / 2 (db) Figure 14. Bistatic RCS in the xoy plane ( starts from x axis in the xoy plane).

9 5.2 RCS of the Tanks inside a Forest Environment The model for the four tanks under the tree canopy generates 19,713 unknowns. The monostatic RCS of the forest and tanks inside the forest is calculated at 1 MHz. Note that there is an infinite PEC ground plane for each model in this example. Figure 15. Tree modeled using wires and loaded plates. z o x y Figure 16. Perspective view of four tanks inside a small forest of size 5 m 5 m.

10 5 Forest Tanks inside forest Tanks 4 (db) (degree) Figure 17. Monostatic RCS at cut plane ( starts from x axis in the xoz plane). 4 Forest Tanks inside forest Tanks 3 (db) (degree) Figure 18. Monostatic RCS at θ cut plane ( starts from x axis in the xoy plane).

11 5.3 RCS from an Aircraft and a Formation of Aircraft The distances between any two neighboring aircraft are x = 1. m along the head direction, y = 1. m along the wing direction, and z =. m along the height direction. The RCS is calculated at 1.25 GHz. The number of unknowns for the aircraft formation is 351,71. Figure 19. An aircraft with a plane wave excitation. Figure 2. Aircraft flying in a V formation.

12 Formation Single (db) Figure 21. Bistatic RCS at cut plane ( starts from x axis in the xoz plane) Formation Single (db) Figure 22. Bistatic RCS at θ cut plane ( starts from x axis in the xoy plane).

13 5.4 RCS Simulation with Million Level Unknowns The bistatic RCS of a single aircraft is calculated at 6.15 GHz. The numbers of unknowns in this case is 954,618 (approximately one million unknowns). Figure 23. The meshed airplane model (db) Figure 24. Bistatic RCS at cut plane ( starts from x axis in the xoz plane).

14 5.5 RCS of an Aircraft Carrier The aircraft carrier model is about 265 m long, 66 m wide, and 47 m high. The body of the helicopter is modeled as the material with parameters ε r = 2 and μ r = 2, whereas the rotating blades are modeled as metals. The simulation for this model at 15 MHz requires a total of 559,59 unknowns. Figure 25. An aircraft carrier carrying 61 aircraft and 6 helicopters. Figure 26. A model of a helicopter.

15 (a) (b) (c) Figure 27. Layout of the aircraft carrier with relevant aircraft on deck: (a) top view; (b) side view; (c) front view.

16 / 2 (db) Figure 28. Bistatic RCS at cut plane ( starts from x axis in the xoz plane) / 2 (db) Figure 29. Bistatic RCS at θ cut plane ( starts from x axis in the xoy plane).

17 6 ANALYSIS OF RADIATION PATTERNS OF ANTENNAS OPERATING INSIDE A RADOME ALONG WITH THE PLATFORM ON WHICH IT IS MOUNTED Modern aircraft utilize electromagnetically transparent radome structures to protect antennas from environmental stresses while preserving the aerodynamic integrity of the vehicle s superstructure. feed (a) Figure 3. Layout of the Yagi array: (a) dimensions of a single Yagi antenna; (b) Yagi array and the reflection plate. (b) Figure 31. Yagi array inside the radome.

18 A total of 611,318 unknowns are required to model the antenna array along with the radome, and the aircraft frame at 1 GHz. The aircraft model is 36 m long, 4 m wide, and 1.5 m high. It corresponds to 12λ, 133.3λ, and 35λ. The radiation patterns of the Yagi antenna array directed towards the tail are calculated using the parallel out-of-core solver. Figure 32. Perspective drawing of the antenna, radome, and aircraft. Figure 33. Model of the aircraft with the antenna structure and radome.

19 Airborne antenna Antenna Gain (db) Figure 34. Azimuth radiation pattern ( starts from x axis in the xoy plane) Airborne antenna Antenna Gain (db) Figure 35. Elevation radiation pattern ( starts from x axis in the xoz plane).

20 7 ELECTROMAGNETIC INTERFERENCE (EMI) ANALYSIS OF A COMMUNICATION SYSTEM The IRA is fed with 2, V at 2 GHz. The trucks have identical dimensions of 7. m long, 2.6 m wide and 2.47 m high. The number of unknowns in this project is 541,512. Figure 36. IRA model. (,,) m ( ,,-43.22) Figure 37. Diagram of a communication system.

21 kv/m Figure 38. Field distribution around the IRA antenna and the aircraft. kv/m Figure 39. Field distribution around the aircraft.

22 8 COMPARISON BETWEEN COMPUTATIONS USING TIDES AND MEASUREMENT DATA FOR COMPLEX COMPOSITE STRUCTURES Our goal here is to demonstrate that using the computational electromagnetic code TIDES, one can compute results for the radiation pattern which are within several tenths of a db when compared with measurements for the grating lobe amplitudes. The difference between theory and experiment falls within the resolution of the measurements. Figure 4. L-band antenna array with seven ribs Measurement TIDES Peak SLL relative to mainbeam Measured: db / db TIDES : db (rib: r =1.5, riblet: r =1.55) Location: 21? 2? off mainbeam Normalized radiation (db) Degree Figure 41. Comparison of measured array pattern and TIDES calculation.

EMC ANALYSIS OF ANTENNAS MOUNTED ON ELECTRICALLY LARGE PLATFORMS WITH PARALLEL FDTD METHOD

EMC ANALYSIS OF ANTENNAS MOUNTED ON ELECTRICALLY LARGE PLATFORMS WITH PARALLEL FDTD METHOD Progress In Electromagnetics Research, PIER 84, 205 220, 2008 EMC ANALYSIS OF ANTENNAS MOUNTED ON ELECTRICALLY LARGE PLATFORMS WITH PARALLEL FDTD METHOD J.-Z. Lei, C.-H. Liang, W. Ding, and Y. Zhang National

More information

Nonlinear Effects in Active Phased Array System Performance

Nonlinear Effects in Active Phased Array System Performance Nonlinear Effects in Active Phased Array System Performance Larry Williams, PhD Director of Product Management ANSYS Inc. 1 Advanced Simulation Simulate the Complete Product Real-life behavior in real-world

More information

Electronically Steerable planer Phased Array Antenna

Electronically Steerable planer Phased Array Antenna Electronically Steerable planer Phased Array Antenna Amandeep Kaur Department of Electronics and Communication Technology, Guru Nanak Dev University, Amritsar, India Abstract- A planar phased-array antenna

More information

The Computer Simulation of Radiation Pattern for Cylindrical Conformal Microstrip Antenna

The Computer Simulation of Radiation Pattern for Cylindrical Conformal Microstrip Antenna The Computer Simulation of Radiation Pattern for Cylindrical Conformal Microstrip Antenna Ruying Sun School of Informatics, Linyi Normal University, Linyi 276005, China E-mail: srysd@163.com Abstract FEKO

More information

Monoconical RF Antenna

Monoconical RF Antenna Page 1 of 8 RF and Microwave Models : Monoconical RF Antenna Monoconical RF Antenna Introduction Conical antennas are useful for many applications due to their broadband characteristics and relative simplicity.

More information

UNIVERSITI MALAYSIA PERLIS

UNIVERSITI MALAYSIA PERLIS UNIVERSITI MALAYSIA PERLIS SCHOOL OF COMPUTER & COMMUNICATIONS ENGINEERING EKT 341 LABORATORY MODULE LAB 2 Antenna Characteristic 1 Measurement of Radiation Pattern, Gain, VSWR, input impedance and reflection

More information

A Telemetry Antenna System for Unmanned Air Vehicles

A Telemetry Antenna System for Unmanned Air Vehicles Progress In Electromagnetics Research Symposium Proceedings, Cambridge, USA, July 8, 00 6 A Telemetry Antenna System for Unmanned Air Vehicles M. Dogan, and F. Ustuner TUBITAK, UEKAE, Kocaeli, Turkey Sabanci

More information

Radiation Analysis of Phased Antenna Arrays with Differentially Feeding Networks towards Better Directivity

Radiation Analysis of Phased Antenna Arrays with Differentially Feeding Networks towards Better Directivity Radiation Analysis of Phased Antenna Arrays with Differentially Feeding Networks towards Better Directivity Manohar R 1, Sophiya Susan S 2 1 PG Student, Department of Telecommunication Engineering, CMR

More information

EMG4066:Antennas and Propagation Exp 1:ANTENNAS MMU:FOE. To study the radiation pattern characteristics of various types of antennas.

EMG4066:Antennas and Propagation Exp 1:ANTENNAS MMU:FOE. To study the radiation pattern characteristics of various types of antennas. OBJECTIVES To study the radiation pattern characteristics of various types of antennas. APPARATUS Microwave Source Rotating Antenna Platform Measurement Interface Transmitting Horn Antenna Dipole and Yagi

More information

Introduction Antenna Ranges Radiation Patterns Gain Measurements Directivity Measurements Impedance Measurements Polarization Measurements Scale

Introduction Antenna Ranges Radiation Patterns Gain Measurements Directivity Measurements Impedance Measurements Polarization Measurements Scale Chapter 17 : Antenna Measurement Introduction Antenna Ranges Radiation Patterns Gain Measurements Directivity Measurements Impedance Measurements Polarization Measurements Scale Model Measurements 1 Introduction

More information

Detailed Pattern Computations of the UHF Antennas on the Spacecraft of the ExoMars Mission

Detailed Pattern Computations of the UHF Antennas on the Spacecraft of the ExoMars Mission Detailed Pattern Computations of the UHF Antennas on the Spacecraft of the ExoMars Mission C. Cappellin 1, E. Jørgensen 1, P. Meincke 1, O. Borries 1, C. Nardini 2, C. Dreyer 2 1 TICRA, Copenhagen, Denmark,

More information

HFSS 13: Hybrid FE-BI for Efficient Simulation of Radiation and Scattering David Edgar Senior Application Engineer ANSYS Inc.

HFSS 13: Hybrid FE-BI for Efficient Simulation of Radiation and Scattering David Edgar Senior Application Engineer ANSYS Inc. HFSS 13: Hybrid FE-BI for Efficient Simulation of Radiation and Scattering David Edgar Senior Application Engineer ANSYS Inc. 2011 ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Proprietary Agenda FEM

More information

Modeling Antennas with CREATE-RF's SENTRi Application

Modeling Antennas with CREATE-RF's SENTRi Application Modeling Antennas with CREATE-RF's SENTRi Application Dr. Ryan Chilton, Dr. Jorge Villa-Giron, Dr. John D Angelo 1 CREATE-RF Requirement Summary Antennas on Air, Sea, Ground, and Space Platforms Communication,

More information

KULLIYYAH OF ENGINEERING

KULLIYYAH OF ENGINEERING KULLIYYAH OF ENGINEERING DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING ANTENNA AND WAVE PROPAGATION LABORATORY (ECE 4103) EXPERIMENT NO 3 RADIATION PATTERN AND GAIN CHARACTERISTICS OF THE DISH (PARABOLIC)

More information

Design of Rotman Lens Antenna at Ku-Band Based on Substrate Integrated Technology

Design of Rotman Lens Antenna at Ku-Band Based on Substrate Integrated Technology Journal of Communication Engineering, Vol. 3, No.1, Jan.- June 2014 33 Design of Rotman Lens Antenna at Ku-Band Based on Substrate Integrated Technology S. A. R. Hosseini, Z. H. Firouzeh and M. Maddahali

More information

Cobham Antenna Systems

Cobham Antenna Systems Cobham Antenna Systems Microwave Antennas Unmanned Systems Antennas Airborne Platforms, UAVs, Ground Vehicles, Robots The most important thing we build is trust Designed to the highest specification Critical

More information

Design of CPW Fed Ultra wideband Fractal Antenna and Backscattering Reduction

Design of CPW Fed Ultra wideband Fractal Antenna and Backscattering Reduction Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 9, No. 1, June 2010 10 Design of CPW Fed Ultra wideband Fractal Antenna and Backscattering Reduction Raj Kumar and P. Malathi

More information

ANALYSIS OF LINEARLY AND CIRCULARLY POLARIZED MICROSTRIP PATCH ANTENNA ARRAY

ANALYSIS OF LINEARLY AND CIRCULARLY POLARIZED MICROSTRIP PATCH ANTENNA ARRAY ANALYSIS OF LINEARLY AND CIRCULARLY POLARIZED MICROSTRIP PATCH ANTENNA ARRAY 1 RANJANI M.N, 2 B. SIVAKUMAR 1 Asst. Prof, Department of Telecommunication Engineering, Dr. AIT, Bangalore 2 Professor & HOD,

More information

Design of an Airborne SLAR Antenna at X-Band

Design of an Airborne SLAR Antenna at X-Band Design of an Airborne SLAR Antenna at X-Band Markus Limbach German Aerospace Center (DLR) Microwaves and Radar Institute Oberpfaffenhofen WFMN 2007, Markus Limbach, Folie 1 Overview Applications of SLAR

More information

An Efficient and Accurate Method to Solve Low Frequency and Non-Conformal Problems Using Finite Difference Time Domain (FDTD)

An Efficient and Accurate Method to Solve Low Frequency and Non-Conformal Problems Using Finite Difference Time Domain (FDTD) Progress In Electromagnetics Research, Vol. 50, 83 96, 205 An Efficient and Accurate Method to Solve Low Frequency and Non-Conformal Problems Using Finite Difference Time Domain (FDTD) Kadappan Panayappan

More information

Antenna Theory EELE 5445

Antenna Theory EELE 5445 Antenna Theory EELE 5445 Lecture 6: Dipole Antenna Dr. Mohamed Ouda Electrical Engineering Department Islamic University of Gaza 2013 The dipole and the monopole The dipole and the monopole are arguably

More information

Performance Analysis of Different Ultra Wideband Planar Monopole Antennas as EMI sensors

Performance Analysis of Different Ultra Wideband Planar Monopole Antennas as EMI sensors International Journal of Electronics and Communication Engineering. ISSN 09742166 Volume 5, Number 4 (2012), pp. 435445 International Research Publication House http://www.irphouse.com Performance Analysis

More information

Final Examination. 22 April 2013, 9:30 12:00. Examiner: Prof. Sean V. Hum. All non-programmable electronic calculators are allowed.

Final Examination. 22 April 2013, 9:30 12:00. Examiner: Prof. Sean V. Hum. All non-programmable electronic calculators are allowed. UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING The Edward S. Rogers Sr. Department of Electrical and Computer Engineering ECE 422H1S RADIO AND MICROWAVE WIRELESS SYSTEMS Final Examination

More information

Full-Wave Analysis of Planar Reflectarrays with Spherical Phase Distribution for 2-D Beam-Scanning using FEKO Electromagnetic Software

Full-Wave Analysis of Planar Reflectarrays with Spherical Phase Distribution for 2-D Beam-Scanning using FEKO Electromagnetic Software Full-Wave Analysis of Planar Reflectarrays with Spherical Phase Distribution for 2-D Beam-Scanning using FEKO Electromagnetic Software Payam Nayeri 1, Atef Z. Elsherbeni 1, and Fan Yang 1,2 1 Center of

More information

EC ANTENNA AND WAVE PROPAGATION

EC ANTENNA AND WAVE PROPAGATION EC6602 - ANTENNA AND WAVE PROPAGATION FUNDAMENTALS PART-B QUESTION BANK UNIT 1 1. Define the following parameters w.r.t antenna: i. Radiation resistance. ii. Beam area. iii. Radiation intensity. iv. Directivity.

More information

Radomes-The Rocky Road to Transparency

Radomes-The Rocky Road to Transparency Radomes-The Rocky Road to Transparency by Reuven Shavit Electrical and Computer Engineering Department Ben-Gurion University of the Negev 1 The word radome, is an acronym of two words "radar" and "dome"

More information

Antenna Design: Simulation and Methods

Antenna Design: Simulation and Methods Antenna Design: Simulation and Methods Radiation Group Signals, Systems and Radiocommunications Department Universidad Politécnica de Madrid Álvaro Noval Sánchez de Toca e-mail: anoval@gr.ssr.upm.es Javier

More information

CHAPTER 2 MICROSTRIP REFLECTARRAY ANTENNA AND PERFORMANCE EVALUATION

CHAPTER 2 MICROSTRIP REFLECTARRAY ANTENNA AND PERFORMANCE EVALUATION 43 CHAPTER 2 MICROSTRIP REFLECTARRAY ANTENNA AND PERFORMANCE EVALUATION 2.1 INTRODUCTION This work begins with design of reflectarrays with conventional patches as unit cells for operation at Ku Band in

More information

4G MIMO ANTENNA DESIGN & Verification

4G MIMO ANTENNA DESIGN & Verification 4G MIMO ANTENNA DESIGN & Verification Using Genesys And Momentum GX To Develop MIMO Antennas Agenda 4G Wireless Technology Review Of Patch Technology Review Of Antenna Terminology Design Procedure In Genesys

More information

Modelings, Simulations, Measurements and Comparisons of Monopole-Type Blade. Antennas. Kaiyue Zhang

Modelings, Simulations, Measurements and Comparisons of Monopole-Type Blade. Antennas. Kaiyue Zhang Modelings, Simulations, Measurements and Comparisons of Monopole-Type Blade Antennas by Kaiyue Zhang A Thesis Presented in Partial Fulfillment of the Requirement for the Degree Master of Science Approved

More information

Monopole Antennas. Prof. Girish Kumar Electrical Engineering Department, IIT Bombay. (022)

Monopole Antennas. Prof. Girish Kumar Electrical Engineering Department, IIT Bombay. (022) Monopole Antennas Prof. Girish Kumar Electrical Engineering Department, IIT Bombay gkumar@ee.iitb.ac.in (022) 2576 7436 Monopole Antenna on Infinite Ground Plane Quarter-wavelength monopole Antenna on

More information

A BROADBAND BICONICAL ANTENNA FOR WIDE ANGLE RECEPTION

A BROADBAND BICONICAL ANTENNA FOR WIDE ANGLE RECEPTION A BROADBAND BICONICAL ANTENNA FOR WIDE ANGLE RECEPTION 1, Naveen Upadhyay 2 1 Scientist, DRDO, DARE, Karnataka, India, E mail: saurabh.dare@gmail.com 2 Assistant Professor, Department of ECE, JVW University,

More information

CHAPTER 7 CONCLUSIONS AND SCOPE OF FUTURE WORK

CHAPTER 7 CONCLUSIONS AND SCOPE OF FUTURE WORK CHAPTER 7 CONCLUSIONS AND SCOPE OF FUTURE WORK Future aircraft systems must have the ability to adapt to fend for itself from rapidly changing threat situations. The aircraft systems need to be designed

More information

Range Considerations for RF Networks

Range Considerations for RF Networks TI Technology Days 2010 Range Considerations for RF Networks Richard Wallace Abstract The antenna can be one of the most daunting components of wireless designs. Most information available relates to large

More information

Circular Focal Plane Array for Astronomic Applications

Circular Focal Plane Array for Astronomic Applications International Workshop on Phased Array Antenna Systems for Radio Astronomy Circular Focal Plane Array for Astronomic Applications Rémi Sarkis, Christophe Craeye May 3-5, 21 Provo, Utah, USA 1 Introduction

More information

9. Microwaves. 9.1 Introduction. Safety consideration

9. Microwaves. 9.1 Introduction. Safety consideration MW 9. Microwaves 9.1 Introduction Electromagnetic waves with wavelengths of the order of 1 mm to 1 m, or equivalently, with frequencies from 0.3 GHz to 0.3 THz, are commonly known as microwaves, sometimes

More information

ADAPTIVE ANTENNAS. TYPES OF BEAMFORMING

ADAPTIVE ANTENNAS. TYPES OF BEAMFORMING ADAPTIVE ANTENNAS TYPES OF BEAMFORMING 1 1- Outlines This chapter will introduce : Essential terminologies for beamforming; BF Demonstrating the function of the complex weights and how the phase and amplitude

More information

FEKO-Based Method for Electromagnetic Simulation of Carcass Wires Embedded in Vehicle Tires

FEKO-Based Method for Electromagnetic Simulation of Carcass Wires Embedded in Vehicle Tires ACES JOURNAL, VOL. 26, NO. 3, MARCH 2011 217 FEKO-Based Method for Electromagnetic Simulation of Carcass Wires Embedded in Vehicle Tires Nguyen Quoc Dinh 1, Takashi Teranishi 1, Naobumi Michishita 1, Yoshihide

More information

Reduction of Mutual Coupling in Closely Spaced Strip Dipole Antennas with Elliptical Metasurfaces. Hossein M. Bernety and Alexander B.

Reduction of Mutual Coupling in Closely Spaced Strip Dipole Antennas with Elliptical Metasurfaces. Hossein M. Bernety and Alexander B. Reduction of Mutual Coupling in Closely Spaced Strip Dipole Antennas with Elliptical Metasurfaces Hossein M. Bernety and Alexander B. Yakovlev Department of Electrical Engineering Center for Applied Electromagnetic

More information

arxiv:physics/ v1 [physics.optics] 28 Sep 2005

arxiv:physics/ v1 [physics.optics] 28 Sep 2005 Near-field enhancement and imaging in double cylindrical polariton-resonant structures: Enlarging perfect lens Pekka Alitalo, Stanislav Maslovski, and Sergei Tretyakov arxiv:physics/0509232v1 [physics.optics]

More information

Radar and Wind Farms. Dr Laith Rashid Prof Anthony Brown. The University of Manchester

Radar and Wind Farms. Dr Laith Rashid Prof Anthony Brown. The University of Manchester Radar and Wind Farms Dr Laith Rashid Prof Anthony Brown The Microwave and Communication Systems Research Group School of Electrical and Electronic Engineering The University of Manchester Summary Introduction

More information

Highly Accurate and Robust Automotive Radar System Design. Markus Kopp Lead Application Specialist ANSYS Inc.

Highly Accurate and Robust Automotive Radar System Design. Markus Kopp Lead Application Specialist ANSYS Inc. Highly Accurate and Robust Automotive Radar System Design Markus Kopp Lead Application Specialist ANSYS Inc. Introduction This presentation is an overview of a proposed design methodology for automotive

More information

PLANAR BEAM-FORMING ARRAY FOR BROADBAND COMMUNICATION IN THE 60 GHZ BAND

PLANAR BEAM-FORMING ARRAY FOR BROADBAND COMMUNICATION IN THE 60 GHZ BAND PLANAR BEAM-FORMING ARRAY FOR BROADBAND COMMUNICATION IN THE 6 GHZ BAND J.A.G. Akkermans and M.H.A.J. Herben Radiocommunications group, Eindhoven University of Technology, Eindhoven, The Netherlands, e-mail:

More information

Introduction to Radar Systems. Radar Antennas. MIT Lincoln Laboratory. Radar Antennas - 1 PRH 6/18/02

Introduction to Radar Systems. Radar Antennas. MIT Lincoln Laboratory. Radar Antennas - 1 PRH 6/18/02 Introduction to Radar Systems Radar Antennas Radar Antennas - 1 Disclaimer of Endorsement and Liability The video courseware and accompanying viewgraphs presented on this server were prepared as an account

More information

CIRCULAR DUAL-POLARISED WIDEBAND ARRAYS FOR DIRECTION FINDING

CIRCULAR DUAL-POLARISED WIDEBAND ARRAYS FOR DIRECTION FINDING CIRCULAR DUAL-POLARISED WIDEBAND ARRAYS FOR DIRECTION FINDING M.S. Jessup Roke Manor Research Limited, UK. Email: michael.jessup@roke.co.uk. Fax: +44 (0)1794 833433 Keywords: DF, Vivaldi, Beamforming,

More information

DESIGN OF MICROSTRIP ANTENNA CONFORMABLE TO BOTH PLANAR AND CYLINDRICAL SURFACES FOR AIRCRAFT SYSTEMS DOCTOR OF PHILOSOPHY

DESIGN OF MICROSTRIP ANTENNA CONFORMABLE TO BOTH PLANAR AND CYLINDRICAL SURFACES FOR AIRCRAFT SYSTEMS DOCTOR OF PHILOSOPHY DESIGN OF MICROSTRIP ANTENNA CONFORMABLE TO BOTH PLANAR AND CYLINDRICAL SURFACES FOR AIRCRAFT SYSTEMS Synopsis of the Thesis for DOCTOR OF PHILOSOPHY by SAMIR DEV GUPTA SUPERVISOR PROF. M C SRIVASTAVA

More information

Characteristics of HF Coastal Radars

Characteristics of HF Coastal Radars Function Characteristics System 1 Maximum operational (measurement) range** Characteristics of HF Coastal Radars 5 MHz Long-range oceanographic 160-220 km average during (daytime)* System 2 System 3 System

More information

Planar Radiators 1.1 INTRODUCTION

Planar Radiators 1.1 INTRODUCTION 1 Planar Radiators 1.1 INTRODUCTION The rapid development of wireless communication systems is bringing about a wave of new wireless devices and systems to meet the demands of multimedia applications.

More information

Cylindrical electromagnetic bandgap structures for directive base station antennas

Cylindrical electromagnetic bandgap structures for directive base station antennas Loughborough University Institutional Repository Cylindrical electromagnetic bandgap structures for directive base station antennas This item was submitted to Loughborough University's Institutional Repository

More information

Dr. John S. Seybold. November 9, IEEE Melbourne COM/SP AP/MTT Chapters

Dr. John S. Seybold. November 9, IEEE Melbourne COM/SP AP/MTT Chapters Antennas Dr. John S. Seybold November 9, 004 IEEE Melbourne COM/SP AP/MTT Chapters Introduction The antenna is the air interface of a communication system An antenna is an electrical conductor or system

More information

DESIGN AND DEVELOPMENT OF A DUAL OPERAT- ING MODE MICROSTRIP PATCH ANTENNA FOR UN- MANNED AERIAL VEHICLE SYNTHETIC APERTURE RADAR

DESIGN AND DEVELOPMENT OF A DUAL OPERAT- ING MODE MICROSTRIP PATCH ANTENNA FOR UN- MANNED AERIAL VEHICLE SYNTHETIC APERTURE RADAR Progress In Electromagnetics Research C, Vol. 27, 143 156, 2012 DESIGN AND DEVELOPMENT OF A DUAL OPERAT- ING MODE MICROSTRIP PATCH ANTENNA FOR UN- MANNED AERIAL VEHICLE SYNTHETIC APERTURE RADAR P. N. Tan,

More information

Antenna Theory. Wire Antennas

Antenna Theory. Wire Antennas Antenna Theory Wire Antennas Monopole Antenna Long Wire or Traveling wave Antennas Yagi Uda Antenna Prof. D. Kannadassan Reference: C. A. Balanis, J.D. Krauss Monopole antenna Image theory, an intro A

More information

Mathematical models for radiodetermination radar systems antenna patterns for use in interference analyses

Mathematical models for radiodetermination radar systems antenna patterns for use in interference analyses Recommendation ITU-R M.1851-1 (1/18) Mathematical models for radiodetermination radar systems antenna patterns for use in interference analyses M Series Mobile, radiodetermination, amateur and related

More information

Lattice Spacing Effect on Scan Loss for Bat-Wing Phased Array Antennas

Lattice Spacing Effect on Scan Loss for Bat-Wing Phased Array Antennas Lattice Spacing Effect on Scan Loss for Bat-Wing Phased Array Antennas I. Introduction Thinh Q. Ho*, Charles A. Hewett, Lilton N. Hunt SSCSD 2825, San Diego, CA 92152 Thomas G. Ready NAVSEA PMS500, Washington,

More information

UNIT-3. Ans: Arrays of two point sources with equal amplitude and opposite phase:

UNIT-3. Ans: Arrays of two point sources with equal amplitude and opposite phase: `` UNIT-3 1. Derive the field components and draw the field pattern for two point source with spacing of λ/2 and fed with current of equal n magnitude but out of phase by 180 0? Ans: Arrays of two point

More information

A Planar Equiangular Spiral Antenna Array for the V-/W-Band

A Planar Equiangular Spiral Antenna Array for the V-/W-Band 207 th European Conference on Antennas and Propagation (EUCAP) A Planar Equiangular Spiral Antenna Array for the V-/W-Band Paul Tcheg, Kolawole D. Bello, David Pouhè Reutlingen University of Applied Sciences,

More information

Receiver Antenna Array for a Multichannel Sense-and-Avoid Radar for Small UAVs

Receiver Antenna Array for a Multichannel Sense-and-Avoid Radar for Small UAVs The University of Kansas Technical Report Receiver Antenna Array for a Multichannel Sense-and-Avoid Radar for Small UAVs Jose Francisco Florencio Neto ITTC-FY2013-TR-70093-01 April 2013 Project Sponsor:

More information

DIELECTRIC RESONATOR ANTENNA MOUNTED ON A CIRCULAR CYLINDRICAL GROUND PLANE

DIELECTRIC RESONATOR ANTENNA MOUNTED ON A CIRCULAR CYLINDRICAL GROUND PLANE Progress In Electromagnetics Research B, Vol. 19, 427 444, 21 DIELECTRIC RESONATOR ANTENNA MOUNTED ON A CIRCULAR CYLINDRICAL GROUND PLANE S. H. Zainud-Deen, H. A. Malhat, and K. H. Awadalla Faculty of

More information

Input Impedance, VSWR and Return Loss of a Conformal Microstrip Printed Antenna for TM 10 mode Using Polymers as a Substrate Materials

Input Impedance, VSWR and Return Loss of a Conformal Microstrip Printed Antenna for TM 10 mode Using Polymers as a Substrate Materials Input Impedance, VSWR and Return Loss of a Conformal Microstrip Printed Antenna for TM 10 mode Using Polymers as a Substrate Materials Ali Elrashidi 1, Khaled Elleithy 2, Hassan Bajwa 3 1 Department of

More information

The Basics of Patch Antennas, Updated

The Basics of Patch Antennas, Updated The Basics of Patch Antennas, Updated By D. Orban and G.J.K. Moernaut, Orban Microwave Products www.orbanmicrowave.com Introduction This article introduces the basic concepts of patch antennas. We use

More information

G. A. Jafarabadi Department of Electronic and Telecommunication Bagher-Aloloom Research Institute Tehran, Iran

G. A. Jafarabadi Department of Electronic and Telecommunication Bagher-Aloloom Research Institute Tehran, Iran Progress In Electromagnetics Research Letters, Vol. 14, 31 40, 2010 DESIGN OF MODIFIED MICROSTRIP COMBLINE ARRAY ANTENNA FOR AVIONIC APPLICATION A. Pirhadi Faculty of Electrical and Computer Engineering

More information

UNIT Write short notes on travelling wave antenna? Ans: Travelling Wave Antenna

UNIT Write short notes on travelling wave antenna? Ans:   Travelling Wave Antenna UNIT 4 1. Write short notes on travelling wave antenna? Travelling Wave Antenna Travelling wave or non-resonant or aperiodic antennas are those antennas in which there is no reflected wave i.e., standing

More information

Frequency Response Calculations of Input Characteristics of Cavity-Backed Aperture Antennas Using AWE With Hybrid FEM/MoM Technique

Frequency Response Calculations of Input Characteristics of Cavity-Backed Aperture Antennas Using AWE With Hybrid FEM/MoM Technique NASA Contractor Report 4764 Frequency Response Calculations of Input Characteristics of Cavity-Backed Aperture Antennas Using AWE With Hybrid FEM/MoM Technique C. J. Reddy Hampton University Hampton, Virginia

More information

Modeling & Simulating Antenna Arrays and RF Beamforming Algorithms Giorgia Zucchelli Product Marketing MathWorks

Modeling & Simulating Antenna Arrays and RF Beamforming Algorithms Giorgia Zucchelli Product Marketing MathWorks Modeling & Simulating Antenna Arrays and RF Beamforming Algorithms Giorgia Zucchelli Product Marketing MathWorks giorgia.zucchelli@mathworks.nl 2016 The MathWorks, Inc. 1 Agenda Introducing antenna design

More information

RCS Reduction of Patch Array Antenna by Complementary Split-Ring Resonators Structure

RCS Reduction of Patch Array Antenna by Complementary Split-Ring Resonators Structure Progress In Electromagnetics Research C, Vol. 51, 95 101, 2014 RCS Reduction of Patch Array Antenna by Complementary Split-Ring Resonators Structure Jun Zheng 1, 2, Shaojun Fang 1, Yongtao Jia 3, *, and

More information

IMPROVEMENT OF YAGI UDA ANTENNA RADIATION PATTERN

IMPROVEMENT OF YAGI UDA ANTENNA RADIATION PATTERN International Journal of Mechanical Engineering and Technology (IJMET) Volume 8, Issue 7, July 2017, pp. 636 641, Article ID: IJMET_08_07_071 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=8&itype=7

More information

The Analysis of the Airplane Flutter on Low Band Television Broadcasting Signal

The Analysis of the Airplane Flutter on Low Band Television Broadcasting Signal The Analysis of the Airplane Flutter on Low Band Television Broadcasting Signal A. Wonggeeratikun 1,2, S. Noppanakeepong 1, N. Leelaruji 1, N. Hemmakorn 1, and Y. Moriya 1 1 Faculty of Engineering and

More information

RADIO WAVE PROPAGATION IN THE AMAZON JUNGLE. Mauro S. Assis MAY 2011

RADIO WAVE PROPAGATION IN THE AMAZON JUNGLE. Mauro S. Assis MAY 2011 RADIO WAVE PROPAGATION IN THE AMAZON JUNGLE Mauro S. Assis MAY 2011 INTRODUCTION Amazon Region DENSE RAIN FOREST Annual precipitation of the order or higher than 2000 mm HOT AND HUMID CLIMATE Median temperature

More information

ANT6: The Half-Wave Dipole Antenna

ANT6: The Half-Wave Dipole Antenna In this lecture, we simplify the space radiating current analysis to include the special (but very important) case of the general wire antenna. Concentrating on results for the half-wave dipole, we demonstrate

More information

Multipath Analysis of the QuikSCAT Calibration Ground Station

Multipath Analysis of the QuikSCAT Calibration Ground Station Brigham Young University Department of Electrical and Computer Engineering 459 Clyde Building Provo, Utah 8462 Multipath Analysis of the QuikSCAT Calibration Ground Station Arden Anderson 16 April 21 MERS

More information

Keywords: cylindrical near-field acquisition, mechanical and electrical errors, uncertainty, directivity.

Keywords: cylindrical near-field acquisition, mechanical and electrical errors, uncertainty, directivity. UNCERTAINTY EVALUATION THROUGH SIMULATIONS OF VIRTUAL ACQUISITIONS MODIFIED WITH MECHANICAL AND ELECTRICAL ERRORS IN A CYLINDRICAL NEAR-FIELD ANTENNA MEASUREMENT SYSTEM S. Burgos, M. Sierra-Castañer, F.

More information

Fourth Year Antenna Lab

Fourth Year Antenna Lab Fourth Year Antenna Lab Name : Student ID#: Contents 1 Wire Antennas 1 1.1 Objectives................................................. 1 1.2 Equipments................................................ 1

More information

You will need the following pieces of equipment to complete this experiment: Wilkinson power divider (3-port board with oval-shaped trace on it)

You will need the following pieces of equipment to complete this experiment: Wilkinson power divider (3-port board with oval-shaped trace on it) UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING The Edward S. Rogers Sr. Department of Electrical and Computer Engineering ECE422H1S: RADIO AND MICROWAVE WIRELESS SYSTEMS EXPERIMENT 1:

More information

Array antennas introduction

Array antennas introduction Array antennas introduction José Manuel Inclán Alonso chema@gr.ssr.upm.es Universidad Politécnica de Madrid (Technical University of Madrid, UPM) Outline Array antennas definition Arrays types Depending

More information

Antennas & wave Propagation ASSIGNMENT-I

Antennas & wave Propagation ASSIGNMENT-I Shri Vishnu Engineering College for Women :: Bhimavaram Department of Electronics & Communication Engineering Antennas & wave Propagation 1. Define the terms: i. Antenna Aperture ii. Beam Width iii. Aperture

More information

W1GHZ W1GHZ W1GHZ W1GHZ W1GHZ W1GHZ W1GHZ W1GHZ

W1GHZ W1GHZ W1GHZ W1GHZ W1GHZ W1GHZ W1GHZ W1GHZ Online Online Online Online Online Online (ex-n1bwt) (ex-n1bwt) (ex-n1bwt) (ex-n1bwt) (ex-n1bwt) (ex-n1bwt) (ex-n1bwt) Online (ex-n1bwt) W1GHZ W1GHZ Microwave Antenna Book Antenna BookOnline W1GHZ W1GHZ

More information

INTRODUCTION Plasma is the fourth state of matter Plasmas are conductive assemblies of charged and neutral particles and fields that exhibit collectiv

INTRODUCTION Plasma is the fourth state of matter Plasmas are conductive assemblies of charged and neutral particles and fields that exhibit collectiv Plasma Antenna Technology INTRODUCTION Plasma is the fourth state of matter Plasmas are conductive assemblies of charged and neutral particles and fields that exhibit collective effect Plasmas carry electrical

More information

Non-Ideal Quiet Zone Effects on Compact Range Measurements

Non-Ideal Quiet Zone Effects on Compact Range Measurements Non-Ideal Quiet Zone Effects on Compact Range Measurements David Wayne, Jeffrey A. Fordham, John McKenna MI Technologies Suwanee, Georgia, USA Abstract Performance requirements for compact ranges are typically

More information

Combining Differential/Integral Methods and Time/Frequency Domain Analysis to Solve Complex Antenna Problems

Combining Differential/Integral Methods and Time/Frequency Domain Analysis to Solve Complex Antenna Problems Combining Differential/Integral Methods and Time/Frequency Domain Analysis to Solve Complex Antenna Problems IEEE Long Island Section MTT-S Jan. 27, 20 Overview of Presentation Antenna design challenges

More information

Chapter 2 Estimation of Slot Position for a Slotted Antenna

Chapter 2 Estimation of Slot Position for a Slotted Antenna Chapter 2 Estimation of Slot Position for a Slotted Antenna Arnab Das, Chayan Banerjee, Bipa Datta and Moumita Mukherjee Abstract Compact microstrip patch antennas have become quite popular nowadays. With

More information

Characteristics of Biconical Antennas Used for EMC Measurements

Characteristics of Biconical Antennas Used for EMC Measurements Advance Topics in Electromagnetic Compatibility Characteristics of Biconical Antennas Used for EMC Measurements Mohsen Koohestani koohestani.mohsen@epfl.ch Outline State-of-the-art of EMC Antennas Biconical

More information

RDF PRODUCTS Vancouver, Washington, USA Tel: Fax: Website:

RDF PRODUCTS Vancouver, Washington, USA Tel: Fax: Website: RDF PRODUCTS Vancouver, Washington, USA 98682 Tel: +1-360-253-2181 Fax: +1-360-892-0393 E-Mail: mail@rdfproducts.com Website: www@rdfproducts.com WN-008 Web Note QUESTIONS & ANSWERS: A USER S GUIDE TO

More information

Accurate simulation and experimental validation of a 4-by-4 antenna array for Ka band

Accurate simulation and experimental validation of a 4-by-4 antenna array for Ka band Accurate simulation and experimental validation of a 4-by-4 antenna array for Ka band CST EUC 2016 - Strasbourg B. Lesur, M. Thévenot, T. Monédière, C. Mellé Outline Introduction Context Objectives Design

More information

Transforms and electrical signal into a propagating electromagnetic wave OR vise versa. - Transducer goes both ways. TX and RX antennas have

Transforms and electrical signal into a propagating electromagnetic wave OR vise versa. - Transducer goes both ways. TX and RX antennas have Gary Rondeau AF7NX Transforms and electrical signal into a propagating electromagnetic wave OR vise versa. - Transducer goes both ways. TX and RX antennas have different jobs. For TX want to generate as

More information

Designing Next-Generation AESA Radar Part 2: Individual Antenna Design

Designing Next-Generation AESA Radar Part 2: Individual Antenna Design Design Designing Next-Generation AESA Radar Part 2: Individual Antenna Design Figure 8: Antenna design Specsheet user interface showing the electrical requirements input (a), physical constraints input

More information

1. Explain the basic geometry and elements of Yagi-Uda antenna.

1. Explain the basic geometry and elements of Yagi-Uda antenna. Benha University Faculty of Engineering- Shoubra Electrical Engineering Department Fourth Year (Communications & Electronics) Final-Term Exam Date: Tuesday 10/5/2016 ECE 424: Lab (4) Duration : 2 Hrs Answer

More information

A Fan-Shaped Circularly Polarized Patch Antenna for UMTS Band

A Fan-Shaped Circularly Polarized Patch Antenna for UMTS Band Progress In Electromagnetics Research C, Vol. 52, 101 107, 2014 A Fan-Shaped Circularly Polarized Patch Antenna for UMTS Band Sumitha Mathew, Ramachandran Anitha, Thazhe K. Roshna, Chakkanattu M. Nijas,

More information

PERFORMANCE ANALYSIS OF QWT FED 8X8 PHASED ARRAY

PERFORMANCE ANALYSIS OF QWT FED 8X8 PHASED ARRAY VOL. 12, NO. 3, FEBRUARY 217 ISSN 1819-68 26-217 Asian Research Publishing Network (ARPN). All rights reserved. PERFORMANCE ANALYSIS OF QWT FED 8X8 PHASED ARRAY U. Srinivasa Rao 1 and P. Siddaiah 2 1 Department

More information

THERMAL NOISE ANALYSIS OF THE RESISTIVE VEE DIPOLE

THERMAL NOISE ANALYSIS OF THE RESISTIVE VEE DIPOLE Progress In Electromagnetics Research Letters, Vol. 13, 21 28, 2010 THERMAL NOISE ANALYSIS OF THE RESISTIVE VEE DIPOLE S. Park DMC R&D Center Samsung Electronics Corporation Suwon, Republic of Korea K.

More information

CHARECTERIZATION of THE RADIATION PATTERN of a GPS ANTENNA MOUNTED on a SMALL T-TAIL AIRCRAFT in LANDING POSITION

CHARECTERIZATION of THE RADIATION PATTERN of a GPS ANTENNA MOUNTED on a SMALL T-TAIL AIRCRAFT in LANDING POSITION CHARECTERIZATION of THE RADIATION PATTERN of a GPS ANTENNA MOUNTED on a SMALL T-TAIL AIRCRAFT in LANDING POSITION Abualkair M. Alkhateeb and Daniel N. Aloi Oakland University Electrical and Computer Engineering

More information

EEM.Ant. Antennas and Propagation

EEM.Ant. Antennas and Propagation EEM.ant/0304/08pg/Req: None 1/8 UNIVERSITY OF SURREY Department of Electronic Engineering MSc EXAMINATION EEM.Ant Antennas and Propagation Duration: 2 Hours Spring 2003/04 READ THESE INSTRUCTIONS Answer

More information

NAVAL POSTGRADUATE SCHOOL THESIS

NAVAL POSTGRADUATE SCHOOL THESIS NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS MODELING OF THE RING-HYBRID DIPOLE ANTENNA AND MUTUAL COUPLING IN A SMALL ANTENNA ARRAY by Chee Hwee Ong December 2003 Thesis Advisor: Second Reader:

More information

Terrain Reflection and Diffraction, Part One

Terrain Reflection and Diffraction, Part One Terrain Reflection and Diffraction, Part One 1 UHF and VHF paths near the ground 2 Propagation over a plane Earth 3 Fresnel zones Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018

More information

Cylindrical Conformal Microstrip Yagi Array with Endfire Radiation and Vertical Polarization

Cylindrical Conformal Microstrip Yagi Array with Endfire Radiation and Vertical Polarization Forum for Electromagnetic Research Methods and Application Technologies (FERMAT) Cylindrical Conformal Microstrip Yagi Array with Endfire Radiation and Vertical Polarization Yulong Xia 1,2, Liangmengcheng

More information

Microstrip Patch Antenna Design for WiMAX

Microstrip Patch Antenna Design for WiMAX Microstrip Patch Antenna Design for WiMAX Ramya Radhakrishnan Asst Professor, Department of Electronics & Communication Engineering, Avanthi Institute of Engineering & Technology, Visakhapatnam Email :

More information

Coupled Sectorial Loop Antenna (CSLA) for Ultra Wideband Applications

Coupled Sectorial Loop Antenna (CSLA) for Ultra Wideband Applications Coupled Sectorial Loop Antenna (CSLA) for Ultra Wideband Applications N. Behdad and K. Sarabandi Presented by Nader Behdad at Antenna Application Symposium, Monticello, IL, Sep 2004 Email: behdad@ieee.org

More information

Antenna Engineering Lecture 3: Basic Antenna Parameters

Antenna Engineering Lecture 3: Basic Antenna Parameters Antenna Engineering Lecture 3: Basic Antenna Parameters ELC 405a Fall 2011 Department of Electronics and Communications Engineering Faculty of Engineering Cairo University 2 Outline 1 Radiation Pattern

More information

DESIGN OF PRINTED YAGI ANTENNA WITH ADDI- TIONAL DRIVEN ELEMENT FOR WLAN APPLICA- TIONS

DESIGN OF PRINTED YAGI ANTENNA WITH ADDI- TIONAL DRIVEN ELEMENT FOR WLAN APPLICA- TIONS Progress In Electromagnetics Research C, Vol. 37, 67 81, 013 DESIGN OF PRINTED YAGI ANTENNA WITH ADDI- TIONAL DRIVEN ELEMENT FOR WLAN APPLICA- TIONS Jafar R. Mohammed * Communication Engineering Department,

More information

Projects LOTHAR and LOTHAR-fatt

Projects LOTHAR and LOTHAR-fatt Appendix B Projects LOTHAR and LOTHAR-fatt From 2008 to 2011 the National Laboratory RAdar and Surveillance Systems (RaSS) of the National Inter-universitary Consortium for the Telecommunications (CNIT)

More information

On the Design of CPW Fed Appollian Gasket Multiband Antenna

On the Design of CPW Fed Appollian Gasket Multiband Antenna On the Design of CPW Fed Appollian Gasket Multiband Antenna Raj Kumar and Anupam Tiwari Microwave and MM Wave Antenna Lab., Department of Electronics Engg. DIAT (Deemed University), Girinagar, Pune-411025,

More information