Passive Component Analysis. OMICRON Lab Webinar Nov. 2015

Size: px
Start display at page:

Download "Passive Component Analysis. OMICRON Lab Webinar Nov. 2015"

Transcription

1 Passive Component Analysis OMICRON Lab Webinar Nov. 2015

2 Webinar Hints Activate the chat function Please mute your microphones to avoid echoes Feel free to post questions anytime using the chat function Please post your questions to Bernhard Baumgartner We will record the presentation such that you can view it again later Please mute yourself by clicking on this icon! Send questions via chat to Bernhard Baumgartner Page 2

3 Agenda Why do we analyze passive components How to measure component impedance A detailed look at a capacitor Inductor and transformer Filter simulation vs. real world Summary Page 3

4 Passive Components Essential parts in analog circuits Inductor and capacitor used e.g. to store energy or to create filter circuits Inductor: v t = L di t dt X L = ωl V I = Z L = jωl Capacitor: i t = C dv t dt X C = 1 ωc V I = Z C = 1 jωc Page 4

5 Theory and Reality Theoretically inductor and capacitor are purely reactive elements No resistive behavior and therefore lossless In reality parasitics can strongly influence the real behavior especially at higher frequencies Examples: Inductor: Wire has resistance Windings form electric field Core is not lossless Capacitor: Plates are resistive Rolling of foils creates inductance Insulator not lossless Page 5

6 TR2/H Equivalent Circuits Are used to model the real behavior of the components Different complexity of models 1 st order models are valid for one frequency Single Frequency Mode in BAS calculates R, L and C Frequency Sweep Mode calculates R, L and C over frequency 10 10n 8 8n TR1/Ohm n 4n 2n 0 0 5M 10M 15M 20M 25M 30M 35M 40M f/hz TR1: Rs(Impedance) TR2: Ls(Impedance) Page 6

7 Equivalent Circuits Higher complexity models are valid for a frequency range 2 nd Order equivalent circuits for inductor and capacitor 3 rd Order models (e.g. quartz crystal or piezo element) see Application Note: Equivalent Circuit Analysis of Quartz Crystals Parameter identification requires manual work or e.g. curve-fitting procedure Page 7

8 Bode 100 Impedance Measurement Methods Direct Measurements One-Port Reflection Impedance Adapter (3-port technique) External bridge (e.g. high impedance bridge) Indirect Measurements (via Gain) Shunt-Thru (2-port technique) Series-Thru (2-port technique) Voltage-Current Gain (3-port technique) Page 8

9 Direct Measurement Methods One-Port Impedance Adapter Recommended for 0.5 Ω - 10 kω Recommended for 20 mω kω External Bridge / Coupler Range depends on bridge Page 9

10 Indirect Measurement Methods Shunt-Thru S 21 Z DUT = 25Ω 1 S 21 Series-Thru Z DUT = 100 Ω 1 S 21 S 21 Recommended for 1 mω - 10 Ω Recommended for 1 kω < 10 MΩ Voltage Current Gain Gain = V CH2 V CH1 = V I = Z DUT Page 10

11 Impedance Range Overview Page 11

12 Why is it important to measure capacitors? A capacitor is NEVER just a capacitor Capacitor ESR influences the phase margin of power supplies Capacitor ESR influences the output ripple at the switching frequency of a SMPS ESR can change over Frequency Capacitors are inductors above their resonance frequency Page 12

13 What does the data sheet tell us? 220 µf aluminum capacitor C = 220µF (± 20%) ESR = tan δ ωc = π 120Hz 220µF = Hz Page 13

14 This is what the measurement tells us TR1/Ohm Impedance f/hz TR1: Mag(Impedance) TR1/Ohm f/hz TR1/Ohm Cursor 1 120, ,077m TR1: Rs(Impedance) f/hz ESR TR2/ 0-50 Phase f/hz TR2: Phase(Impedance) Capacity Page 14

15 Calibration Open Short Load Page 15

16 User Calibration / Probe Calibration User Calibration (User Range Calibration) Calibrates at exactly the frequencies that are currently measured + No interpolation, suitable for narrowband probes Probe Calibration (Full Range Calibration) calibrates at pre-defined frequencies and interpolates in-between + Calibration does not get lost when frequency range is changed Page 16

17 Detailed Example available TR2/F 5m 4m 3m 2m 1m 0-1m -2m -3m -4m -5m f/hz TR2: Cs(Impedance) 10 0 TR1/Ohm TR1: Rs(Impedance) f/hz see Application Note: Capacitor ESR Measurement with Bode 100 and B-WIC Page 17

18 Fitting Model to Measured Impedance Various methods available We use curve-fitting A Preview tool is available on request Page 18

19 TR2/ Simulation vs. Measurement TR1/Ohm TR1: Mag(Impedance) f/hz TR2: Phase(Impedance) Page 19

20 Voltage sensitivity of capacitors see Application Note: DC Biased Impedance Measurements Page 20

21 Why should we measure inductors? An inductor is NEVER just an inductor AC resistance <> DC resistance skin effects Eddie Currents Inductors have resonance frequencies Inductors with magnetic cores can have core losses Page 22

22 What does the data sheet tell us? 33 µh shielded power inductor H = 33µH (± 1 khz R DC =0,049 Ω (typ.) R DC =0,057 Ω (max.) f res = 11 MHz Page 23

23 This is what the measurement tells us TR2/ TR1/Ohm f/hz TR1/Ohm 10 4 Cursor 1 13,362M 40,673k TR1: Mag(Impedance) 200 f/hz TR2/ 150 Cursor 1 13,362M -5, TR2: Phase(Impedance) f/hz f/hz Impedance Phase TR1/Ohm TR2/H f/hz TR1/Ohm 10 4 Cursor 1 292,486 40,049m Cursor 2 101,789k 759,543m 10 3 C2-C1 101,496k 719,494m u f/hz TR2/H Cursor 1 292,486 33,019µ Cursor 2 101,789k 30,551µ 200u C2-C1 101,496k -2,468µ 100u 0-100u TR1: Rs(Impedance) u TR2: Ls(Impedance) f/hz f/hz Inductance ESR Page 24

24 Flyback Transformer Leakage Inductance Not all flux generated by the primary winding is coupled to the secondary winding some flux leaks some contributes to core losses Represented by a series inductance in the circuit Leakage inductance creates a voltage spike when turning off current through primary side (flyback converter) Page 25

25 Measuring Leakage Inductance Leakage inductance is measured by shorting all other windings except the primary winding Secondary open Secondary shorted Leakage inductance TR1/Ohm TR2/H 12u 10u 8u 6u 4u 2u TR1: Mag(Impedance) f/hz Memory 1 : Mag(Impedance) TR2: Ls(Impedance) Leakage inductance is not constant over frequency f/hz Page 26

26 LC Filter Bode Diagram Simulation in LTSpice: Passband Resonance (Double-pole) Stopband -40dB/Decade -180 Phase Page 27

27 LC Filter Test board Measuring the voltage transfer function H jω = V out V in Page 28

28 Measurement vs. Simulation Measurement Simulation Stopband is different Phase does not reach -180 Second resonance at 30 MHz parasitic effects Page 29

29 TR2/ LC Filter Including Parasitics TR1/dB TR1: Mag(Gain) f/hz TR2: Phase(Gain) much better fit between simulation and measurement Could be further improved by better component models Page 30

30 Reducing Output Ripple 2 x 10µF ceramics adds 20dB attenuation at 300 khz TR1/dB f/hz TR1/dB Cursor 1 290,070k -62,575 Imroved stop band performance at 300 khz (e.g. switching frequency) TR1: Mag(Gain) f/hz Memory 1 : Mag(Gain) Page 31

31 Summary Component parasitics are important to understand real life circuit behavior Models considering parasitics allow better simulation Measuring components can tell us more than the data sheet says Page 32

32 Feel free to ask questions via the chat function... If time runs out, please send us an and we will follow up. You can contact us at: Thank you for your attention!

Measuring Impedance with the Bode 100. OMICRON Lab Webinar Nov. 2014

Measuring Impedance with the Bode 100. OMICRON Lab Webinar Nov. 2014 Measuring Impedance with the Bode 100 OMICRON Lab Webinar Nov. 2014 Let s start with a question Why do the presenters wear moustaches? http://moteam.co/omimobros Page 4 Agenda Direct Impedance measurement

More information

Equivalent Circuit Determination of Quartz Crystals

Equivalent Circuit Determination of Quartz Crystals Page 1 of 11 Equivalent Circuit Determination of Quartz Crystals By Stephan Synkule & Florian Hämmerle 2010 Omicron Lab V1.1 Visit www.omicron-lab.com for more information. Contact support@omicron-lab.com

More information

Invasive and Non-Invasive Stability Measurements

Invasive and Non-Invasive Stability Measurements Bode 1 - Application Note Page 1 of 22 Invasive and Non-Invasive Stability Measurements Using the Bode 1 and the Picotest J2111A Current Injector By Florian Hämmerle & Steve Sandler 211 Omicron Lab V1.1

More information

Making Invasive and Non-Invasive Stability Measurements

Making Invasive and Non-Invasive Stability Measurements Making Invasive and Non-Invasive s Using the Bode 1 and the PICOTEST J2111A Current Injector By Florian Hämmerle & Steve Sandler 21 Picotest.com Visit www.picotest.com for more information. Contact support@picotest.com

More information

Transformer modelling

Transformer modelling By Martin Bitschnau 2017 by OMICRON Lab V2.0 Visit www.omicron-lab.com for more information. Contact support@omicron-lab.com for technical support. Page 2 of 21 Table of Contents 1 EXECUTIVE SUMMARY...

More information

DC Biased Impedance Measurement

DC Biased Impedance Measurement DC Biased Impedance Measurement Using the Bode 100 and the Picotest J2130A DC Bias Injector By Florian Hämmerle & Steve Sandler 2011 Picotest.com Visit www.picotest.com for more information. Contact support@picotest.com

More information

Exclusive Technology Feature. An Accurate Method For Measuring Capacitor ESL. ISSUE: April by Steve Sandler, Picotest, Phoenix, Ariz.

Exclusive Technology Feature. An Accurate Method For Measuring Capacitor ESL. ISSUE: April by Steve Sandler, Picotest, Phoenix, Ariz. ISSUE: April 2011 An Accurate Method For Measuring Capacitor ESL by Steve Sandler, Picotest, Phoenix, Ariz. The equivalent series inductance (ESL) of chip capacitors is becoming an increasingly important

More information

Power Supply Rejection Ratio Measurement

Power Supply Rejection Ratio Measurement Page 1 of 9 Measurement Using the Bode 100 and the J2120A Line Injector Voltage Regulator Contact us: +886-2-27053146 sales@telesplicing.com.tw Page 2 of 9 Table of Contents 1 Executive Summary...3 2 Measurement

More information

DC/DC Converter Stability Measurement

DC/DC Converter Stability Measurement Strongly supported by By Stephan Synkule, Lukas Heinzle & Florian Hämmerle 214 by OMICRON Lab V2.1 Visit www.omicron-lab.com for more information. Contact support@omicron-lab.com for technical support.

More information

Power Supply Rejection Ratio Measurement

Power Supply Rejection Ratio Measurement Power Supply Rejection Ratio Measurement Using the Bode 100 and the Picotest J2120A Line Injector By Florian Hämmerle & Steve Sandler 2010 Picotest.com Visit www.picotest.com for more information. Contact

More information

Measure Low Value Impedance Current Shunt Impedance

Measure Low Value Impedance Current Shunt Impedance Measure Low Value Impedance Current Shunt Impedance By Florian Hämmerle 2017 Omicron Lab V2.0 Visit www.omicron-lab.com for more information. Contact support@omicron-lab.com for technical support. Page

More information

DC/DC Converter Stability Measurement

DC/DC Converter Stability Measurement Bode 1 - Application Note Page 1 of 15 DC/DC Converter Stability Measurement Strongly supported by By Stephan Synkule, Lukas Heinzle & Florian Hämmerle 213 Omicron Lab V2. Visit www.omicron-lab.com for

More information

Solar Cell Impedance Measurement using the Bode 100

Solar Cell Impedance Measurement using the Bode 100 Page 1 of 9 Measurement using the Bode 100 By Florian Hämmerle 2011 Omicron Lab V1.0 Visit www.omicron-lab.com for more information. Contact support@omicron-lab.com for technical support. Page 2 of 9 Table

More information

Low Value Impedance Measurement using the Voltage / Current Method

Low Value Impedance Measurement using the Voltage / Current Method Low Value Impedance Measurement using the Voltage / Current Method By Florian Hämmerle & Tobias Schuster 2017 Omicron Lab V2.2 Visit www.omicron-lab.com for more information. Contact support@omicron-lab.com

More information

Measuring Power Line Impedance

Measuring Power Line Impedance By Florian Hämmerle & Tobias Schuster 2017 by OMICRON Lab V1.1 Visit www.omicron-lab.com for more information. Contact support@omicron-lab.com for technical support. Page 2 of 13 Table of Contents 1 MEASUREMENT

More information

S-Parameter Measurements with the Bode 100

S-Parameter Measurements with the Bode 100 Page 1 of 10 with the Bode 100 Page 2 of 10 Table of Contents 1 S-Parameters...3 2 S-Parameter Measurement with the Bode 100...4 2.1 Device Setup...4 2.2 Calibration...5 2.3 Measurement...7 2.3.1 S11 and

More information

Grundlagen der Impedanzmessung

Grundlagen der Impedanzmessung Grundlagen der Impedanzmessung presented by Michael Benzinger Application Engineer - RF & MW Agenda Impedance Measurement Basics Impedance Basics Impedance Dependency Factors Impedance Measurement Methods

More information

Understanding and Optimizing Electromagnetic Compatibility in Switchmode Power Supplies

Understanding and Optimizing Electromagnetic Compatibility in Switchmode Power Supplies Understanding and Optimizing Electromagnetic Compatibility in Switchmode Power Supplies 1 Definitions EMI = Electro Magnetic Interference EMC = Electro Magnetic Compatibility (No EMI) Three Components

More information

Equivalent Circuit Determination of Quartz Crystals

Equivalent Circuit Determination of Quartz Crystals Equivalent Circuit Determination of Quartz Crystals By Stephan Synkule & Florian Hämmerle 2017 by OMICRON Lab V2.1 Visit www.omicron-lab.com for more information. Contact support@omicron-lab.com for technical

More information

Contactless RFID Tag Measurements

Contactless RFID Tag Measurements By Florian Hämmerle & Martin Bitschnau 2017 by OMICRON Lab V3.1 Visit www.omicron-lab.com for more information. Contact support@omicron-lab.com for technical support. Page 2 of 13 Table of Contents 1 Executive

More information

Core Technology Group Application Note 1 AN-1

Core Technology Group Application Note 1 AN-1 Measuring the Impedance of Inductors and Transformers. John F. Iannuzzi Introduction In many cases it is necessary to characterize the impedance of inductors and transformers. For instance, power supply

More information

Core Technology Group Application Note 6 AN-6

Core Technology Group Application Note 6 AN-6 Characterization of an RLC Low pass Filter John F. Iannuzzi Introduction Inductor-capacitor low pass filters are utilized in systems such as audio amplifiers, speaker crossover circuits and switching power

More information

Battery Impedance Measurement

Battery Impedance Measurement Page 1 of 8 Using the Bode 100 and the Picotest J2111A Current Injector Page 2 of 8 Table of Contents 1 Executive Summary...3 2 Measurement Task...3 3 Measurement Setup & Results...4 3.1.1 Device Setup...5

More information

Experiment 8 Frequency Response

Experiment 8 Frequency Response Experiment 8 Frequency Response W.T. Yeung, R.A. Cortina, and R.T. Howe UC Berkeley EE 105 Spring 2005 1.0 Objective This lab will introduce the student to frequency response of circuits. The student will

More information

Filters And Waveform Shaping

Filters And Waveform Shaping Physics 3330 Experiment #3 Fall 2001 Purpose Filters And Waveform Shaping The aim of this experiment is to study the frequency filtering properties of passive (R, C, and L) circuits for sine waves, and

More information

Non-ideal Behavior of Electronic Components at High Frequencies and Associated Measurement Problems

Non-ideal Behavior of Electronic Components at High Frequencies and Associated Measurement Problems Nonideal Behavior of Electronic Components at High Frequencies and Associated Measurement Problems Matthew Beckler beck0778@umn.edu EE30 Lab Section 008 October 27, 2006 Abstract In the world of electronics,

More information

DC/DC Converter Stability Measurement

DC/DC Converter Stability Measurement Strongly supported by By Stephan Synkule, Lukas Heinzle & Florian Hämmerle 2018 by OMICRON Lab V3.3 Visit www.omicron-lab.com for more information. Contact support@omicron-lab.com for technical support.

More information

Bode 100. User Manual

Bode 100. User Manual Bode 100 User Manual Bode 100 User Manual Article Number VESD0661 - Manual Version: Bode100.AE.3 OMICRON Lab 2008. All rights reserved. This User Manual is a publication of OMICRON electronics GmbH. This

More information

Radio Frequency Electronics

Radio Frequency Electronics Radio Frequency Electronics Frederick Emmons Terman Transformers Masters degree from Stanford and Ph.D. from MIT Later a professor at Stanford His students include William Hewlett and David Packard Wrote

More information

Audio Amplifier Frequency Response

Audio Amplifier Frequency Response By Tobias Schuster 2017 by OMICRON Lab V2.0 Visit www.omicron-lab.com for more information. Contact support@omicron-lab.com for technical support. Page 2 of 20 Table of Contents 1 EXECUTIVE SUMMARY...

More information

EXPERIMENT 8: LRC CIRCUITS

EXPERIMENT 8: LRC CIRCUITS EXPERIMENT 8: LRC CIRCUITS Equipment List S 1 BK Precision 4011 or 4011A 5 MHz Function Generator OS BK 2120B Dual Channel Oscilloscope V 1 BK 388B Multimeter L 1 Leeds & Northrup #1532 100 mh Inductor

More information

Radio Frequency Electronics

Radio Frequency Electronics Radio Frequency Electronics Preliminaries II Guglielmo Giovanni Maria Marconi Thought off by many people as the inventor of radio Pioneer in long-distance radio communications Shared Nobel Prize in 1909

More information

Measurement of the equivalent circuit of quartz crystals

Measurement of the equivalent circuit of quartz crystals Measurement of the equivalent circuit of quartz crystals This application note shows how to measure the equivalent circuit of a quartz crystal with Bode 100. A.) Basics: An equivalent describtion of a

More information

FREQUENCY RESPONSE AND PASSIVE FILTERS LABORATORY

FREQUENCY RESPONSE AND PASSIVE FILTERS LABORATORY FREQUENCY RESPONSE AND PASSIVE FILTERS LABORATORY In this experiment we will analytically determine and measure the frequency response of networks containing resistors, AC source/sources, and energy storage

More information

Physically-Based Distributed Models for Multi-Layer Ceramic Capacitors

Physically-Based Distributed Models for Multi-Layer Ceramic Capacitors Physically-Based Distributed Models for Multi-Layer Ceramic Capacitors Charles R Sullivan and Yuqin Sun Thayer School of Engineering Dartmouth College http://power.thayer.dartmouth.edu/ Introduction Why

More information

Department of Electrical and Computer Engineering Lab 6: Transformers

Department of Electrical and Computer Engineering Lab 6: Transformers ESE Electronics Laboratory A Department of Electrical and Computer Engineering 0 Lab 6: Transformers. Objectives ) Measure the frequency response of the transformer. ) Determine the input impedance of

More information

EXPERIMENT 4: RC, RL and RD CIRCUITs

EXPERIMENT 4: RC, RL and RD CIRCUITs EXPERIMENT 4: RC, RL and RD CIRCUITs Equipment List Resistor, one each of o 330 o 1k o 1.5k o 10k o 100k o 1000k 0.F Ceramic Capacitor 4700H Inductor LED and 1N4004 Diode. Introduction We have studied

More information

Input Impedance Measurements for Stable Input-Filter Design

Input Impedance Measurements for Stable Input-Filter Design for Stable Input-Filter Design 1000 Converter Input Impedance 100 10 1 0,1 Filter Output Impedance 0,01 10 100 1000 10000 100000 By Florian Hämmerle 2017 by OMICRON Lab V1.0 Visit www.omicron-lab.com for

More information

Theory: The idea of this oscillator comes from the idea of positive feedback, which is described by Figure 6.1. Figure 6.1: Positive Feedback

Theory: The idea of this oscillator comes from the idea of positive feedback, which is described by Figure 6.1. Figure 6.1: Positive Feedback Name1 Name2 12/2/10 ESE 319 Lab 6: Colpitts Oscillator Introduction: This lab introduced the concept of feedback in combination with bipolar junction transistors. The goal of this lab was to first create

More information

Lab 2: Linear and Nonlinear Circuit Elements and Networks

Lab 2: Linear and Nonlinear Circuit Elements and Networks OPTI 380B Intermediate Optics Laboratory Lab 2: Linear and Nonlinear Circuit Elements and Networks Objectives: Lean how to use: Function of an oscilloscope probe. Characterization of capacitors and inductors

More information

INTRODUCTION TO AC FILTERS AND RESONANCE

INTRODUCTION TO AC FILTERS AND RESONANCE AC Filters & Resonance 167 Name Date Partners INTRODUCTION TO AC FILTERS AND RESONANCE OBJECTIVES To understand the design of capacitive and inductive filters To understand resonance in circuits driven

More information

EE 221 L CIRCUIT II LABORATORY 4: AC CIRCUITS, CAPACITORS AND INDUCTORS UNIVERSITY OF NEVADA, LAS VEGAS OBJECTIVE COMPONENTS & EQUIPMENT BACKGROUND

EE 221 L CIRCUIT II LABORATORY 4: AC CIRCUITS, CAPACITORS AND INDUCTORS UNIVERSITY OF NEVADA, LAS VEGAS OBJECTIVE COMPONENTS & EQUIPMENT BACKGROUND EE 221 L CIRCUIT II LABORATORY 4: AC CIRCUITS, CAPACITORS AND INDUCTORS DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING UNIVERSITY OF NEVADA, LAS VEGAS OBJECTIVE Compare the difference between DC and

More information

Hidden schematics of EMI filters

Hidden schematics of EMI filters International Conference on Renewable Energies and Power Quality (ICREPQ 6) Madrid (Spain), 4 th to 6 th May, 26 exçxãtuäx XÇxÜzç tçw céãxü dâtä àç ]ÉâÜÇtÄ(RE&PQJ) ISSN 272-38 X, No.4 May 26 Hidden schematics

More information

PHYS 3322 Modern Laboratory Methods I AC R, RC, and RL Circuits

PHYS 3322 Modern Laboratory Methods I AC R, RC, and RL Circuits Purpose PHYS 3322 Modern Laboratory Methods I AC, C, and L Circuits For a given frequency, doubling of the applied voltage to resistors, capacitors, and inductors doubles the current. Hence, each of these

More information

Experiment 18: Driven RLC Circuit

Experiment 18: Driven RLC Circuit MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8. Spring 3 Experiment 8: Driven LC Circuit OBJECTIVES To measure the resonance frequency and the quality factor of a driven LC circuit INTODUCTION

More information

Chapter 31 Alternating Current

Chapter 31 Alternating Current Chapter 31 Alternating Current In this chapter we will learn how resistors, inductors, and capacitors behave in circuits with sinusoidally vary voltages and currents. We will define the relationship between

More information

Smart Measurement Solutions. Bode 100. User Manual

Smart Measurement Solutions. Bode 100. User Manual Smart Measurement Solutions Bode 100 User Manual Bode 100 User Manual Bode 100 User Manual Article Number VESD0661 - Manual Version: Bode100.AE.4 OMICRON Lab 2010. All rights reserved. This User Manual

More information

Electromagnetic Oscillations and Currents. March 23, 2014 Chapter 30 1

Electromagnetic Oscillations and Currents. March 23, 2014 Chapter 30 1 Electromagnetic Oscillations and Currents March 23, 2014 Chapter 30 1 Driven LC Circuit! The voltage V can be thought of as the projection of the vertical axis of the phasor V m representing the time-varying

More information

AC Circuits INTRODUCTION DISCUSSION OF PRINCIPLES. Resistance in an AC Circuit

AC Circuits INTRODUCTION DISCUSSION OF PRINCIPLES. Resistance in an AC Circuit AC Circuits INTRODUCTION The study of alternating current 1 (AC) in physics is very important as it has practical applications in our daily lives. As the name implies, the current and voltage change directions

More information

Chapter 33. Alternating Current Circuits

Chapter 33. Alternating Current Circuits Chapter 33 Alternating Current Circuits Alternating Current Circuits Electrical appliances in the house use alternating current (AC) circuits. If an AC source applies an alternating voltage to a series

More information

Chapter 2-1 Transformers

Chapter 2-1 Transformers Principles of Electric Machines and Power Electronics Chapter 2-1 Transformers Third Edition P. C. Sen Transformer application 1: power transmission Ideal Transformer Assumptions: 1. Negligible winding

More information

Power Supply Rejection Ratio Measurement

Power Supply Rejection Ratio Measurement Power Supply Rejection Ratio Measurement Using the Bode 100 and the Picotest J2120A Line Injector By Florian Hämmerle & Steve Sandler 2017 by OMICRON Lab V2.0 Visit www.omicron-lab.com for more information.

More information

Chapter 2. The Fundamentals of Electronics: A Review

Chapter 2. The Fundamentals of Electronics: A Review Chapter 2 The Fundamentals of Electronics: A Review Topics Covered 2-1: Gain, Attenuation, and Decibels 2-2: Tuned Circuits 2-3: Filters 2-4: Fourier Theory 2-1: Gain, Attenuation, and Decibels Most circuits

More information

TSTE25 Power Electronics. Lecture 6 Tomas Jonsson ISY/EKS

TSTE25 Power Electronics. Lecture 6 Tomas Jonsson ISY/EKS TSTE25 Power Electronics Lecture 6 Tomas Jonsson ISY/EKS 2016-11-15 2 Outline DC power supplies DC-DC Converter Step-down (buck) Step-up (boost) Other converter topologies (overview) Exercises 7-1, 7-2,

More information

Inductors & Resonance

Inductors & Resonance Inductors & Resonance The Inductor This figure shows a conductor carrying a current. A magnetic field is set up around the conductor as concentric circles. If a coil of wire has a current flowing through

More information

6.334 Final Project Buck Converter

6.334 Final Project Buck Converter Nathan Monroe monroe@mit.edu 4/6/13 6.334 Final Project Buck Converter Design Input Filter Filter Capacitor - 40µF x 0µF Capstick CS6 film capacitors in parallel Filter Inductor - 10.08µH RM10/I-3F3-A630

More information

University of Jordan School of Engineering Electrical Engineering Department. EE 219 Electrical Circuits Lab

University of Jordan School of Engineering Electrical Engineering Department. EE 219 Electrical Circuits Lab University of Jordan School of Engineering Electrical Engineering Department EE 219 Electrical Circuits Lab EXPERIMENT 4 TRANSIENT ANALYSIS Prepared by: Dr. Mohammed Hawa EXPERIMENT 4 TRANSIENT ANALYSIS

More information

Oscillators. An oscillator may be described as a source of alternating voltage. It is different than amplifier.

Oscillators. An oscillator may be described as a source of alternating voltage. It is different than amplifier. Oscillators An oscillator may be described as a source of alternating voltage. It is different than amplifier. An amplifier delivers an output signal whose waveform corresponds to the input signal but

More information

Lecture 4 ECEN 4517/5517

Lecture 4 ECEN 4517/5517 Lecture 4 ECEN 4517/5517 Experiment 3 weeks 2 and 3: interleaved flyback and feedback loop Battery 12 VDC HVDC: 120-200 VDC DC-DC converter Isolated flyback DC-AC inverter H-bridge v ac AC load 120 Vrms

More information

Design Type III Compensation Network For Voltage Mode Step-down Converters

Design Type III Compensation Network For Voltage Mode Step-down Converters Introduction This application note details how to calculate a type III compensation network and investigates the relationship between phase margin and load transient response for the Skyworks family of

More information

SIMULATION OF A SERIES RESONANT CIRCUIT ECE562: Power Electronics I COLORADO STATE UNIVERSITY. Modified in Fall 2011

SIMULATION OF A SERIES RESONANT CIRCUIT ECE562: Power Electronics I COLORADO STATE UNIVERSITY. Modified in Fall 2011 SIMULATION OF A SERIES RESONANT CIRCUIT ECE562: Power Electronics I COLORADO STATE UNIVERSITY Modified in Fall 2011 ECE 562 Series Resonant Circuit (NL5 Simulation) Page 1 PURPOSE: The purpose of this

More information

Using an automated Excel spreadsheet to compensate a flyback converter operated in current-mode. Christophe Basso, David Sabatié

Using an automated Excel spreadsheet to compensate a flyback converter operated in current-mode. Christophe Basso, David Sabatié Using an automated Excel spreadsheet to compensate a flyback converter operated in current-mode Christophe Basso, David Sabatié ON Semiconductor download Go to ON Semiconductor site and enter flyback in

More information

Understanding, measuring, and reducing output noise in DC/DC switching regulators

Understanding, measuring, and reducing output noise in DC/DC switching regulators Understanding, measuring, and reducing output noise in DC/DC switching regulators Practical tips for output noise reduction Katelyn Wiggenhorn, Applications Engineer, Buck Switching Regulators Robert Blattner,

More information

( ) = V s ( jω ) = 2 kω, a = 4, R s. = 500 nf Draw a Bode diagram of the magnitude and phase of the frequency. Let R p. response H jω. V in.

( ) = V s ( jω ) = 2 kω, a = 4, R s. = 500 nf Draw a Bode diagram of the magnitude and phase of the frequency. Let R p. response H jω. V in. Let R p = 2 kω, a = 4, = 6 kω, = 500 nf Draw a Bode diagram of the magnitude and phase of the frequency response H jω = V s ( jω ) ( jω ). V in The secondary impedance is Z s ( jω ) = R / jω s = +/ jω

More information

Power supplies are one of the last holdouts of true. The Purpose of Loop Gain DESIGNER SERIES

Power supplies are one of the last holdouts of true. The Purpose of Loop Gain DESIGNER SERIES DESIGNER SERIES Power supplies are one of the last holdouts of true analog feedback in electronics. For various reasons, including cost, noise, protection, and speed, they have remained this way in the

More information

LEP RLC Circuit

LEP RLC Circuit RLC Circuit LEP Related topics Kirchhoff s laws, series and parallel tuned circuit, resistance, capacitance, inductance, phase displacement, Q-factor, band-width, loss resistance, damping Principle The

More information

AC CURRENTS, VOLTAGES, FILTERS, and RESONANCE

AC CURRENTS, VOLTAGES, FILTERS, and RESONANCE July 22, 2008 AC Currents, Voltages, Filters, Resonance 1 Name Date Partners AC CURRENTS, VOLTAGES, FILTERS, and RESONANCE V(volts) t(s) OBJECTIVES To understand the meanings of amplitude, frequency, phase,

More information

EXPERIMENT 4: RC, RL and RD CIRCUITs

EXPERIMENT 4: RC, RL and RD CIRCUITs EXPERIMENT 4: RC, RL and RD CIRCUITs Equipment List An assortment of resistor, one each of (330, 1k,1.5k, 10k,100k,1000k) Function Generator Oscilloscope 0.F Ceramic Capacitor 100H Inductor LED and 1N4001

More information

Generator Power [kw]

Generator Power [kw] PW3-25-SA/80 PW3-50-SA/80 PW3-100-SA/80 0 25 50 75 100 Generator Power [kw] 100-SA/80 Generator Overall Dimensions 25-SA/80 and 50-SA/80 Generator PWH-22 PWH-20 PWH-24 Capacity Output Power Dimensions

More information

Study of Inductive and Capacitive Reactance and RLC Resonance

Study of Inductive and Capacitive Reactance and RLC Resonance Objective Study of Inductive and Capacitive Reactance and RLC Resonance To understand how the reactance of inductors and capacitors change with frequency, and how the two can cancel each other to leave

More information

Under the Hood of Flyback SMPS Designs

Under the Hood of Flyback SMPS Designs Topic 1 Under the Hood of Flyback SMPS Designs Bing Lu Agenda 1. Basics of Flyback Topology 2. Impact of Transformer Design on Power Supply Performance 3. Power Supply Current Limiting 4. Summary Texas

More information

Lab 10 - INTRODUCTION TO AC FILTERS AND RESONANCE

Lab 10 - INTRODUCTION TO AC FILTERS AND RESONANCE 159 Name Date Partners Lab 10 - INTRODUCTION TO AC FILTERS AND RESONANCE OBJECTIVES To understand the design of capacitive and inductive filters To understand resonance in circuits driven by AC signals

More information

Impact of the Output Capacitor Selection on Switching DCDC Noise Performance

Impact of the Output Capacitor Selection on Switching DCDC Noise Performance Impact of the Output Capacitor Selection on Switching DCDC Noise Performance I. Introduction Most peripheries in portable electronics today tend to systematically employ high efficiency Switched Mode Power

More information

IE1206 Embedded Electronics

IE1206 Embedded Electronics E06 Embedded Electronics Le Le3 Le4 Le Ex Ex PC-block Documentation, Seriecom Pulse sensors,, R, P, serial and parallel KC LAB Pulse sensors, Menu program Start of programing task Kirchhoffs laws ode analysis

More information

APPLICATION NOTE 2027 Simple Methods Reduce Input Ripple for All Charge Pumps

APPLICATION NOTE 2027 Simple Methods Reduce Input Ripple for All Charge Pumps Maxim > App Notes > A/D and D/A CONVERSION/SAMPLING CIRCUITS Keywords: Simple Methods Reduce Input Ripple for All Charge Pumps May 13, 2003 APPLICATION NOTE 2027 Simple Methods Reduce Input Ripple for

More information

Documentation. Voltage Regulator Test Standard. Test Platform for Voltage Regulator and LDO Testing

Documentation. Voltage Regulator Test Standard. Test Platform for Voltage Regulator and LDO Testing Voltage Regulator Test Standard Test Platform for Voltage Regulator and LDO Testing Documentation Version 1.0d, December, 2010 2010 Picotest Corp. All Rights Reserved. Trademarks The Picotest logo and

More information

Homework Assignment 03

Homework Assignment 03 Question (75 points) Homework Assignment 03 Overview Tuned Radio Frequency (TRF) receivers are some of the simplest type of radio receivers. They consist of a parallel RLC bandpass filter with bandwidth

More information

Experiment 4: Grounding and Shielding

Experiment 4: Grounding and Shielding 4-1 Experiment 4: Grounding and Shielding Power System Hot (ed) Neutral (White) Hot (Black) 115V 115V 230V Ground (Green) Service Entrance Load Enclosure Figure 1 Typical residential or commercial AC power

More information

Bode 100. User Manual. Smart Measurement Solutions

Bode 100. User Manual. Smart Measurement Solutions Bode 100 User Manual Smart Measurement Solutions Version: ENU1006 05 03 Year: 2017 OMICRON Lab, OMICRON electronics. All rights reserved. This manual is a publication of OMICRON electronics. All rights

More information

Input Filter Design for Switching Power Supplies Michele Sclocchi Application Engineer National Semiconductor

Input Filter Design for Switching Power Supplies Michele Sclocchi Application Engineer National Semiconductor Input Filter Design for Switching Power Supplies Michele Sclocchi Application Engineer National Semiconductor The design of a switching power supply has always been considered a kind of magic and art,

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring Experiment 11: Driven RLC Circuit

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring Experiment 11: Driven RLC Circuit MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.2 Spring 24 Experiment 11: Driven LC Circuit OBJECTIVES 1. To measure the resonance frequency and the quality factor of a driven LC circuit.

More information

Simulating Inductors and networks.

Simulating Inductors and networks. Simulating Inductors and networks. Using the Micro-cap7 software, CB introduces a hands on approach to Spice circuit simulation to devise new, improved, user models, able to accurately mimic inductor behaviour

More information

Investigation of a Voltage Probe in Microstrip Technology

Investigation of a Voltage Probe in Microstrip Technology Investigation of a Voltage Probe in Microstrip Technology (Specifically in 7-tesla MRI System) By : Mona ParsaMoghadam Supervisor : Prof. Dr. Ing- Klaus Solbach April 2015 Introduction - Thesis work scope

More information

E84 Lab 3: Transistor

E84 Lab 3: Transistor E84 Lab 3: Transistor Cherie Ho and Siyi Hu April 18, 2016 Transistor Testing 1. Take screenshots of both the input and output characteristic plots observed on the semiconductor curve tracer with the following

More information

Homework Assignment 05

Homework Assignment 05 Homework Assignment 05 Question (2 points each unless otherwise indicated)(20 points). Estimate the parallel parasitic capacitance of a mh inductor with an SRF of 220 khz. Answer: (2π)(220 0 3 ) = ( 0

More information

Models 885 & 886 LCR METER OPERATING MANUAL

Models 885 & 886 LCR METER OPERATING MANUAL Test Equipment Depot - 800.517.8431-99 Washington Street Melrose, MA 02176 - TestEquipmentDepot.com Models 885 & 886 LCR METER OPERATING MANUAL MANUAL DE INSTRUCCIÓNES MEDIDOR LCR Modelos 885 & 886 Visit

More information

EE301 ELECTRONIC CIRCUITS

EE301 ELECTRONIC CIRCUITS EE30 ELECTONIC CICUITS CHAPTE 5 : FILTES LECTUE : Engr. Muhammad Muizz Electrical Engineering Department Politeknik Kota Kinabalu, Sabah. 5. INTODUCTION Is a device that removes or filters unwanted signal.

More information

Migrating 4195A to E5061B LF-RF Network Analyzer. April 2010 Agilent Technologies

Migrating 4195A to E5061B LF-RF Network Analyzer. April 2010 Agilent Technologies Migrating 4195A to E61B LF-RF Network Analyzer April 2010 Agilent Technologies Page 1 Contents Overview of 4195A to E61B migration Migrating 4195A to E61B in network measurements Migrating 4195A to E61B

More information

FREQUENCY RESPONSE OF R, L AND C ELEMENTS

FREQUENCY RESPONSE OF R, L AND C ELEMENTS FREQUENCY RESPONSE OF R, L AND C ELEMENTS Marking scheme : Methods & diagrams : 3 Graph plotting : - Tables & analysis : 2 Questions & discussion : 3 Performance : 2 Aim: This experiment will investigate

More information

New and Upcoming Power Related. Challenges. Instructor: Steve Sandler Better Products Through Better Test

New and Upcoming Power Related. Challenges. Instructor: Steve Sandler Better Products Through Better Test New and Upcoming Power Related Challenges Instructor: Steve Sandler Steve@Picotest.com Better Products Through Better Test And Just a Bit About Steve 40+ Years Experience (1977-present) AEi Systems Founder

More information

University of Pennsylvania Department of Electrical and Systems Engineering ESE319

University of Pennsylvania Department of Electrical and Systems Engineering ESE319 University of Pennsylvania Department of Electrical and Systems Engineering ESE39 Laboratory Experiment Parasitic Capacitance and Oscilloscope Loading This lab is designed to familiarize you with some

More information

10 Mb/s Single Twisted Pair Ethernet PHY Coupling Network Steffen Graber Pepperl+Fuchs

10 Mb/s Single Twisted Pair Ethernet PHY Coupling Network Steffen Graber Pepperl+Fuchs 10 Mb/s Single Twisted Pair Ethernet PHY Coupling Network Steffen Graber Pepperl+Fuchs IEEE P802.3cg 10 Mb/s Single Twisted Pair Ethernet Task Force 6/21/2017 1 Overview Coupling Network Coupling Network

More information

Exercises on overhead power lines (and underground cables)

Exercises on overhead power lines (and underground cables) Exercises on overhead power lines (and underground cables) 1 From the laws of Electromagnetism it can be shown that l c = 1 v 2 where v is the speed of propagation of electromagnetic waves in the environment

More information

University of Pennsylvania Moore School of Electrical Engineering ESE319 Electronic Circuits - Modeling and Measurement Techniques

University of Pennsylvania Moore School of Electrical Engineering ESE319 Electronic Circuits - Modeling and Measurement Techniques University of Pennsylvania Moore School of Electrical Engineering ESE319 Electronic Circuits - Modeling and Measurement Techniques 1. Introduction. Students are often frustrated in their attempts to execute

More information

EE155/255 F16 Midterm

EE155/255 F16 Midterm EE155/255 F16 Midterm Name: (please print) In recognition of and in the spirit of the Stanford University Honor Code, I certify that I will neither give nor receive unpermitted aid on this exam. Signature:

More information

A VIEW OF ELECTROMAGNETIC LIFE ABOVE 100 MHz

A VIEW OF ELECTROMAGNETIC LIFE ABOVE 100 MHz A VIEW OF ELECTROMAGNETIC LIFE ABOVE 100 MHz An Experimentalist's Intuitive Approach Lothar O. (Bud) Hoeft, PhD Consultant, Electromagnetic Effects 5012 San Pedro Ct., NE Albuquerque, NM 87109-2515 (505)

More information

How to Design Good PDN Filters

How to Design Good PDN Filters How to Design Good PDN Filters Istvan Novak, Samtec This session was presented as part of the DesignCon 2019 Conference and Expo. For more information on the event, please go to DesignCon.com 1 How to

More information

12. Output Ripple Attenuator Module (MicroRAM )

12. Output Ripple Attenuator Module (MicroRAM ) R SENSE 5.1 PC PR DC-DC Converter +S S 22µF C TRAN CTRAN VREF C HR LOAD Optional Component Figure 12.1a Typical configuration using remote sense 20kΩ IRML6401 PC PR DC-DC Converter R C TRAN C TRAN μram

More information

Agilent Technologies Impedance Measurement Handbook December 2003

Agilent Technologies Impedance Measurement Handbook December 2003 Agilent Technologies Impedance Measurement Handbook December 2003 This page intentionally left blank. The Impedance Measurement Handbook A Guide to Measurement Technology and Techniques Copyright 2000-2003

More information

LRC Circuit PHYS 296 Your name Lab section

LRC Circuit PHYS 296 Your name Lab section LRC Circuit PHYS 296 Your name Lab section PRE-LAB QUIZZES 1. What will we investigate in this lab? 2. Figure 1 on the following page shows an LRC circuit with the resistor of 1 Ω, the capacitor of 33

More information