Design Type III Compensation Network For Voltage Mode Step-down Converters

Size: px
Start display at page:

Download "Design Type III Compensation Network For Voltage Mode Step-down Converters"

Transcription

1 Introduction This application note details how to calculate a type III compensation network and investigates the relationship between phase margin and load transient response for the Skyworks family of voltage mode control step-down converters. This family includes the AAT84, AAT85, AAT89, AAT687, AAT688, and AAT689. Voltage mode control has become a very popular topology for DC to DC converters, especially with low noise output systems including DSL and cable modems, notebook computers, satellite set-top boxes, and wireless LAN systems. Background In order to reduce the DC-DC converter s output voltage ripple, the equivalent series resistance (ESR) of the output capacitor needs to be reduced. Ceramic output capacitors have a very small equivalent series resistance (ESR), low cost, and small size, making them the ideal output filter solution for DC-to-DC converters. However, the use of low ESR ceramic capacitors significantly affects the design of the error amplifier in the feedback loop. The power stage consists of a double pole due to the L C OUT filter and an ESR zero. The ESR zero is pushed far away from the double pole frequency which results in inadequate phase margin at the cross-over frequency. Therefore, type III compensation is used to stabilize the loop and optimize the output transient response to dynamic load changes. Voltage Mode Control Loop As illustrated in Figure, a typical voltage mode control loop has three main stages: step-down power stage, compensation network, and PWM modulator. The Type III compensation network generates two zeros and two poles. The two zeros are placed from 60% to 50% of double pole frequency to counter the 80 phase lag due to the L C OUT output filter. The two poles are set at the switching frequency of the converter to nullify the ESR zero and attenuate the high frequency noise. Driver V IN STEP-DOWN POWER STAGE R DCR L C OUT R ESR R OUT V OUT PWM MODULATOR COMPENSATION NETWORK COMP V reff R fbh RAMP COMPARATOR Error Amp R C Cff R ff C R fbl Figure : Closed Loop Step-Down Converter with Type III Network Compensation. Skyworks Solutions, Inc. Phone [78] Fax [78] sales@skyworksinc.com A Skyworks Proprietary Information Products and Product Information are Subject to Change Without Notice. September, 0

2 Step-Down Power Stage Transfer Function The transfer function of the power stage of the step-down converter can be determined by the voltage division: Eq. : V OUT V IN = Z OUT Z L + Z OUT Where Z L and Z OUT are the inductor impedance and output impedance of the power stage. The R DCR includes the DC winding resistance, the turn-on resistance of the MOSFET, and the trace resistance. R ESR is the equivalent series resistor of the output capacitor. Z L and Z OUT are calculated using Equations and 3. Eq. : s C OUT R LOAD R ESR + R Z LOAD OUT = R LOAD // R ESR + = s C OUT (R LOAD + R ESR ) + Eq. 3: Z L = s L + R DCR sc OUT Where the complex variable s = j w and - j = Driver V IN STEP-DOWN POWER STAGE L Z L R DCR C OUT R ESR Z OUT Figure : Step-Down Converter Power Stage. The step-down power stage open loop gain is given by substituting Equations and 3 into Equation. Algebraic manipulation yields the following expression for the open-loop transfer function of the power stage: Eq. 4: V OUT R LOAD (s C OUT R ESR + ) G P = = V IN s L C OUT (R LOAD + R ESR ) + s{l + C OUT [R DCR (R LOAD + R ESR ) + R LOAD R ESR ]} + R LOAD + R DCR R LOAD V OUT A typical Bode plot of the step-down converter power stage is illustrated in Figure 3. A double pole at the cut-off frequency causes the gain to roll off with a -40dB/decade slope (blue) and the phase to exhibit a very sharp slope downward from 0 degree to -80 degree phase lag (red). The ESR zero is observed at a very high frequency due to the ceramic output capacitor. Skyworks Solutions, Inc. Phone [78] Fax [78] sales@skyworksinc.com A Skyworks Proprietary Information Products and Product Information are Subject to Change Without Notice. September, 0

3 Output Double Pole at cut-off frequency Gain (db) and Phase (degree) -80 degree phase lag due to double pole Frequency (Hz) -40dB/dec ESR zero at very high frequency -0dB/dec Figure 3: The Bode Plot of the Output Stage. Error Amplifier Transfer Function Calculation The error amplifier transfer function with type III compensation as shown in Figure 4 is calculated from Equation 5: Eq. 5: G E = V COMP V OUT // R + s C s C = R fbh // R ff + s C ff V COMP Error Amp R C V REF C ff R fbh Z P R ff V OUT Z C R fbl P Figure 4: Error Amplifier With Type III Compensation Network. Skyworks Solutions, Inc. Phone [78] Fax [78] sales@skyworksinc.com A Skyworks Proprietary Information Products and Product Information are Subject to Change Without Notice. September, 0 3

4 By algebraic manipulation, G E can be explicitly expressed in terms of zeros and poles in Equation 6. R Eq. 6: fbh + R G ff E = R fbh R ff C s + s + R C (R fbh + R ff ) C ff (C + C ) s s + s + R C C R ff C ff Equation 6 gives two zeroes at frequencies F Z and F Z and two poles at frequencies F P and F P in the following expressions: F Z = and π (R fbh + R ff ) C ff F P = π R ff C ff F Z = π R C and F P = C C π R C + C Gain (db) and Phase (degree) Placing the two zeros close to the output double pole frequency 80 degree phase boost Placing the two poles at cross-over frequency Figure 5: Error Amplifier With Type III Compensation Bode Plot. Type III compensation provides two zeros and two poles which push the cross-over frequency as high as possible and boosts the phase margin greater than 45 degree. A higher bandwidth yields a faster load transient response. The faster transient response results in a smaller output voltage spike. PWM Modulator Stage The PWM modulator gain is inversely proportional to the peak-to-peak input ramp voltage of the oscillator and is derived via Equation 7. Eq. 7: G M = V IN V RAMP 4 Skyworks Solutions, Inc. Phone [78] Fax [78] sales@skyworksinc.com A Skyworks Proprietary Information Products and Product Information are Subject to Change Without Notice. September, 0

5 Step-Down Converter Loop Gain with Type III Compensation The loop gain of the system is expressed in terms of G M, G E, and G P factors as shown in Equation 8. Eq. 8: G LOOP = G M G E G P The magnitude in db and the phase in degree of the converter loop gain are derived from Equations 9 and 0. Eq. 9: G LOOP (db) = 0.log (G LOOP ) = 0.log (G M G E G P ) Eq. 0: P LOOP = arg(g LOOP ) 80 π The magnitude and phase Bode plots of the converter loop gain with type III compensation are shown in Figure 5. By placing the two zeros close to the output double pole and the two poles at switching frequency, the crossover frequency is pushed to 0% to 60% of switching frequency and in the vicinity of maximum phase boost in order to achieve an optimum phase margin Φ M. Gain (db) and Phase (degree) Output Double Pole Placing the two zeros close to the output double pole frequency Φ M Cross-Over Frequency at /0 Switching Frequency Figure 6: Step-Down Converter Loop Gain With Type III Compensation Bode Plot. Skyworks Solutions, Inc. Phone [78] Fax [78] sales@skyworksinc.com A Skyworks Proprietary Information Products and Product Information are Subject to Change Without Notice. September, 0 5

6 Type III Compensation Design Process For Voltage Mode Control Step-Down Converter: For example, assume the voltage mode step-down converter has the following specifications: V IN = 6V to 4V V OUT = 3.3V V OUT - V REF 3.3V - 0.6V R FBL = 6.04KΩ, R FBH = R FBL = 6.04K = 7.4KΩ V REF 0.6V V V IN RAMP = L = 4.7µH C OUT = xµf, ESR = mω I OUT =.5A F SW = 490KHz. Set the crossover frequency in the range of /6 to /0 of switching frequency to avoid the Niquist pole: Eq. : F C = F SW 0 = 49KHz. Place the first zero from 60% to 50% of the double pole frequency of the L C OUT filter: Eq. : C ff = L C OUT 4.7µH 44µF = = 48pF K R fbh. 7.4KΩ Where the value of factor K is within the range of 0.6 to Set the first pole at switching frequency and calculate R ff from: Eq. 3: R ff = = = 675Ω π C ff F SW π 48pF 490KHz 4. At cross-over frequency (F C ) the loop gain is unity. Setting G LOOP = at s = jw c, the value of R is given by Equation 4. (π F Eq. 4: C ) L C OUT + V (π 49KHz) 4.7µH 44µF R RAMP = = =.6KΩ π F C C ff π 49KHz 48pF 5. Set the second zero to coincide with the first zero, and solve for C: V IN Eq. 5: C = L C OUT 4.7µH 44µF = = pf K R..6KΩ 6. Place the second pole from switching frequency to one decay higher for adequate phase margin, and solve for C: Eq. 6: C = = = 8pF π R F SW π.6kω 490KHz 6 Skyworks Solutions, Inc. Phone [78] Fax [78] sales@skyworksinc.com A Skyworks Proprietary Information Products and Product Information are Subject to Change Without Notice. September, 0

7 The Relationship between Frequency Domain and Time Domain in a Step-Down Converter Knowing the relationship between the phase margin in the frequency domain and load transient response in time domain is beneficial to achieving the best results. In this way, we can select either a slow output transient response but without any overshoot or, a faster output transient response with a small amount of overshoot. Let s concentrate on the small area in the vicinity of the cross over frequency (see Figure 7). The curve has two different slopes (-0dB/ decade and -40dB/ decade) due to the location of the original pole w 0 and the high frequency pole w. Assuming the other compensation pole w and the ESR zero are cancelled out. The open loop transfer function in this region can be approximated by Equation 7: Eq. 7: T(s) s ω 0 + s ω The close loop transfer function can derive from T(s): Eq. 8: G LOOP (s) = + T(s) = = s s s s ω 0 ω ω 0 ω r ω r Q + Where the quality coefficient Q and the resonant frequency w r are defined using Equations 9 and 0. Eq. 9: Q = ω 0 ω Eq. 0: ω r = ω 0 ω The cross-over frequency w c can be solved by equating Equation 8 to unity at the crossover frequency: ω 0 ω Eq. : ω c = ω = ω + 4(Q) - Gain (db) and Phase (degree) Output Double Pole Placing the two zeros close to the output double pole frequency Φ M Cross-Over Frequency at /0 Switching Frequency Figure 7: The Gain Curve Has Two Different Slopes (-0dB/decade and -40dB/decade) at Crossover Frequency due to the Location of the Original Pole ω 0 and the High Frequency Pole ω. Skyworks Solutions, Inc. Phone [78] Fax [78] sales@skyworksinc.com A Skyworks Proprietary Information Products and Product Information are Subject to Change Without Notice. September, 0 7

8 ω C - ω 0 ω C ω - - C Eq. : arg T(ω C ) = - tan + tan = -tan - 0 ω ω π Eq. 3: ϕ M = π + arg T(ω C ) = tan - ω - = tan ω C + 4Q 4 - The relationship between the phase margin and the quality coefficient can be derived from Equation 3: + tan(ϕ M ) Eq. 4: Q = = tan(ϕ M ) cos(ϕ M ) sin(ϕ M ) The percent overshoot and quality factor in the second order system are given by Equation 5. Eq. 5: %OS = 00 e -π 4Q - = 00 e -π 4cosϕ M - sin ϕm Figure 8 plots the percent overshoot versus phase margin of a typical second order system. Pecent Overshoot (%) Percent Overshoot vs. Phase Margin Phase Margin (degree) Figure 8: Percent Overshoot vs. Phase Margin for Second Order System. The output transient response of a 3.3V output step-down converter with different phase margin is measured in Figure 9. The step load is generated from 00mA to.5a with A/µs slew rate. The red curve corresponding to 68 phase margin has 60µs recovery time without overshoot and a transient voltage spike of 404mV. The black and green curves experience very fast recovery time (40µs) with very small overshoot and a small transient voltage spike of 80mV. Finally, the blue and pink curves reveal an unstable system due to the phase margin of less than Skyworks Solutions, Inc. Phone [78] Fax [78] sales@skyworksinc.com A Skyworks Proprietary Information Products and Product Information are Subject to Change Without Notice. September, 0

9 3.6V Output Voltage (00mV/div) 3.5V 3.4V 3.3V 3.V 3.V PM=68º PM=58º PM=48º PM=33º PM=6º 3.0V Time (40µs/div) Figure 9: The Relationship Between Phase Margin, Overshoot and Recovery Time of the Output Transient Response of a 3.3V Output Buck Converter. Phase Margin and Transient Response vs. DC Gain (F C = 50KHz) Based on the discussion above of the frequency domain and time domain, the recovery time can be adjusted faster to reduce the peak-to-peak output transient response of a step-down converter. This can be done by pushing the zeros a bit above the double poles frequency (K =.) in order to boost the DC gain from 65dB to 75dB. Figure 0 illustrates the relationship between the phase margin and load transient response for K = 0.6 and K =. at the same crossover frequency of 50KHz. A higher DC gain along with a smaller phase margin of 58 yields a faster recovery time of 60µs, which results in a smaller peak-to-peak output transient response (80mV) for a 00mA to.5a dynamic load. K=0.6 Frequency Domain DC Gain = 65dB F co =50KHz Frequency (Hz) PM=68º Time Domain t r =40 us V PP =404mV Time (40μs/div).5A 00mA Cff = nf Rff = 365Ω R = 3.34kΩ C = 3300pF C = 47pF K=. DC Gain = 75dB PM=58º tr=60us V PP =80mV.5A Cff = 470pF Rff = 68Ω R =.5kΩ C = nf C = 7pF F co =50KHz 00 ma Frequency (Hz) Time (40μs/div) Figure 0: Phase Margin and Transient Response For Differing K Factors (K = 0.6 and K =.). Skyworks Solutions, Inc. Phone [78] Fax [78] sales@skyworksinc.com A Skyworks Proprietary Information Products and Product Information are Subject to Change Without Notice. September, 0 9

10 Phase Margin and Transient Response vs. Bandwidth (K =.) As illustrated in Figure, the output voltage spike can be further improved by pushing the crossover frequency (F C ) to 80KHz if a small amount of overshoot is acceptable. However, further increasing the bandwidth reduces the phase margin below 45, resulting in an unstable system. In addition, increasing the bandwidth to exceed the effective control bandwidth no longer reduces the output voltage spike due to the voltage drop across the ESR of the output capacitor which dominates the transient voltage spike. For a 3.3V output voltage buck converter using a 4.7µH inductor during a load transient step from 00mA to.5a, the effective control bandwidth is derived from Equation 6. Eq. 6: F CE = V O 4 I O L 3.3V = = 76KHz 4.5A 4.7µH K=. K=. Frequency Domain F co =50KHz Frequency (Hz) F co =80KHz Frequency (Hz) PM=58º PM=55º K=. V PP =80mV.5A 00mA K=. V PP = 66mV.5A Time Domain Time (40μs/div) 00mA Time (40μs/div) Cff = 470pF Rff = 68Ω R =.5kΩ C = nf C = 7pF Cff = 470pF Rff = 68Ω R = 8.7kΩ C = 680pF C = 8pF Figure : Frequency Domain vs. Time Domain For Different Bandwidth (F CO = 50KHz and F CO = 80KHz). 0 Skyworks Solutions, Inc. Phone [78] Fax [78] sales@skyworksinc.com A Skyworks Proprietary Information Products and Product Information are Subject to Change Without Notice. September, 0

11 Loop Gain Measurement The following guidelines show the method used to measure the loop gain of a DC-DC converter:. Break the feedback loop and insert a 50Ω resistor between the broken original connection. Insert the secondary winding terminal of the one-to-one isolation transformer between the 50Ω resistor. Configure the specified test equipment as shown in Figure.. Inject a sinusoidal signal from SOURCE OUT of the network analyzer to the loop through the primary winding terminal of the transformer while monitoring the ratio of CHA and CHB on the network analyzer. 3. Set the converter output current to heavy load while monitoring the LX node of the converter on the oscilloscope (to obtain a good result the converter must be in continuous PWM mode). 4. Sweep the frequency from SOURCE OUT of the network analyzer from 0Hz to MHz and adjust the magnitude of the injected signal (around 0mV to 00mV) in order to have a clean PWM waveform at the LX node. Power Supply V VIN 5A C IN Oscilloscope VIN LX L 4.7µH Buck Converter FB PGND Analog Network Analyzer SOURCE OUT CHA CHB Isolation Transformer Rfbh R fbl 50 Broken Original Connection R ff Cff VOUT COUT LOAD A Figure : Loop Gain Measurement Set-up. Skyworks Solutions, Inc. Phone [78] Fax [78] sales@skyworksinc.com A Skyworks Proprietary Information Products and Product Information are Subject to Change Without Notice. September, 0

12 Conclusion Using low ESR ceramic output capacitors for voltage mode controlled buck converters yields very low output voltage ripple, but requires type III compensation for adequate phase margin. The type III compensation network provides two zeros and two poles that push the crossover frequency to a possible maximum value with adequate phase margin for the control loop. The trade-off between the stability and output transient response can be adjusted by using the factor K, which represents the position of zeros in the vicinity frequency of the output double poles. In applications which require no overshoot, the two zeros are placed at 60% (K = 0.6) of the output double poles frequency to achieve approximately 70 degrees of phase margin. However, if the transient output voltage spike is critical, the two zeros can be placed up to 50% (K =.5) of the output double pole frequency if a small amount of overshoot is acceptable. In addition, a higher bandwidth yields a faster transient response. However, a bandwidth higher than the critical bandwidth can no longer reduce the transient output voltage spike. A typical bandwidth for type III compensation is in the range of 0% to 60% of switching frequency. Copyright 0 Skyworks Solutions, Inc. All Rights Reserved. Information in this document is provided in connection with Skyworks Solutions, Inc. ( Skyworks ) products or services. These materials, including the information contained herein, are provided by Skyworks as a service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials or the information contained herein. Skyworks may change its documentation, products, services, specifications or product descriptions at any time, without notice. Skyworks makes no commitment to update the materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes. No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Skyworks assumes no liability for any materials, products or information provided hereunder, including the sale, distribution, reproduction or use of Skyworks products, information or materials, except as may be provided in Skyworks Terms and Conditions of Sale. THE MATERIALS, PRODUCTS AND INFORMATION ARE PROVIDED AS IS WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. SKYWORKS DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY DAMAGES, IN- CLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Skyworks products are not intended for use in medical, lifesaving or life-sustaining applications, or other equipment in which the failure of the Skyworks products could lead to personal injury, death, physical or environmental damage. Skyworks customers using or selling Skyworks products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper use or sale. Customers are responsible for their products and applications using Skyworks products, which may deviate from published specifications as a result of design defects, errors, or operation of products outside of published parameters or design specifications. Customers should include design and operating safeguards to minimize these and other risks. Skyworks assumes no liability for applications assistance, customer product design, or damage to any equipment resulting from the use of Skyworks products outside of stated published specifications or parameters. Skyworks, the Skyworks symbol, and Breakthrough Simplicity are trademarks or registered trademarks of Skyworks Solutions, Inc., in the United States and other countries. Third-party brands and names are for identification purposes only, and are the property of their respective owners. Additional information, including relevant terms and conditions, posted at are incorporated by reference. Skyworks Solutions, Inc. Phone [78] Fax [78] sales@skyworksinc.com A Skyworks Proprietary Information Products and Product Information are Subject to Change Without Notice. September, 0

Evaluation Board for the AAT2784 Three-Channel Step-down DC/DC Converter

Evaluation Board for the AAT2784 Three-Channel Step-down DC/DC Converter Introduction EVALUATION BOARD DATA SHEET EV57 The AAT2784 evaluation board provides a platform for test and evaluation of the AAT2784 -channel.8mhz step-down converter. The input voltages (V P ) of the

More information

Evaluation Board for the AAT1409/7/5 Eight/Six/Four-Channel LED Backlight Driver with Integrated Boost and High Frequency Direct PWM Dimming

Evaluation Board for the AAT1409/7/5 Eight/Six/Four-Channel LED Backlight Driver with Integrated Boost and High Frequency Direct PWM Dimming Introduction The AAT09/07/0 evaluation board provides a platform for evaluating the family of 8-channel / 6-channel / -channel LED backlight drivers. The PCB layout has been optimized for portable device

More information

Figure 1: AAT4712 Evaluation Board Picture.

Figure 1: AAT4712 Evaluation Board Picture. Introduction EVALUATION BOARD DATA SHEET The AAT4712 is an integrated P-channel MOSFET load switch with adjustable current limits, integrated discharge paths, over-temperature protection, a power loop

More information

Evaluation Board for the AAT1409/7/5 Eight/Six/Four-Channel LED Backlight Driver with Integrated Boost and High Frequency Direct PWM Dimming

Evaluation Board for the AAT1409/7/5 Eight/Six/Four-Channel LED Backlight Driver with Integrated Boost and High Frequency Direct PWM Dimming Introduction The AAT09/07/0 evaluation board provides a platform for evaluating the family of 8-channel / 6-channel / -channel LED backlight drivers. The PCB layout has been optimized for portable device

More information

SKY LF: Low Noise Amplifier Operation

SKY LF: Low Noise Amplifier Operation application note SKY655-372LF: Low Noise Amplifier Operation Introduction The SKY655-372LF is a high performance, low noise, n-channel, depletion mode phemt, fabricated from Skyworks advanced phemt process

More information

Evaluation Board for the AAT1210 High Power DC/DC Boost Converter

Evaluation Board for the AAT1210 High Power DC/DC Boost Converter Introduction The AAT0 evaluation board provides a platform for test and evaluation of the AAT0 switching boost regulator. The evaluation board demonstrates suggested size and placement of external components

More information

The AAT1451 evaluation board demonstrates the functionality of the AAT1451 and its application as a white LED driver under PWM control.

The AAT1451 evaluation board demonstrates the functionality of the AAT1451 and its application as a white LED driver under PWM control. Introduction The AAT141 evaluation board demonstrates the functionality of the AAT141 and its application as a white LED driver under PWM control. The AAT141 is a step-up LED driver with four-precision

More information

SKY65120: WCDMA PA Bias Method For Lower Junction Temperature

SKY65120: WCDMA PA Bias Method For Lower Junction Temperature application note SKY6120: WCDMA PA Bias Method For Lower Junction Temperature Introduction This application note describes how SKY6120 may be used with reduced bias control to obtain better thermal performance.

More information

AS183-92/AS183-92LF: 300 khz-2.5 GHz phemt GaAs SPDT Switch

AS183-92/AS183-92LF: 300 khz-2.5 GHz phemt GaAs SPDT Switch DATA SHEET AS183-92/AS183-92LF: 300 khz-2.5 GHz phemt GaAs SPDT Switch Applications General purpose medium-power switches in telecommunication applications Transmit/receive switches in 802.11 b/g WLAN

More information

SPD1101/SPD1102/SPD : Sampling Phase Detectors

SPD1101/SPD1102/SPD : Sampling Phase Detectors DATA SHEET SPD1101/SPD1102/SPD1103-111: Sampling Phase Detectors NOTE: These products have been discontinued. The Last Time Buy opportunity expires on 12 April 2010. Applications Phase-Locked Loops Phase-locked

More information

SMP LF: Surface Mount PIN Diode

SMP LF: Surface Mount PIN Diode DATA SHEET SMP1324-087LF: Surface Mount PIN Diode Applications Switches Attenuators Features Low-series resistance: 0.75 Ω maximum @ 50 ma Low total capacitance: 1.5 pf maximum @ 30 V Excellent thermal

More information

AA104-73/-73LF: 300 khz-2.5 GHz One-Bit Digital Attenuator

AA104-73/-73LF: 300 khz-2.5 GHz One-Bit Digital Attenuator DATA SHEET AA104-73/-73LF: 300 khz-2.5 GHz One-Bit Digital Attenuator (32 ) Applications Sixth-bit value for Skyworks AA260-85 and AA101-80 digital attenuators IF and RF components for cable, GSM, PCS,

More information

Zero Bias Silicon Schottky Barrier Detector Diodes

Zero Bias Silicon Schottky Barrier Detector Diodes DATA SHEET Zero Bias Silicon Schottky Barrier Detector Diodes Features High sensitivity Low video impedance Description Skyworks series of packaged, beam-lead and chip zero bias Schottky barrier detector

More information

SMV LF and SMV LF: Surface Mount, 0402 Hyperabrupt Tuning Varactor Diodes

SMV LF and SMV LF: Surface Mount, 0402 Hyperabrupt Tuning Varactor Diodes DATA SHEET SMV1247-040LF and SMV1249-040LF: Surface Mount, 0402 Hyperabrupt Tuning Varactor Diodes Applications Wide bandwidth VCOs Wide voltage range, tuned phase shifters and filters Features High capacitance

More information

SMS : 0201 Surface Mount Low Barrier Silicon Schottky Diode Anti-Parallel Pair

SMS : 0201 Surface Mount Low Barrier Silicon Schottky Diode Anti-Parallel Pair PRELIMINARY DATA SHEET SMS7621-092: 0201 Surface Mount Low Barrier Silicon Schottky Diode Anti-Parallel Pair Applications Sub-harmonic mixer circuits Frequency multiplication Features Low barrier height

More information

AAT1451/05/07 SW VIN. Figure 1: Solution Structure for Multi-channel WLED Backlight in Li-ion Battery Application

AAT1451/05/07 SW VIN. Figure 1: Solution Structure for Multi-channel WLED Backlight in Li-ion Battery Application Introduction The white LED backlight is very popular in notebook, portable DVD/TV, ipad and similar applications. Larger display screens need greater number of WLEDs to meet their requirement of brightness.

More information

SMP LF: Surface Mount PIN Diode

SMP LF: Surface Mount PIN Diode DATA SHEET SMP1345-087LF: Surface Mount PIN Diode Applications Switches Attenuators Features Low-series resistance: 2 Ω maximum @ 10 ma Low total capacitance: 0.2 pf maximum @ 5 V QFN (2 x 2 mm) package

More information

Current Limited Load Switch General Description. Features OUT AAT4610 SET

Current Limited Load Switch General Description. Features OUT AAT4610 SET AAT General Description The AAT SmartSwitch is a current limited P-channel MOSFET power switch designed for high-side load switching applications. This switch operates with inputs ranging from.7v to.v,

More information

SKY LF: 20 MHz-2.7 GHz GaAs SPDT Switch

SKY LF: 20 MHz-2.7 GHz GaAs SPDT Switch DATA SHEET SKY13270-92LF: 20 MHz-2.7 GHz GaAs SPDT Switch Applications Transmit/receive and diversity switching over 3 W Analog and digital wireless communication systems including cellular, GSM, and UMTS

More information

AA103-72/-72LF: 10 MHz GHz GaAs One-Bit Digital Attenuator (10 db LSB)

AA103-72/-72LF: 10 MHz GHz GaAs One-Bit Digital Attenuator (10 db LSB) DATA SHEET AA103-72/-72LF: 10 MHz - 2.5 GHz GaAs One-Bit Digital Attenuator (10 LSB) Applications Cellular radio Wireless data systems WLL gain level control circuits Features Attenuation: 10 Single, positive

More information

EV188 EVALUATION BOARD DATA SHEET

EV188 EVALUATION BOARD DATA SHEET Introduction The AAT2138 evaluation board demonstrates its functions and high precision current application as a 2.5A synchronous step-down converter with an integrated current-limited load switch. By

More information

SMV LF: Surface Mount, 0402 Silicon Hyperabrupt Tuning Varactor Diode

SMV LF: Surface Mount, 0402 Silicon Hyperabrupt Tuning Varactor Diode DATA SHEET SMV1232-040LF: Surface Mount, 0402 Silicon Hyperabrupt Tuning Varactor Diode Applications Wide bandwidth VCOs Wide range voltage-tuned phase shifters and filters Features Low series resistance:

More information

SKY LF: PHEMT GaAs IC SP3T Switch GHz

SKY LF: PHEMT GaAs IC SP3T Switch GHz DATA SHEET SKY1339-37LF: PHEMT GaAs IC SP3T Switch.1 3. GHz Features Positive low voltage control (/3 V) Low insertion loss (.5 db at.5 GHz) High isolation (5 db at.5 GHz) Simplified Block Diagram RF3

More information

SMP1321 Series: Low Capacitance, Plastic Packaged PIN Diodes

SMP1321 Series: Low Capacitance, Plastic Packaged PIN Diodes DATA SHEET SMP1321 Series: Low Capacitance, Plastic Packaged PIN Diodes Applications High-performance wireless switches Features Capacitance: 0.18 pf typical @ 30 V Series resistance: 1.05 Ω typical @

More information

SKY LF: PHEMT GaAs IC High-Power 4-CTL DPDT Switch LF 6 GHz

SKY LF: PHEMT GaAs IC High-Power 4-CTL DPDT Switch LF 6 GHz data sheet SKY13318-321LF: PHEMT GaAs IC High-Power 4-CTL DPDT Switch LF 6 GHz Features l Application 82.11a (5.2 5.8 GHz) and 82.11b, (2.4 GHz) diversity l Operating frequency LF 6 GHz l Positive low

More information

Ultra-Low-Noise Amplifiers

Ultra-Low-Noise Amplifiers WHITE PAPER Ultra-Low-Noise Amplifiers By Stephen Moreschi and Jody Skeen This white paper describes the performance and characteristics of two new ultra-low-noise LNAs from Skyworks. Topics include techniques

More information

SMP1322 Series: Low Resistance, Plastic Packaged PIN Diodes

SMP1322 Series: Low Resistance, Plastic Packaged PIN Diodes DATA SHEET SMP1322 Series: Low Resistance, Plastic Packaged PIN Diodes Applications High-performance wireless switch applications Features Resistance: 0.8 Ω typical @ 1 ma Packages rated MSL1, 260 C per

More information

Evaluation Board for the AAT High Efficiency Six-Channel, 1X/1.5X Charge Pump for White LED Applications

Evaluation Board for the AAT High Efficiency Six-Channel, 1X/1.5X Charge Pump for White LED Applications Introduction The AAT69- evaluation board demonstrates the functionality of the AAT69- and its application as a white LED driver under Skyworks' wire serial digital interface and/or interface control. The

More information

SMP1307 Series: Very Low Distortion Attenuator Plastic Packaged PIN Diodes

SMP1307 Series: Very Low Distortion Attenuator Plastic Packaged PIN Diodes DATA SHEET SMP1307 Series: Very Low Distortion Attenuator Plastic Packaged PIN Diodes Applications Very low distortion Pi and TEE attenuators Cable TV AGC High-volume wireless systems Features Low distortion

More information

SMP1345 Series: Very Low Capacitance, Plastic Packaged Silicon PIN Diodes

SMP1345 Series: Very Low Capacitance, Plastic Packaged Silicon PIN Diodes DATA SHEET SMP1345 Series: Very Low Capacitance, Plastic Packaged Silicon PIN Diodes Applications High isolation LNBs, WLANs, and wireless switches Features Very low insertion loss: 0.4 db Capacitance:

More information

SKY LF: MHz Low-Noise, Low-Current Amplifier

SKY LF: MHz Low-Noise, Low-Current Amplifier DATA SHEET SKY67013-396LF: 600-1500 MHz Low-Noise, Low-Current Amplifier Applications ISM band receivers General purpose LNAs Features Low NF: 0.85 db @ 900 MHz Gain: 14 db @ 900 MHz Flexible supply voltage

More information

AAT4610B DATA SHEET AAT4610B SOT23-5. Current Limited Load Switch. General Description. Features. Applications. Typical Application

AAT4610B DATA SHEET AAT4610B SOT23-5. Current Limited Load Switch. General Description. Features. Applications. Typical Application AATB General Description The AATB SmartSwitch is a current limited P-channel MOSFET power switch designed for high-side load switching applications. This switch operates with inputs ranging from.v to.v,

More information

Features OUTA INA AAT4902 INB OUTB VLIM GND

Features OUTA INA AAT4902 INB OUTB VLIM GND General Description The is a member of Skyworks' Application Specific Power MOSFET (ASPM TM ) product family. It is a full-bridge, constant output voltage power stage operating with supply voltage range

More information

SMP LF: Surface Mount PIN Diode for High Power Switch Applications

SMP LF: Surface Mount PIN Diode for High Power Switch Applications DATA SHEET SMP1304-085LF: Surface Mount PIN Diode for High Power Switch Applications Applications Low loss, high power switches Low distortion attenuators Features Low-thermal resistance: 35 C/W Suitable

More information

SMP1302 Series: Switch and Attenuator Plastic Packaged PIN Diodes

SMP1302 Series: Switch and Attenuator Plastic Packaged PIN Diodes DATA SHEET SMP1302 Series: Switch and Attenuator Plastic Packaged PIN Diodes Applications TV distribution and cellular base stations High volume switch and attenuators Features Designed for base station

More information

SKY , SKY LF: SP3T Switch for Bluetooth and b, g

SKY , SKY LF: SP3T Switch for Bluetooth and b, g DATA SHEET SKY325-349, SKY325-349LF: SP3T Switch for Bluetooth and 82.b, g Applications 82.b, g Bluetooth Zigbee TDMA/GSM/EDGE CDMA/WCDMA Other short-range wireless applications Simplified Block Diagram

More information

SKY LF: GHz SP3T Switch, 50 Ω Terminated

SKY LF: GHz SP3T Switch, 50 Ω Terminated DATA SHEET SKY13408-465LF: 1.0 6.0 GHz SP3T Switch, 50 Ω Terminated Applications WiMAX 802.16 Dual-band WLANs (802.11 a/b/g/n) LTE/4G systems WLAN 802.11a/c 5 GHz video distribution Features 50 Ω matched

More information

SMV LF: Hyperabrupt Junction Tuning Varactor

SMV LF: Hyperabrupt Junction Tuning Varactor DATA SHEET SMV1800-079LF: Hyperabrupt Junction Tuning Varactor Applications Satellite tuners VCOs Tuneable couplings Features Cross to NXP s BB181 Low series resistance High capacitance ratio Ultra-small

More information

Silicon Tuning Varactor Diodes in Hermetic Surface Mount Package

Silicon Tuning Varactor Diodes in Hermetic Surface Mount Package DATA SHEET Silicon Tuning Varactor Diodes in Hermetic Surface Mount Package Features Silicon abrupt and hyperabrupt tuning varactors available Hermetic ceramic package,.83 x.43 x.0 mm Very low parasitic

More information

CLA LF: Surface Mount Limiter Diode

CLA LF: Surface Mount Limiter Diode DATA SHEET CLA4609-086LF: Surface Mount Limiter Diode Applications Low loss, high power limiters Receiver protectors Features Low thermal resistance: 25 C/W Typical threshold level: +36 dbm Low capacitance:

More information

PIN Diode Chips Supplied on Film Frame

PIN Diode Chips Supplied on Film Frame DATA SHEET PIN Diode Chips Supplied on Film Frame Applications Switches Attenuators Features Preferred device for module applications PIN diodes supplied are 00% tested, saw cut, and mounted on film frame

More information

ACA4789: 1218 MHz 25 db Gain CATV Power-Doubler Amplifier

ACA4789: 1218 MHz 25 db Gain CATV Power-Doubler Amplifier DATA SHEET ACA4789: 1218 MHz 25 Gain CATV Power-Doubler Amplifier Applications Advanced high-power, high-frequency HFC transmission systems Output power doubler for deep fiber node in CATV distribution

More information

SKY LF: GHz Two-Way, 0 Degrees Power Divider

SKY LF: GHz Two-Way, 0 Degrees Power Divider DATA SHEET SKY16406-381LF: 2.2-2.8 GHz Two-Way, 0 Degrees Power Divider Applications TD-LTE systems Satellite communications 2.4 GHz ISM band Features Low insertion loss: 0.3 db @ 2.5 GHz High isolation:

More information

SKY LF: GHz Two-Stage, High Linearity and High Gain Low-Noise Amplifier

SKY LF: GHz Two-Stage, High Linearity and High Gain Low-Noise Amplifier DATA SHEET SKY67107-306LF: 2.3-2.8 GHz Two-Stage, High Linearity and High Gain Low-Noise Amplifier Applications LTE cellular infrastructure and ISM band systems Ultra low-noise, high gain and high linearity

More information

Figure 1: AAT1278 Evaluation Board Picture.

Figure 1: AAT1278 Evaluation Board Picture. Introduction EVALUATION BOARD DATA SHEET The AAT1278 evaluation board demonstrates the functionality of the AAT1278 and its application as LED photo flash driver under Skyworks' AS 2 Cwire serial digital

More information

SMS : Surface Mount, 0201 Low-Barrier Silicon Schottky Diode

SMS : Surface Mount, 0201 Low-Barrier Silicon Schottky Diode DATA SHEET SMS7621-060: Surface Mount, 0201 Low-Barrier Silicon Schottky Diode Applications Sensitive detector circuits Sampling circuits Mixer circuits Features Low barrier height Suitable for use above

More information

Evaluation Board for the AAT2428 Sixteen-Channel White LED Driver Solutionwith LED Current and Timing Control

Evaluation Board for the AAT2428 Sixteen-Channel White LED Driver Solutionwith LED Current and Timing Control EV9 Evaluation Board for the AAT48 Introduction The AAT48 evaluation board is a hardware platform to evaluate the functions of the AAT48, a 6-channel white LED driver for LED current and timing control.

More information

Applications. Product Description. Features. Ordering Information. Functional Block Diagram

Applications. Product Description. Features. Ordering Information. Functional Block Diagram Applications DSSS 5 GHz WLAN (IEEE802.11a) Access Points, PCMCIA, PC cards Features High output power amplifier 19.5dBm Only 1 external component required Integrated power amplifier enable pin (VEN) Buffered,

More information

SKY LF: GHz High Linearity, Active Bias Low-Noise Amplifier

SKY LF: GHz High Linearity, Active Bias Low-Noise Amplifier DATA SHEET SKY67102-396LF: 2.0-3.0 GHz High Linearity, Active Bias Low-Noise Amplifier Applications CDMA, WCDMA, TD-SCDMA, WiMAX, and LTE cellular infrastructure Ultra low-noise systems Features Ultra

More information

SKY LF: GHz Two-Stage, High Linearity and High Gain Low-Noise Amplifier

SKY LF: GHz Two-Stage, High Linearity and High Gain Low-Noise Amplifier DATA SHEET SKY67106-306LF: 1.5-3.0 GHz Two-Stage, High Linearity and High Gain Low-Noise Amplifier Applications CDMA, WCDMA, TD-SCDMA, WiMAX, and LTE cellular infrastructure systems Ultra low-noise, high

More information

DATA SHEET SE5023L: 5 GHz, 26dBm Power Amplifier with Power Detector Preliminary Information. Product Description. Applications.

DATA SHEET SE5023L: 5 GHz, 26dBm Power Amplifier with Power Detector Preliminary Information. Product Description. Applications. Applications DSSS 5 GHz WLAN (IEEE802.ac) DSSS 5 GHz WLAN (IEEE802.n) Access Points, PCMCIA, PC cards Features 5GHz matched 24dBm 802.ac Power Amplifier External Analog Reference Voltage (V REF ) for maximum

More information

ACA2417: 1218 MHz CATV Push-Pull Driver Amplifier

ACA2417: 1218 MHz CATV Push-Pull Driver Amplifier DATA SHEET ACA2417: 1218 MHz CATV Push-Pull Driver Amplifier Applications DOCSIS and Euro DOCSIS 3.1 (D3.1) compliant downstream RF Pre-amplifier for node + 0 HFC and FTTC/FTTB networks Final stage amplifier

More information

Why VPEAK is the Most Critical Aperture Tuner Parameter

Why VPEAK is the Most Critical Aperture Tuner Parameter APPLICATION NOTE Why VPEAK is the Most Critical Aperture Tuner Parameter VPEAK and Voltage Handling: Selecting an Aperture Tuner with Insufficient VPEAK May Result in Degraded TRP, TIS and Phone Certification

More information

Silicon Schottky Barrier Diode Bondable Chips and Beam Leads

Silicon Schottky Barrier Diode Bondable Chips and Beam Leads DATA SHEET Silicon Schottky Barrier Diode Bondable Chips and Beam Leads Applications Detectors Mixers Features Available in both P-type and N-type low barrier designs Low 1/f noise Large bond pad chip

More information

DME, DMF, DMJ Series: Silicon Beam-Lead Schottky Mixer Diode (Singles, Pairs, and Quads) Bondable Beam-Lead Devices

DME, DMF, DMJ Series: Silicon Beam-Lead Schottky Mixer Diode (Singles, Pairs, and Quads) Bondable Beam-Lead Devices DATA SHEET DME, DMF, DMJ Series: Silicon Beam-Lead Schottky Mixer Diode (Singles, Pairs, and Quads) Bondable Beam-Lead Devices Applications Microwave Integrated Circuits Mixers Detectors Features Low 1/f

More information

SKY LF: 10 MHz GHz Six-Bit Digital Attenuator with Driver (0.5 db LSB, 31.5 db Range)

SKY LF: 10 MHz GHz Six-Bit Digital Attenuator with Driver (0.5 db LSB, 31.5 db Range) DATA SHEET SKY12353-470LF: 10 MHz - 1.0 GHz Six-Bit Digital Attenuator with Driver (0.5 db LSB, 31.5 db Range) Applications Cellular base stations Wireless data transceivers Broadband systems Features

More information

SKY LF: GaAs SP2T Switch for Ultra Wideband (UWB) 3 8 GHz

SKY LF: GaAs SP2T Switch for Ultra Wideband (UWB) 3 8 GHz DATA SHEET SKY1398-36LF: GaAs SPT Switch for Ultra Wideband (UWB) 3 8 GHz Features Positive voltage control (/1.8 V to /3.3 V) High isolation 5 for BG1, 5 for BG3 Low loss.7 typical for BG1,.9 for BG3

More information

SKY LF: 40 MHz to 1 GHz Broadband 75 Ω CATV Low-Noise Amplifier with Bypass Mode

SKY LF: 40 MHz to 1 GHz Broadband 75 Ω CATV Low-Noise Amplifier with Bypass Mode DATA SHEET SKY65450-92LF: 40 MHz to 1 GHz Broadband 75 Ω CATV Low-Noise Amplifier with Bypass Mode Applications Terrestrial and cable set-top box Cable modem Home gateway Personal video recorder (PVR)

More information

SKY LF: GHz High Linearity, Active Bias Low-Noise Amplifier

SKY LF: GHz High Linearity, Active Bias Low-Noise Amplifier PRELIMINARY DATA SHEET SKY671-396LF: 1.7-2. GHz High Linearity, Active Bias Low-Noise Amplifier Applications GSM, CDMA, WCDMA, and TD-SCDMA cellular infrastructure Ultra low-noise systems Features Ultra

More information

SKY LF: 20 MHz-5 GHz, 7 W SPDT Switch

SKY LF: 20 MHz-5 GHz, 7 W SPDT Switch DATA SHEET SKY13299-321LF: 2 MHz-5 GHz, 7 W SPDT Switch Applications RFC WiMAX and WLAN systems Features VCTL1 J1 VCTL2 J2 Positive voltage operation: /3 to /5 V Low insertion loss:.5 typical @ 3.5 GHz

More information

SKY LF: GHz Five-Bit Digital Attenuator (0.5 db LSB)

SKY LF: GHz Five-Bit Digital Attenuator (0.5 db LSB) DATA SHEET SKY12328-350LF: 0.5-4.0 GHz Five-Bit Digital Attenuator (0.5 LSB) Applications Transceiver transmit automatic level control or receive automatic gain control in WiMAX, GSM, CDMA, WCDMA, WLAN,

More information

SMS : 0201 Surface-Mount Low-Barrier Silicon Schottky Diode Anti-Parallel Pair

SMS : 0201 Surface-Mount Low-Barrier Silicon Schottky Diode Anti-Parallel Pair DATA SHEET SMS7621-092: 0201 Surface-Mount Low-Barrier Silicon Schottky Diode Anti-Parallel Pair Applications Sub-harmonic mixer circuits Frequency multiplication Features Low barrier height Suitable for

More information

SKY LF: GHz Five-Bit Digital Attenuator (1 db LSB)

SKY LF: GHz Five-Bit Digital Attenuator (1 db LSB) DATA SHEET SKY12323-303LF: 0.5-3.0 GHz Five-Bit Digital Attenuator (1 db LSB) Applications Transceiver transmit automatic level control or receive automatic gain control in GSM, CDMA, WCDMA, WLAN, Bluetooth,

More information

SKY : MHz Variable Gain Amplifier

SKY : MHz Variable Gain Amplifier DATA SHEET SKY65387-11: 2110-2170 MHz Variable Gain Amplifier Applications WCDMA base stations Femto cells Features Frequency range: 2110 to 2170 MHz High gain: >30 db Attenuation range: > 35 db OP1dB:

More information

SKY : GHz SP3T/SPDT Wire-Bondable GaAs Die

SKY : GHz SP3T/SPDT Wire-Bondable GaAs Die DATA SHEET SKY13434-002: 0.1 6.0 GHz SP3T/SPDT Wire-Bondable GaAs Die Applications 802.11 a/b/g/n/ac WLAN networks Embedded modules Features SP3T (2.5 GHz) and SPDT (5.0 GHz) switches with Bluetooth capability

More information

AS LF: GaAs IC High-Isolation Positive Control SPDT Nonreflective Switch LF to 4 GHz

AS LF: GaAs IC High-Isolation Positive Control SPDT Nonreflective Switch LF to 4 GHz DATA SHEET AS186-32LF: GaAs IC High-Isolation Positive Control SPDT Nonreflective Switch LF to 4 GHz Applications GSM, PCS, WCDMA, 2.4 GHz ISM and 3.5 GHz wireless local loop V1 J2 Features Positive voltage

More information

SKY LF: MHz Low-Noise Power Amplifier Driver

SKY LF: MHz Low-Noise Power Amplifier Driver DATA SHEET SKY65095-360LF: 1600-2100 MHz Low-Noise Power Amplifier Driver Applications 2.5G, 3G, 4G wireless infrastructure transceivers ISM band transmitters WCS fixed wireless 3GPP LTE Features Wideband

More information

SKY : 5 GHz Low-Noise Amplifier

SKY : 5 GHz Low-Noise Amplifier DATA SHEET SKY6544-31: 5 GHz Low-Noise Amplifier Applications V_ENABLE VCC 82.11a/n/ac radios 5 GHz ISM radios Smartphones Bias Notebooks, netbooks, and tablets Access points, routers, and gateways RF_IN

More information

DATA SHEET SE2425U : 2.4 GHz Bluetooth Power Amplifier IC. Applications. Product Description. Features. Ordering Information

DATA SHEET SE2425U : 2.4 GHz Bluetooth Power Amplifier IC. Applications. Product Description. Features. Ordering Information Applications Bluetooth tm wireless technology (Class 1) USB dongles, PCMCIA, flash cards, Access Points Enhanced data rate Features Integrated input and inter-stage match +25 dbm GFSK Output Power +19.5

More information

DATA SHEET SE2567L: 5 GHz Power Amplifier with Power Detector Preliminary Information Applications Product Description Features Ordering Information

DATA SHEET SE2567L: 5 GHz Power Amplifier with Power Detector Preliminary Information Applications Product Description Features Ordering Information Applications Product Description DSSS 5 GHz WLAN (IEEE802.11a) Access Points, PCMCIA, PC cards Features High output power amplifier 19dBm Integrated 50ohm input and output match Integrated power amplifier

More information

SKY LF: GHz GaAs SPDT Switch

SKY LF: GHz GaAs SPDT Switch DATA SHEET SKY13321-36LF:.1-3. GHz GaAs SPDT Switch Applications Higher power applications with excellent linearity performance RFC WiMAX systems J2 J1 Features Positive voltage control ( to 1.8 V) High

More information

SKY : Direct Quadrature Demodulator GHz Featuring No-Pull LO Architecture

SKY : Direct Quadrature Demodulator GHz Featuring No-Pull LO Architecture PRELIMINARY DATA SHEET SKY73013-306: Direct Quadrature Demodulator 4.9 5.925 GHz Featuring No-Pull LO Architecture Applications WiMAX, WLAN receivers UNII Band OFDM receivers RFID, DSRC applications Proprietary

More information

Surface Mount Mixer and Detector Schottky Diodes

Surface Mount Mixer and Detector Schottky Diodes DATA SHEET Surface Mount Mixer and Detector Schottky Diodes Applications Sensitive RF and microwave detector circuits Sampling and mixer circuits High-volume wireless WiFi and mobile Low-noise receivers

More information

SKY LF: 300 khz 3 GHz Medium Power GaAs SPDT Switch

SKY LF: 300 khz 3 GHz Medium Power GaAs SPDT Switch DATA SHEET SKY13268-344LF: 3 khz 3 GHz Medium Power GaAs SPDT Switch Applications Transceiver transmit-receive switching in GSM, CDMA, WCDMA, WLAN, Bluetooth, Zigbee, land mobile radio base stations or

More information

OLH7000: Hermetic Linear Optocoupler

OLH7000: Hermetic Linear Optocoupler DATA SHEET OLH7000: Hermetic Linear Optocoupler Features High reliability and rugged hermetic construction Couples AC and DC signals 1000 VDC electrical isolation Matched photodiodes Excellent linearity

More information

Evaluation Board for the AAT2868 CABC Compatible Four-Channel Backlight Driver with Dual LDO Regulators

Evaluation Board for the AAT2868 CABC Compatible Four-Channel Backlight Driver with Dual LDO Regulators Introduction EVALUATION BOARD DATA SHEET The AAT88 EVAL board demonstrates the functionality of the AAT88 and its application as a backlight driver with dual LDO outputs. The AAT88 is a low-noise, constant-frequency

More information

SKY LF: 20 MHz to 6.0 GHz GaAs SPDT Switch

SKY LF: 20 MHz to 6.0 GHz GaAs SPDT Switch DATA SHEET SKY13351-378LF: 2 MHz to 6. GHz GaAs SPDT Switch Applications WLAN 82.11 a/b/g/n networks WLAN repeaters INPUT ISM band radios Low power transmit receive systems OUTPUT1 OUTPUT2 Features Positive

More information

SKYA21001: 20 MHz to 3.0 GHz SPDT Switch

SKYA21001: 20 MHz to 3.0 GHz SPDT Switch DATA SHEET SKYA21001: 20 MHz to 3.0 GHz SPDT Switch Automotive Applications Infotainment Automated toll systems Garage door opener 802.11 b/g/n WLAN, Bluetooth systems Wireless control systems Outdoor

More information

SKY LF: GHz 40 W High Power Silicon PIN Diode SPDT Switch

SKY LF: GHz 40 W High Power Silicon PIN Diode SPDT Switch DATA SHEET SKY12209-478LF: 0.9-4.0 GHz 40 W High Power Silicon PIN Diode SPDT Switch Applications Transmit/receive switching and RF path switching in TD-SCDMA, WiMAX, and LTE base stations Transmit/receive

More information

DATA SHEET SE5004L: 5 GHz, 26dBm Power Amplifier with Power Detector. Applications. Product Description. Features. Ordering Information

DATA SHEET SE5004L: 5 GHz, 26dBm Power Amplifier with Power Detector. Applications. Product Description. Features. Ordering Information Applications DSSS GHz WLAN (IEEE80.a) DSSS GHz WLAN (IEEE80.n) Access Points, PCMCIA, PC cards Features High output power amplifier - dbm at V External Analog Reference Voltage (V REF) for maximum flexibility

More information

SKYA21001: 20 MHz to 3.0 GHz SPDT Switch

SKYA21001: 20 MHz to 3.0 GHz SPDT Switch DATA SHEET SKYA21001: 20 MHz to 3.0 GHz SPDT Switch Automotive Applications Infotainment Automated toll systems Garage door opener 802.11 b/g/n WLAN, Bluetooth systems Wireless control systems Outdoor

More information

SMPA LF: Low Distortion Attenuator Plastic Packaged PIN Diode

SMPA LF: Low Distortion Attenuator Plastic Packaged PIN Diode DATA SHEET SMPA1304-011LF: Low Distortion Attenuator Plastic Packaged PIN Diode Automotive Applications Infotainment Navigation Telematics Garage door openers Wireless control systems Features AEC-Q101

More information

SKY LF: 0.1 to 6.0 GHz High Isolation SPDT Absorptive Switch

SKY LF: 0.1 to 6.0 GHz High Isolation SPDT Absorptive Switch DATA SHEET SKY13286-359LF:.1 to 6. GHz High Isolation SPDT Absorptive Switch Applications GSM, PCS, WCDMA base stations 2.4 and 5.8 GHz ISM devices Wireless local loops CBL 5 Features CBL RFC Single, positive

More information

SKY LF: 0.5 to 6.0 GHz SPDT Switch, 50 Ω Terminated

SKY LF: 0.5 to 6.0 GHz SPDT Switch, 50 Ω Terminated DATA SHEET SKY13370-374LF: 0.5 to 6.0 GHz SPDT Switch, 50 Ω Terminated Applications WiMAX 802.16 Dual-band WLANs (802.11 a/b/g/n) LTE/4G systems Features RF1 50 Ω 50 Ω RF2 50 Ω matched RF ports in all

More information

SMS : Surface Mount, 0201 Low-Barrier Silicon Schottky Diode

SMS : Surface Mount, 0201 Low-Barrier Silicon Schottky Diode DATA SHEET SMS7621-060: Surface Mount, 0201 Low-Barrier Silicon Schottky Diode Applications Sensitive detector circuits Sampling circuits Mixer circuits Features Low barrier height Suitable for use above

More information

Silicon Schottky Barrier Diode Bondable Chips and Beam Leads

Silicon Schottky Barrier Diode Bondable Chips and Beam Leads DATA SHEET Silicon Schottky Barrier Diode Bondable Chips and Beam Leads Applications Detectors Mixers Features Available in both P-type and N-type low barrier designs Low 1/f noise Large bond pad chip

More information

Optimizing Feedforward Compensation In Linear Regulators

Optimizing Feedforward Compensation In Linear Regulators Optimizing Feedforward Compensation In Linear Regulators Introduction All linear voltage regulators use a feedback loop which controls the amount of current sent to the load as required to hold the output

More information

SKY LF: GHz SP10T Switch with GPIO Interface

SKY LF: GHz SP10T Switch with GPIO Interface PRELIMINARY DATA SHEET SKY13404-466LF: 0.4-2.7 GHz SP10T Switch with GPIO Interface Applications 2G/3G multimode cellular handsets (UMTS, CDMA2000, EDGE, GSM) Embedded data cards Features Broadband frequency

More information

SMP LF: Surface-Mount PIN Diode for Switch and Attenuator Applications

SMP LF: Surface-Mount PIN Diode for Switch and Attenuator Applications DATA SHEET SMP32-085LF: Surface-Mount PIN Diode for Switch and Attenuator Applications Applications Low-loss, high-power switches Low-distortion attenuators (Pin 3) (Pin ) Features Low thermal resistance:

More information

Features IN1 OUT. System Load +3.3V IN2 IIN1 IIN2 SEL R IIN2. R IIN1 Enable EN GND

Features IN1 OUT. System Load +3.3V IN2 IIN1 IIN2 SEL R IIN2. R IIN1 Enable EN GND General Description The - is a member of Skyworks' Application Specific Power Management SmartSwitch family. This device is a dual input single output power supply selector switche designed to operate

More information

OLF400: Low-Input Current Hermetic Surface Mount Optocoupler

OLF400: Low-Input Current Hermetic Surface Mount Optocoupler DATA SHEET OLF400: Low-Input Current Hermetic Surface Mount Optocoupler Features Hermetic SMT package Electrical parameters guaranteed over -55 C to +125 C ambient temperature range 1000 VDC electrical

More information

SKY LF: 20 MHz-6.0 GHz GaAs SP4T Switch

SKY LF: 20 MHz-6.0 GHz GaAs SP4T Switch DATA SHEET SKY13322-375LF: 2 MHz-6. GHz GaAs SP4T Switch Applications Multiband telecommunications up to 6 GHz Features Broadband frequency range: 2 MHz to 6. GHz Low insertion loss:.45 @ 1 GHz Very high

More information

ADA1200: Linear Amplifier

ADA1200: Linear Amplifier DATA SHEET ADA1200: Linear Amplifier Applications Low-noise amplifier for CATV set-top boxes CATV drop amplifier Features 12 db gain 50 to 1000 MHz frequency range Noise figure: 2.3 db Single +5 V supply

More information

SKY LF: GHz Five-Bit Digital Attenuator with Serial-to-Parallel Driver (0.5 db LSB)

SKY LF: GHz Five-Bit Digital Attenuator with Serial-to-Parallel Driver (0.5 db LSB) DATA SHEET SKY12345-362LF: 0.7-4.0 GHz Five-Bit Digital Attenuator with Serial-to-Parallel Driver (0.5 LSB) Applications Base stations Wireless and RF data Wireless local loop gain control circuits Features

More information

SKY LF: 0.5 to 6.0 GHz SPDT Switch, 50 Ω Terminated

SKY LF: 0.5 to 6.0 GHz SPDT Switch, 50 Ω Terminated DATA SHEET SKY13348-374LF:.5 to 6. GHz SPDT Switch, 5 Ω Terminated Applications WiMAX 82.16 WLAN 82.11 a/b/g/n J1 J2 Features 5 Ω terminated RF outputs from.5 to 6. GHz Low insertion loss:.6 @ 2.5 GHz

More information

Features TSOPJW -12 D2 B340A AAT1184 OS FB COMP GND

Features TSOPJW -12 D2 B340A AAT1184 OS FB COMP GND General Description The is a single output step-down (Buck) DC output regulator with an integrated high side MOSFET. The input range is 6V to 4V making it the ideal power IC solution for consumer communications

More information

OLH5530/5531: Hermetic High-Speed Transistor Dual-Channel Optocoupler

OLH5530/5531: Hermetic High-Speed Transistor Dual-Channel Optocoupler DATA SHEET OLH5530/5531: Hermetic High-Speed Transistor Dual-Channel Optocoupler Features Dual-channel, rugged, reliable hermetic Dual Inline Package (DIP) Performance guaranteed over full military temperature

More information

AS LF: PHEMT GaAs IC 1 W Low-Loss 0.1 to 6 GHz SPDT Switch

AS LF: PHEMT GaAs IC 1 W Low-Loss 0.1 to 6 GHz SPDT Switch DATA SHEET AS225-313LF: PHEMT GaAs IC 1 W Low-Loss 0.1 to 6 GHz SPDT Switch Applications INPUT WLAN 802.11a/b/g Features OUTPUT1 OUTPUT2 Positive low voltage control (0/3 V) Low insertion loss (0.6, 0.1

More information

SKY LF: MHz Quadrature Modulator

SKY LF: MHz Quadrature Modulator DATA SHEET SKY73077-459LF: 1500-2700 Quadrature Modulator Applications Cellular base station systems: GSM/EDGE, CDMA2000, W-CDMA, TD-SCDMA, LTE WiMAX/broadband wireless access systems Satellite modems

More information

SKY LF: MHz Quadrature Modulator

SKY LF: MHz Quadrature Modulator DATA SHEET SKY73078-459LF: 500-1500 Quadrature Modulator Applications Cellular base station systems: GSM/EDGE, CDMA2000, W-CDMA, TD-SCDMA, LTE WiMAX/broadband wireless access systems Satellite modems Features

More information