IE1206 Embedded Electronics

Size: px
Start display at page:

Download "IE1206 Embedded Electronics"

Transcription

1 E06 Embedded Electronics Le Le3 Le4 Le Ex Ex PC-block Documentation, Seriecom Pulse sensors,, R, P, serial and parallel KC LAB Pulse sensors, Menu program Start of programing task Kirchhoffs laws ode analysis Two-terminals RR AD Le5 Ex3 KC LAB Two-terminals, AD, Comparator/Schmitt Le6 Le8 Ex6 Le3 Ex4 Ex5 Le0 Le7 Le9 Le Le Ex7 Display Written exam KC3 LAB3 Transients PWM Step-up, RC-oscillator Phasor jω PWM CCP CAP/D-sensor KC4 LAB4 LP-filter Trafo LC-osc, DC-motor, CCP PWM Display of programing task Trafo, Ethernet contact

2 Transformer

3 Voltage ratio : dφ dt dφ dt

4 deal transformer Magnetisig current 0 0 is small compared to the work currents and. The transformer itself has a high inductance.

5 Current ratio 0 0 ) 0, ( P P P :

6 Eddy current losses Eddy currents currents inside the iron core is prevented with lacquered ( isolation ) sheet metal.

7 E -core E-core is very economical to manufacture!

8 E -core

9 Toroid Toroid core has a low leakage field so it will not disturb nearby electronics! How do one wind such a transformer?

10 Automatic Winding of toroidal core

11

12 Transformer (5.4)

13 Transformer (5.4)

14 Transformer (5.4) 0 R 0 0 0, 0 8

15 Transformer (5.4) 8 0 0, R 4 8

16 Transformatorn (5.4) 0 R 0 0 0, , 4

17 Transformer (5.4) 0 R 0 0 0, , 4 R 4 0 Ω 0,4

18

19 R R R R R Transforming impedances

20 R R R R R Transforming impedances

21 Ex. Transforming impedances A transformer has the voltage ratio 40V/0V. We have two capacitors µf and 6 µf. How should one connect to get 5 µf?

22 Ex. Transforming impedances A transformer has the voltage ratio 40V/0V. We have two capacitors µf and 6 µf. How should one connect to get 5 µf? Z Z ωc ωc ω( C / 4)

23 Ex. Transforming impedances A transformer has the voltage ratio 40V/0V. We have two capacitors µf and 6 µf. How should one connect to get 5 µf? Z Z ωc ωc ω( C / 4) 4µ F 6µ F

24

25 Series and parallel connection of inductors (Ex. 5.6) Assuming that none of the coils parts magnetic lines of force with each other but are completely independent components, they can be treated series and parallel inductors just as if they were resistors. L ERS 3 H

26 Series and parallel connection of inductors? We have previously studied serial and parallel coils as if they were completely independent components that do not share magnetic lines with each other. We are now treating coils with interconnected flow??

27 nductive coupling nduction u r i + dϕ dt A portion of the flow in the coil is interconnected with flow from the coil. dϕ u r i + ϕ i L + i M dt n same way: dϕ u r i + ϕ i L + i M dt

28 nductive coupling ± M is called mutual inductance di di u r i + L + M dt dt di di u r i + L + M dt dt jω-method: r + jω L + jω M r + jω L + jω M An ideal transformer has coupling factor k (00%) Coupling factor: k L M L The coupling factor indicates how much of the flow a coil has in common with another coil

29 Series with mutual inductance Derive: L M L L L M L L ω ± ω ω ± L j L L j M L L j L L j M L ω Series connection has the same current + M M M L L L L jω( L ± M + L ± M ) j ω ( L + L ± M )

30 Series with mutual inductance M-dot M-dot M-dot M-dot Series connection has the same current L TOT L + L M L TOT L + L M + M can can contribute or counter act to the flow, this gives ± sign. Therefore, coil winding polarity is usually indicated by a dot convention in schematics.

31 Dot convention An increasing current in to a dot results in induced voltages with directions that would give increasing currents out of other dots.

32 Dot convention An increasing current in to a dot results in induced voltages with directions that would give increasing currents out of other dots.

33 n parallel with mutual inductance M L L M L L L TOT + M L L M L L L TOT + + TOT L TOT L Parallel connected coils Antiparal conected coils

34 Ex. 5.7 Series connection M 3 [H] M M 3 3 L 5 L 0 L 3 5

35 Ex. 5.7 Series connection M 3 [H] M M 3 3 L 5 L 0 L 3 5 L TOT L + M M 3 + L + M M 3 + L 3 M 3 M [H]

36

37 Measuring the mutual inductance? L TOT + L TOT L TOT L + L M + + L TOT L + L M

38 Measuring the mutual inductance? L TOT + L TOT L TOT L + L M + + L TOT L + L M M L TOT + L 4 TOT

39 Variometer (to an antique radio) L TOT L + M f ( α) L ± M

40

41 A bad actuator can become a good sensor 906

42 The industry's "rugged" position sensor

43 Differential transformer LVDT Linear Variable Differential Transformer primary coil core secondary coil secondary coil The secondary coils are connected in series but with opposite polarity when the core is in the middle 0.

44 LVDT design

45 LVDT principle The output voltage is relatively high it makes this a popular sensor

46 LVDT probe Output signal changes phase 80 exactly when the core pass the middle point. A XOR-gate kan indicate this change.

47 A LVDT probe can keep track on that the thicknes is correct. Guess application? t is important to ensure that the ATM does not distribute "double" bills

48 Periodic differential transformer A similar sensor? LVDT-principel witin a core, and then keep track on how many cores that have passed. Renywell Spherical encoder

49

IE1206 Embedded Electronics

IE1206 Embedded Electronics E06 Embedded Electronics e e3 e4 e Ex Ex P-block Documentation, Seriecom, Pulse sensor,,, P, series and parallel K AB Pulse sensors, Menu program Start of program task Kirchhoffs laws Node analysis Two

More information

IE1206 Embedded Electronics

IE1206 Embedded Electronics IE1206 Embedded Electronics Le1 Le3 Le4 Le2 Ex1 Ex2 PIC-block Documentation, Seriecom Pulse sensors I, U, R, P, serial and parallel KC1 LAB1 Pulsesensors, Menu program Start of programing task Kirchhoffs

More information

IE1206 Embedded Electronics

IE1206 Embedded Electronics IE06 Embedded Electronics Le Le3 Le4 Le Ex Ex PIC-block Documentation, Seriecom Pulse sensors I,, R, P, serial and parallel KC LAB Pulse sensors, Menu program Start of programing task Kirchhoffs laws Node

More information

EE2003 Circuit Theory Chapter 13 Magnetically Coupled Circuits

EE2003 Circuit Theory Chapter 13 Magnetically Coupled Circuits EE003 Circuit Theory Chapter 3 Magnetically Coupled Circuits Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Magnetically Coupled Circuit Chapter 3 3. What is

More information

EE 221 Circuits II. Chapter 13 Magnetically Coupled Circuits

EE 221 Circuits II. Chapter 13 Magnetically Coupled Circuits EE Circuits II Chapter 3 Magnetically Coupled Circuits Magnetically Coupled Circuits 3. What is a transformer? 3. Mutual Inductance 3.3 Energy in a Coupled Circuit 3.4 inear Transformers 3.5 Ideal Transformers

More information

Electromagnetic Oscillations and Currents. March 23, 2014 Chapter 30 1

Electromagnetic Oscillations and Currents. March 23, 2014 Chapter 30 1 Electromagnetic Oscillations and Currents March 23, 2014 Chapter 30 1 Driven LC Circuit! The voltage V can be thought of as the projection of the vertical axis of the phasor V m representing the time-varying

More information

Exam 3 Review Session

Exam 3 Review Session Exam 3 Review Session I will hold a review for Exam 3 which covers Chapters 27, 28, 29 and 30, on Wednesday November 7 th at 7:15pm in MPHY 205. Exam 3 will be given in class on Thursday, November 8 th.

More information

Sensors and Actuators Introduction to sensors

Sensors and Actuators Introduction to sensors Sensors and Actuators Introduction to sensors Sander Stuijk (s.stuijk@tue.nl) Department of Electrical Engineering Electronic Systems INDUCTIVE SENSORS (Chapter 3.4, 7.3) 3 Inductive sensors 4 Inductive

More information

IE1206 Embedded Electronics

IE1206 Embedded Electronics IE06 Embedded Electronics Le Le3 Le4 Le Ex Ex PI-block Documentation, Serial com Pulse sensors I,,, P, series and parallel K LAB Pulse sensors, Menu program Start of programing task Kirchhoffs laws Node

More information

An induced emf is the negative of a changing magnetic field. Similarly, a self-induced emf would be found by

An induced emf is the negative of a changing magnetic field. Similarly, a self-induced emf would be found by This is a study guide for Exam 4. You are expected to understand and be able to answer mathematical questions on the following topics. Chapter 32 Self-Induction and Induction While a battery creates an

More information

Transformers. Objectives

Transformers. Objectives Transformers Objectives Explain mutual inductance Describe how a transformer is constructed and how it works Explain how a step-up transformer works Explain how a step-down transformer works Discuss the

More information

Chapter 33. Alternating Current Circuits

Chapter 33. Alternating Current Circuits Chapter 33 Alternating Current Circuits Alternating Current Circuits Electrical appliances in the house use alternating current (AC) circuits. If an AC source applies an alternating voltage to a series

More information

Review: Lecture 9. Instantaneous and Average Power. Effective or RMS Value. Apparent Power and Power Factor. Complex Power. Conservation of AC Power

Review: Lecture 9. Instantaneous and Average Power. Effective or RMS Value. Apparent Power and Power Factor. Complex Power. Conservation of AC Power Review: Lecture 9 Instantaneous and Average Power p( t) VmI m cos ( v i ) VmI m cos ( t v i ) Maximum Average Power Transfer Z L R L jx Effective or RMS Value I rms I m L R P * TH Apparent Power and Power

More information

PHYS 1441 Section 001 Lecture #22 Wednesday, Nov. 29, 2017

PHYS 1441 Section 001 Lecture #22 Wednesday, Nov. 29, 2017 PHYS 1441 Section 001 Lecture #22 Chapter 29:EM Induction & Faraday s Law Transformer Electric Field Due to Changing Magnetic Flux Chapter 30: Inductance Mutual and Self Inductance Energy Stored in Magnetic

More information

Transformers. Dr. Gamal Sowilam

Transformers. Dr. Gamal Sowilam Transformers Dr. Gamal Sowilam OBJECTIVES Become familiar with the flux linkages that exist between the coils of a transformer and how the voltages across the primary and secondary are established. Understand

More information

Look over Chapter 31 sections 1-4, 6, 8, 9, 10, 11 Examples 1-8. Look over Chapter 21 sections Examples PHYS 2212 PHYS 1112

Look over Chapter 31 sections 1-4, 6, 8, 9, 10, 11 Examples 1-8. Look over Chapter 21 sections Examples PHYS 2212 PHYS 1112 PHYS 2212 Look over Chapter 31 sections 1-4, 6, 8, 9, 10, 11 Examples 1-8 PHYS 1112 Look over Chapter 21 sections 11-14 Examples 16-18 Good Things To Know 1) How AC generators work. 2) How to find the

More information

13. Magnetically Coupled Circuits

13. Magnetically Coupled Circuits 13. Magnetically Coupled Circuits The change in the current flowing through an inductor induces (creates) a voltage in the conductor itself (self-inductance) and in any nearby conductors (mutual inductance)

More information

Unit-4. Magnetic Circuits

Unit-4. Magnetic Circuits Unit-4 Magnetic Circuits Topics to be Discussed Magnetic Coupling. Coefficient of Coupling (k). Sign of Mutual Voltage. Dot Convention. September 9, 0 Magnetic Circuits Magnetically Coupled Circuits A

More information

IE1206 Embedded Electronics

IE1206 Embedded Electronics IE1206 Embedded Electronics Le1 Le3 Le4 Le2 Ex1 Ex2 PIC-block Documentation, Seriecom Pulse sensors I, U, R, P, serial and parallel KC1 LAB1 Pulse sensors, Menu program Start of programing task Kirchhoffs

More information

Chapter 31 Alternating Current

Chapter 31 Alternating Current Chapter 31 Alternating Current In this chapter we will learn how resistors, inductors, and capacitors behave in circuits with sinusoidally vary voltages and currents. We will define the relationship between

More information

Electric Circuits II Magnetically Coupled Circuits. Dr. Firas Obeidat

Electric Circuits II Magnetically Coupled Circuits. Dr. Firas Obeidat Electric Circuits II Magnetically Coupled Circuits Dr. Firas Obeidat 1 Table of contents 1 Mutual Inductance 2 Dot Convention 3 Analyze Circuits Involving Mutual Inductance 4 Energy in a Coupled Circuit

More information

Lecture 4 - Three-phase circuits, transformer and transient analysis of RLC circuits. Figure 4.1

Lecture 4 - Three-phase circuits, transformer and transient analysis of RLC circuits. Figure 4.1 Lecture 4 - Three-phase circuits, transformer and transient analysis of RLC circuits Power supply to sizeable power converters are often from three-phase AC source. A balanced three-phase source consists

More information

PHYS 1444 Section 501 Lecture #20

PHYS 1444 Section 501 Lecture #20 PHYS 1444 Section 501 Lecture #0 Monday, Apr. 17, 006 Transformer Generalized Faraday s Law Inductance Mutual Inductance Self Inductance Inductor Energy Stored in the Magnetic Field 1 Announcements Quiz

More information

Chapter 30 Inductance, Electromagnetic. Copyright 2009 Pearson Education, Inc.

Chapter 30 Inductance, Electromagnetic. Copyright 2009 Pearson Education, Inc. Chapter 30 Inductance, Electromagnetic Oscillations, and AC Circuits 30-7 AC Circuits with AC Source Resistors, capacitors, and inductors have different phase relationships between current and voltage

More information

PHYSICS WORKSHEET CLASS : XII. Topic: Alternating current

PHYSICS WORKSHEET CLASS : XII. Topic: Alternating current PHYSICS WORKSHEET CLASS : XII Topic: Alternating current 1. What is mean by root mean square value of alternating current? 2. Distinguish between the terms effective value and peak value of an alternating

More information

Department of Electrical and Computer Engineering Lab 6: Transformers

Department of Electrical and Computer Engineering Lab 6: Transformers ESE Electronics Laboratory A Department of Electrical and Computer Engineering 0 Lab 6: Transformers. Objectives ) Measure the frequency response of the transformer. ) Determine the input impedance of

More information

Simple AC Circuits. Introduction

Simple AC Circuits. Introduction Simple AC Circuits Introduction Each problem in this problem set involves the steady state response of a linear, time-invariant circuit to a single sinusoidal input. Such a response is known to be sinusoidal

More information

TRANSFORMER THEORY. Mutual Induction

TRANSFORMER THEORY. Mutual Induction Transformers Transformers are used extensively for AC power transmissions and for various control and indication circuits. Knowledge of the basic theory of how these components operate is necessary to

More information

APPLICATION NOTE - 018

APPLICATION NOTE - 018 APPLICATION NOTE - 018 Power Transformers Background Power Transformers are used within an AC power distribution systems to increase or decrease the operating voltage to achieve the optimum transmission

More information

Spring 2000 EE361: MIDTERM EXAM 1

Spring 2000 EE361: MIDTERM EXAM 1 NAME: STUDENT NUMBER: Spring 2000 EE361: MIDTERM EXAM 1 This exam is open book and closed notes. Assume f=60 hz and use the constant µ o =4π 10-7 wherever necessary. Be sure to show all work clearly. 1.

More information

Alternating current circuits- Series RLC circuits

Alternating current circuits- Series RLC circuits FISI30 Física Universitaria II Professor J.. ersosimo hapter 8 Alternating current circuits- Series circuits 8- Introduction A loop rotated in a magnetic field produces a sinusoidal voltage and current.

More information

ECE 201 LAB 8 TRANSFORMERS & SINUSOIDAL STEADY STATE ANALYSIS

ECE 201 LAB 8 TRANSFORMERS & SINUSOIDAL STEADY STATE ANALYSIS Version 1.1 1 of 8 ECE 201 LAB 8 TRANSFORMERS & SINUSOIDAL STEADY STATE ANALYSIS BEFORE YOU BEGIN PREREQUISITE LABS Introduction to MATLAB Introduction to Lab Equipment Introduction to Oscilloscope Capacitors,

More information

In this lecture. Electromagnetism. Electromagnetism. Oersted s Experiment. Electricity & magnetism are different aspects of the same basic phenomenon:

In this lecture. Electromagnetism. Electromagnetism. Oersted s Experiment. Electricity & magnetism are different aspects of the same basic phenomenon: In this lecture Electromagnetism Electromagnetic Effect Electromagnets Electromechanical Devices Transformers Electromagnetic Effect Electricity & magnetism are different aspects of the same basic phenomenon:

More information

EECS40 RLC Lab guide

EECS40 RLC Lab guide EECS40 RLC Lab guide Introduction Second-Order Circuits Second order circuits have both inductor and capacitor components, which produce one or more resonant frequencies, ω0. In general, a differential

More information

Exercise 9: inductor-resistor-capacitor (LRC) circuits

Exercise 9: inductor-resistor-capacitor (LRC) circuits Exercise 9: inductor-resistor-capacitor (LRC) circuits Purpose: to study the relationship of the phase and resonance on capacitor and inductor reactance in a circuit driven by an AC signal. Introduction

More information

Transformers. Department of Physics & Astronomy Texas Christian University, Fort Worth, TX. April 23, 2013

Transformers. Department of Physics & Astronomy Texas Christian University, Fort Worth, TX. April 23, 2013 Transformers Department of Physics & Astronomy Texas Christian University, Fort Worth, TX April 23, 2013 1 Introduction In the early nineteenth century, Hans Christian Øersted discovered that a magnetic

More information

Chapter 13 Magnetically Coupled Circuits. Chapter Objectives:

Chapter 13 Magnetically Coupled Circuits. Chapter Objectives: Chapter 13 Magnetically Coupled Circuits Chapter Objectives: Understand magnetically coupled circuits. Learn the concept of mutual inductance. Be able to determine energy in a coupled circuit. Learn how

More information

PHYS 1442 Section 004 Lecture #15

PHYS 1442 Section 004 Lecture #15 PHYS 1442 Section 004 Lecture #15 Monday March 17, 2014 Dr. Andrew Brandt Chapter 21 Generator Transformer Inductance 3/17/2014 1 PHYS 1442-004, Dr. Andrew Brandt Announcements HW8 on Ch 21-22 will be

More information

Chapter 2-1 Transformers

Chapter 2-1 Transformers Principles of Electric Machines and Power Electronics Chapter 2-1 Transformers Third Edition P. C. Sen Transformer application 1: power transmission Ideal Transformer Assumptions: 1. Negligible winding

More information

RLC-circuits with Cobra4 Xpert-Link TEP. 1 2 π L C. f res=

RLC-circuits with Cobra4 Xpert-Link TEP. 1 2 π L C. f res= Related topics Damped and forced oscillations, Kirchhoff s laws, series and parallel tuned circuit, resistance, capacitance, inductance, reactance, impedance, phase displacement, Q-factor, band-width Principle

More information

CHAPTER 6: ALTERNATING CURRENT

CHAPTER 6: ALTERNATING CURRENT CHAPTER 6: ALTERNATING CURRENT PSPM II 2005/2006 NO. 12(C) 12. (c) An ac generator with rms voltage 240 V is connected to a RC circuit. The rms current in the circuit is 1.5 A and leads the voltage by

More information

Physics for Scientists & Engineers 2 2 = 1 LC. Review ( ) Review (2) Review (3) e! Rt. cos "t + # ( ) q = q max. Spring Semester 2005 Lecture 30 U E

Physics for Scientists & Engineers 2 2 = 1 LC. Review ( ) Review (2) Review (3) e! Rt. cos t + # ( ) q = q max. Spring Semester 2005 Lecture 30 U E Review hysics for Scientists & Engineers Spring Semester 005 Lecture 30! If we have a single loop RLC circuit, the charge in the circuit as a function of time is given by! Where q = q max e! Rt L cos "t

More information

LEP RLC Circuit

LEP RLC Circuit RLC Circuit LEP Related topics Kirchhoff s laws, series and parallel tuned circuit, resistance, capacitance, inductance, phase displacement, Q-factor, band-width, loss resistance, damping Principle The

More information

AC Circuits INTRODUCTION DISCUSSION OF PRINCIPLES. Resistance in an AC Circuit

AC Circuits INTRODUCTION DISCUSSION OF PRINCIPLES. Resistance in an AC Circuit AC Circuits INTRODUCTION The study of alternating current 1 (AC) in physics is very important as it has practical applications in our daily lives. As the name implies, the current and voltage change directions

More information

Chapter 16: Mutual Inductance

Chapter 16: Mutual Inductance Chapter 16: Mutual Inductance Instructor: Jean-François MILLITHALER http://faculty.uml.edu/jeanfrancois_millithaler/funelec/spring2017 Slide 1 Mutual Inductance When two coils are placed close to each

More information

ECG 741 Power Distribution Transformers. Y. Baghzouz Spring 2014

ECG 741 Power Distribution Transformers. Y. Baghzouz Spring 2014 ECG 741 Power Distribution Transformers Y. Baghzouz Spring 2014 Preliminary Considerations A transformer is a device that converts one AC voltage to another AC voltage at the same frequency. The windings

More information

University of Jordan School of Engineering Electrical Engineering Department. EE 219 Electrical Circuits Lab

University of Jordan School of Engineering Electrical Engineering Department. EE 219 Electrical Circuits Lab University of Jordan School of Engineering Electrical Engineering Department EE 219 Electrical Circuits Lab EXPERIMENT 4 TRANSIENT ANALYSIS Prepared by: Dr. Mohammed Hawa EXPERIMENT 4 TRANSIENT ANALYSIS

More information

CHAPTER 9. Sinusoidal Steady-State Analysis

CHAPTER 9. Sinusoidal Steady-State Analysis CHAPTER 9 Sinusoidal Steady-State Analysis 9.1 The Sinusoidal Source A sinusoidal voltage source (independent or dependent) produces a voltage that varies sinusoidally with time. A sinusoidal current source

More information

RLC-circuits TEP. f res. = 1 2 π L C.

RLC-circuits TEP. f res. = 1 2 π L C. RLC-circuits TEP Keywords Damped and forced oscillations, Kirchhoff s laws, series and parallel tuned circuit, resistance, capacitance, inductance, reactance, impedance, phase displacement, Q-factor, band-width

More information

El-Hawary, M.E. The Transformer Electrical Energy Systems. Series Ed. Leo Grigsby Boca Raton: CRC Press LLC, 2000

El-Hawary, M.E. The Transformer Electrical Energy Systems. Series Ed. Leo Grigsby Boca Raton: CRC Press LLC, 2000 El-Hawary, M.E. The Transformer Electrical Energy Systems. Series Ed. Leo Grigsby Boca Raton: CRC Press LLC, 000 97 Chapter 4 THE TRANSFORMER 4. NTRODUCTON The transformer is a valuable apparatus in electrical

More information

Aligarh College of Engineering & Technology (College Code: 109) Affiliated to UPTU, Approved by AICTE Electrical Engg.

Aligarh College of Engineering & Technology (College Code: 109) Affiliated to UPTU, Approved by AICTE Electrical Engg. Aligarh College of Engineering & Technology (College Code: 19) Electrical Engg. (EE-11/21) Unit-I DC Network Theory 1. Distinguish the following terms: (a) Active and passive elements (b) Linearity and

More information

Cornerstone Electronics Technology and Robotics Week 32 Transformers

Cornerstone Electronics Technology and Robotics Week 32 Transformers Cornerstone Electronics Technology and Robotics Week 32 Transformers Administration: o Prayer o Turn in quiz Electricity and Electronics, Section 12.1, Transformer Theory: o A transformer is a device that

More information

University of Pittsburgh

University of Pittsburgh University of Pittsburgh Experiment #11 Lab Report Inductance/Transformers Submission Date: 12/04/2017 Instructors: Dr. Minhee Yun John Erickson Yanhao Du Submitted By: Nick Haver & Alex Williams Station

More information

Transformers 21.1 INTRODUCTION 21.2 MUTUAL INDUCTANCE

Transformers 21.1 INTRODUCTION 21.2 MUTUAL INDUCTANCE 21 Transformers 21.1 INTRODUCTION Chapter 12 discussed the self-inductance of a coil. We shall now examine the mutual inductance that exists between coils of the same or different dimensions. Mutual inductance

More information

Electronic Instrumentation

Electronic Instrumentation 10/15/01 1 Electronic Instrumentation Experiment 3 Part A: Making an Inductor Part B: Measurement of Inductance Part C: imulation of a Transformer Part D: Making a Transformer Review RC and Resonance How

More information

Electrical Machines I : Transformers

Electrical Machines I : Transformers UNIT TRANSFORMERS PART A (Q&A) 1. What is step down transformer? The transformer used to step down the voltage from primary to secondary is called as step down transformer. (Ex: /11).. Draw the noload

More information

Filters And Waveform Shaping

Filters And Waveform Shaping Physics 3330 Experiment #3 Fall 2001 Purpose Filters And Waveform Shaping The aim of this experiment is to study the frequency filtering properties of passive (R, C, and L) circuits for sine waves, and

More information

Chapter 6: Alternating Current. An alternating current is an current that reverses its direction at regular intervals.

Chapter 6: Alternating Current. An alternating current is an current that reverses its direction at regular intervals. Chapter 6: Alternating Current An alternating current is an current that reverses its direction at regular intervals. Overview Alternating Current Phasor Diagram Sinusoidal Waveform A.C. Through a Resistor

More information

Lab 7 - Inductors and LR Circuits

Lab 7 - Inductors and LR Circuits Lab 7 Inductors and LR Circuits L7-1 Name Date Partners Lab 7 - Inductors and LR Circuits The power which electricity of tension possesses of causing an opposite electrical state in its vicinity has been

More information

CH 1. Large coil. Small coil. red. Function generator GND CH 2. black GND

CH 1. Large coil. Small coil. red. Function generator GND CH 2. black GND Experiment 6 Electromagnetic Induction "Concepts without factual content are empty; sense data without concepts are blind... The understanding cannot see. The senses cannot think. By their union only can

More information

Passive Component Analysis. OMICRON Lab Webinar Nov. 2015

Passive Component Analysis. OMICRON Lab Webinar Nov. 2015 Passive Component Analysis OMICRON Lab Webinar Nov. 2015 Webinar Hints Activate the chat function Please mute your microphones to avoid echoes Feel free to post questions anytime using the chat function

More information

Class XII Chapter 7 Alternating Current Physics

Class XII Chapter 7 Alternating Current Physics Question 7.1: A 100 Ω resistor is connected to a 220 V, 50 Hz ac supply. (a) What is the rms value of current in the circuit? (b) What is the net power consumed over a full cycle? Resistance of the resistor,

More information

Bucking Coils produce Energy Gain Cyril Smith, 2015

Bucking Coils produce Energy Gain Cyril Smith, 2015 Bucking Coils produce Energy Gain Cyril Smith, 015 1. Introduction There are many claims of overunity for systems that employ bucking coils. These are coils mounted on a common core and connected in series

More information

PHYS 1444 Section 003 Lecture #19

PHYS 1444 Section 003 Lecture #19 PHYS 1444 Section 003 Lecture #19 Monday, Nov. 14, 2005 Electric Generators DC Generator Eddy Currents Transformer Mutual Inductance Today s homework is homework #10, due noon, next Tuesday!! 1 Announcements

More information

ECE 214 Electrical Circuits Lab Lecture 8

ECE 214 Electrical Circuits Lab Lecture 8 ECE 214 Electrical Circuits Lab Lecture 8 Vince Weaver http://www.eece.maine.edu/~vweaver vincent.weaver@maine.edu 31 March 2015 Announcements Remember, I am out of town on Tuesday. Lecture will be at

More information

Electric Transformer. Specifically, for each coil: Since the rate of change in flux through single loop of each coil are approximately the same,

Electric Transformer. Specifically, for each coil: Since the rate of change in flux through single loop of each coil are approximately the same, Electric Transformer Safety and Equipment Computer with PASCO 850 Universal Interface and PASCO Capstone Coils Set 3 Double Banana Cables PASCO Voltage Sensor (DIN to Banana cable with slip-on Alligator

More information

An Improvement in the Virtually Isolated Transformerless Off - Line Power Supply

An Improvement in the Virtually Isolated Transformerless Off - Line Power Supply An Improvement in the Virtually Isolated Transformerless Off - Line Power Supply Spiros Cofinas Department of Electrotechnics and Computer Science Hellenic Naval Academy Terma Hatzikyriakou, Piraeus GREECE

More information

AP Physics C. Alternating Current. Chapter Problems. Sources of Alternating EMF

AP Physics C. Alternating Current. Chapter Problems. Sources of Alternating EMF AP Physics C Alternating Current Chapter Problems Sources of Alternating EMF 1. A 10 cm diameter loop of wire is oriented perpendicular to a 2.5 T magnetic field. What is the magnetic flux through the

More information

EXPERIMENT 8: LRC CIRCUITS

EXPERIMENT 8: LRC CIRCUITS EXPERIMENT 8: LRC CIRCUITS Equipment List S 1 BK Precision 4011 or 4011A 5 MHz Function Generator OS BK 2120B Dual Channel Oscilloscope V 1 BK 388B Multimeter L 1 Leeds & Northrup #1532 100 mh Inductor

More information

Radio Frequency Electronics

Radio Frequency Electronics Radio Frequency Electronics Preliminaries II Guglielmo Giovanni Maria Marconi Thought off by many people as the inventor of radio Pioneer in long-distance radio communications Shared Nobel Prize in 1909

More information

PROBLEMS. Figure13.74 For Prob Figure13.72 For Prob Figure13.75 For Prob Figure13.73 For Prob Figure13.76 For Prob

PROBLEMS. Figure13.74 For Prob Figure13.72 For Prob Figure13.75 For Prob Figure13.73 For Prob Figure13.76 For Prob CHAPTER 13 Magnetically Coupled Circuits 571 13.9 In order to match a source with internal impedance of 500 to a 15- load, what is needed is: (a) step-up linear transformer (b) step-down linear transformer

More information

Electricity & Optics

Electricity & Optics Physics 24100 Electricity & Optics Lecture 19 Chapter 29 sec. 1,2,5 Fall 2017 Semester Professor Koltick Series and Parallel R and L Resistors and inductors in series: R series = R 1 + R 2 L series = L

More information

The SI unit of inductance is the henry, defined as:

The SI unit of inductance is the henry, defined as: Inductors A coil of wire, or solenoid, can be used in a circuit to store energy in the magnetic field. We define the inductance of a solenoid having N turns, length l and cross-section area A as: The SI

More information

29 th International Physics Olympiad

29 th International Physics Olympiad 29 th International Physics Olympiad Reykjavik, Iceland Experimental competition Monday, July 6th, 1998 Time available: 5 hours Read this first: Use only the pen provided. 1. Use only the front side of

More information

Inductance. Chapter 30. PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman. Lectures by Wayne Anderson

Inductance. Chapter 30. PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman. Lectures by Wayne Anderson Chapter 30 Inductance PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 30 To learn how current in one coil

More information

Experiment 7: Undriven & Driven RLC Circuits

Experiment 7: Undriven & Driven RLC Circuits MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2006 OBJECTIVES Experiment 7: Undriven & Driven RLC Circuits 1. To explore the time dependent behavior of RLC Circuits, both driven

More information

Chapter Moving Charges and Magnetism

Chapter Moving Charges and Magnetism 100 Chapter Moving Charges and Magnetism 1. The power factor of an AC circuit having resistance (R) and inductance (L) connected in series and an angular velocity ω is [2013] 2. [2002] zero RvB vbl/r vbl

More information

Section 4: Operational Amplifiers

Section 4: Operational Amplifiers Section 4: Operational Amplifiers Op Amps Integrated circuits Simpler to understand than transistors Get back to linear systems, but now with gain Come in various forms Comparators Full Op Amps Differential

More information

N I N LI I. I t. (Note how L is independent of the current I.)

N I N LI I. I t. (Note how L is independent of the current I.) UNIT- IV MAGNETICALLY COUPLED CIRCUITS Magnetically Coupled Circuits: Self inductance - Mutual inductance - Dot rule - Coefficient of coupling - Analysis of multi winding coupled circuits - Series, Parallel

More information

The Series RLC Circuit and Resonance

The Series RLC Circuit and Resonance Purpose Theory The Series RLC Circuit and Resonance a. To study the behavior of a series RLC circuit in an AC current. b. To measure the values of the L and C using the impedance method. c. To study the

More information

Lab 8 - Electric Transformer

Lab 8 - Electric Transformer Lab 8 - Electric Transformer Safety and Equipment No special safety precautions are necessary for this lab. Computer with PASCO 850 Universal Interface and PASCO Capstone Magnetic Coil and Core Set 100

More information

Lab #8 Boost Converters Week of 31 March 2015

Lab #8 Boost Converters Week of 31 March 2015 ECE214: Electrical Circuits Laboratory Lab #8 Boost Converters Week of 31 March 2015 1 Introduction This is the first in a series of three labs that will culminate in a circuit that will convert a olt

More information

PHASES IN A SERIES LRC CIRCUIT

PHASES IN A SERIES LRC CIRCUIT PHASES IN A SERIES LRC CIRCUIT Introduction: In this lab, we will use a computer interface to analyze a series circuit consisting of an inductor (L), a resistor (R), a capacitor (C), and an AC power supply.

More information

Electronic Instrumentation

Electronic Instrumentation 10/1/014 1 Electronic Instrumentation Experiment 3 Part A: Making an Inductor Part B: Measurement of Inductance Part C: imulation of a Transformer Part D: Making a Transformer Inductors & Transformers

More information

AC Circuits. "Look for knowledge not in books but in things themselves." W. Gilbert ( )

AC Circuits. Look for knowledge not in books but in things themselves. W. Gilbert ( ) AC Circuits "Look for knowledge not in books but in things themselves." W. Gilbert (1540-1603) OBJECTIVES To study some circuit elements and a simple AC circuit. THEORY All useful circuits use varying

More information

Dr.Arkan A.Hussein Power Electronics Fourth Class. Commutation of Thyristor-Based Circuits Part-I

Dr.Arkan A.Hussein Power Electronics Fourth Class. Commutation of Thyristor-Based Circuits Part-I Commutation of Thyristor-Based Circuits Part-I ١ This lesson provides the reader the following: (i) (ii) (iii) (iv) Requirements to be satisfied for the successful turn-off of a SCR The turn-off groups

More information

Experiment 6. Electromagnetic Induction and transformers

Experiment 6. Electromagnetic Induction and transformers Experiment 6. Electromagnetic Induction and transformers 1. Purpose Confirm the principle of electromagnetic induction and transformers. 2. Principle The PASCO scientific SF-8616 Basic Coils Set and SF-8617

More information

PART B. t (sec) Figure 1

PART B. t (sec) Figure 1 Code No: R16128 R16 SET 1 I B. Tech II Semester Regular Examinations, April/May 217 ELECTRICAL CIRCUIT ANALYSIS I (Electrical and Electronics Engineering) Time: 3 hours Max. Marks: 7 Note: 1. Question

More information

Level 3 Physics, 2017

Level 3 Physics, 2017 91526 915260 3SUPERVISOR S Level 3 Physics, 2017 91526 Demonstrate understanding of electrical systems 2.00 p.m. Monday 20 November 2017 Credits: Six Achievement Achievement with Merit Achievement with

More information

Solution for Electrical and Electronic Measurements

Solution for Electrical and Electronic Measurements Q.1) Solution for Electrical and Electronic Measurements May 2016 Index a). 2 b). 2 c). 3-4 d). 5-6 e).. 6 Q.2) a). 7-11 b). 11-16 Q.3) a). 17-20 b). 21-22 Q.4) a). 23-25 b). 25-27 Q.5) a). N.A b). 28-31

More information

Chapter 6: Alternating Current

Chapter 6: Alternating Current hapter 6: Alternating urrent 6. Alternating urrent.o 6.. Define alternating current (A) An alternating current (A) is the electrical current which varies periodically with time in direction and magnitude.

More information

RC circuit. Recall the series RC circuit.

RC circuit. Recall the series RC circuit. RC circuit Recall the series RC circuit. If C is discharged and then a constant voltage V is suddenly applied, the charge on, and voltage across, C is initially zero. The charge ultimately reaches the

More information

EE 340 Power Transformers

EE 340 Power Transformers EE 340 Power Transformers Preliminary considerations A transformer is a device that converts one AC voltage to another AC voltage at the same frequency. It consists of one or more coil(s) of wire wrapped

More information

Energy efficient active vibration control strategies using electromagnetic linear actuators

Energy efficient active vibration control strategies using electromagnetic linear actuators Journal of Physics: Conference Series PAPER OPEN ACCESS Energy efficient active vibration control strategies using electromagnetic linear actuators To cite this article: Angel Torres-Perez et al 2018 J.

More information

ELEN 140 ELECTRICAL CIRCUITS II Winter 2013

ELEN 140 ELECTRICAL CIRCUITS II Winter 2013 ELEN 140 ELECTRICAL CIRCUITS II Winter 2013 Professor: Stephen O Loughlin Prerequisite: ELEN 130 Office: C234B Co-requisite: none Office Ph: (250) 762-5445 ext 4376 Lecture: 3.0 hrs/week Email: soloughlin@okanagan.bc.ca

More information

Level 3 Physics, 2016

Level 3 Physics, 2016 91526 915260 3SUPERVISOR S Level 3 Physics, 2016 91526 Demonstrate understanding of electrical systems 2.00 p.m. Tuesday 15 November 2016 Credits: Six Achievement Achievement with Merit Achievement with

More information

TEP. RLC Circuit with Cobra3

TEP. RLC Circuit with Cobra3 RLC Circuit with Cobra3 TEP Related topics Tuned circuit, series-tuned circuit, parallel-tuned circuit, resistance, capacitance, inductance, capacitor, coil, phase displacement, Q-factor, band-width,impedance,

More information

Question Paper Profile

Question Paper Profile I Scheme Question Paper Profile Program Name : Electrical Engineering Program Group Program Code : EE/EP/EU Semester : Third Course Title : Electrical Circuits Max. Marks : 70 Time: 3 Hrs. Instructions:

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 11 Electricity and Magnetism AC circuits and EM waves Resonance in a Series RLC circuit Transformers Maxwell, Hertz and EM waves Electromagnetic Waves 6/18/2007 http://www.physics.wayne.edu/~alan/2140website/main.htm

More information

Experiment 9: AC circuits

Experiment 9: AC circuits Experiment 9: AC circuits Nate Saffold nas2173@columbia.edu Office Hour: Mondays, 5:30PM-6:30PM @ Pupin 1216 INTRO TO EXPERIMENTAL PHYS-LAB 1493/1494/2699 Introduction Last week (RC circuit): This week:

More information