ECE 201 LAB 8 TRANSFORMERS & SINUSOIDAL STEADY STATE ANALYSIS

Size: px
Start display at page:

Download "ECE 201 LAB 8 TRANSFORMERS & SINUSOIDAL STEADY STATE ANALYSIS"

Transcription

1 Version of 8 ECE 201 LAB 8 TRANSFORMERS & SINUSOIDAL STEADY STATE ANALYSIS BEFORE YOU BEGIN PREREQUISITE LABS Introduction to MATLAB Introduction to Lab Equipment Introduction to Oscilloscope Capacitors, Inductors, and First Order Circuits EXPECTED KNOWLEDGE You should be familiar with Phasors, steadystate sinusoidal analysis, and the equations governing magnetically coupled coils EQUIPMENT Digital Multimeter Oscilloscope Arbitrary Function Generator MATERIALS Variable Capacitor Two 741 operational amplifiers Speaker Bobbin, core, and magnet wire OBJECTIVES After completing this lab you should know how to: Characterize a linear circuit component by making a series of measurements. Measure the properties of magnetically coupled coils using sinusoidal analysis. INTRODUCTION Resistors, inductors, and capacitors are the three most common passive components in electric circuits. Many of the nonideal effects in wires and connectors can be modeled with inductors and capacitors. Even when capacitors and inductors are not explicitly placed in a circuit, capacitance and inductance must often be taken into account to make a circuit operate correctly. For example, computer engineers must account for capacitance in circuit board wires during their design of the board layout. The equation that relates voltage and current for resistors, Ohm s law, is independent of time. It does not matter if the voltages and currents are time varying; their relationship remains the same.

2 Version of 8 In contrast, the relationship of voltage and current for capacitors and inductors is described by a differential equation that is time dependent. Thus, when working with capacitors and inductors you must take into account the time varying properties of the voltage and current. Intuitively, you should understand that capacitors resist rapid changes in voltage and inductors resist rapid changes in current. In previous labs you learned how to characterize resistors by analyzing data that you obtained with the lab equipment. For resistors, you accomplished this by measuring the resistance directly with the DMM. The accuracy of your analysis depended on your ability to accurately characterize circuit components. Many components can be modeled as a network of resistors, capacitors, and inductors. Motors, for example, have a great deal of inductance and a little resistance. To build a circuit that drives the motor efficiently, you would probably need to estimate the impedance of the motor from a series of measurements. This is often more accurate than the nominal specifications provided by the manufacturer. Transformers can be thought of as two magnetically coupled inductors with a high coefficient of coupling. Transformers are used in communications circuits to eliminate DC voltages and to match impedance between different portions of the circuit. They are also widely used in power distribution circuits. Power lines are less power efficient at low voltages, so the crosscountry power transmission lines carry electrical power at tens of thousands of volts. Transformers are used to convert this high voltage to a lower voltage (e.g. 120 V), which is safer for local use. CAPACITORS Capacitors come in many varieties. Two of the most common types are electrolytic and ceramic. Electrolytic capacitors are shaped like small cylinders. These capacitors are sensitive to polarity. One of the leads in these capacitors is usually longer than the other and there is often a + or sign printed on the cylinder that indicates the polarity. It is important that the voltage across this type of capacitor always conforms to the required polarity. If you connect this capacitor such that the lead marked with the has a higher potential (voltage) than the other lead, the capacitor may explode. Ceramic capacitors are shaped like small discs and usually have smaller values than electrolytic capacitors. They are not polarity sensitive and are not prone to explosion. Large capacitors, such as 10 uf (ten microfarads), have their value printed directly on them. Smaller disk type capacitors along with plastic film types often have just two or three numbers printed on them. If there are just two numbers on the capacitor, the value is read as PicoFarads. An example: 47 printed on a small disk capacitor has a nominal value of 47 pf. The capacitors with three numbers are read like the resistor code. The first two numbers are the first and second significant digits and the third is a multiplier code. Note that even when the third digit is given, the units of the capacitance are pf. Table 1 gives the multiplier codes and their meanings.

3 Version of 8 Third digit Multiplier , , ,000 6 not used 7 not used Table 1: Capacitor Multiplier Codes. Occasionally the manufacturer will also include a letter after the numbers. This letter is similar to the tolerance band on resistors and indicates how much the true value may vary from the nominal value printed on the case. Table 2 lists the tolerance codes for capacitors.

4 Version of 8 Letter symbol D Tolerance ± 0.5 pf F ± 1% G ± 2% H ± 3% J ± 5% K ± 10% M ± 20% P +100%,0% Z +80%, 20% Table 2. Capacitor Tolerance Codes For example, a 103J is a 10,000 pf capacitor with ±5% tolerance. If the capacitor marking begins with a decimal point, the value is read directly in microfarads. If a letter follows the numbers, it is read using the tolerance code in Table 2. For example, a capacitor marked.001m has a value of.001 µf (or 1 nf) and a tolerance of +/ 20%. INDUCTORS Inductor nominal values are usually printed directly on the inductor. Some manufacturers code their inductors by giving the multiplier first, followed by the first and second significant digits. In this case, the value is read in micro Henries. For example, if the inductor has 410 printed on it, it is read as (10 * 10000) µh, or 100 mh. PRELAB You will need to cut the wire in your kit into two pieces, one piece twice as long as the other. The easiest way to do this is to stretch the wire out and then bend it into thirds. Then cut the wire on one of the bends. Wrap your inductor bobbin using the two pieces of wire. Make the ratio of turns 2:1. You should be able to wrap one wire approximately 40 times, and the other wire approximately 20 times around the bobbin. Place both halves of the E shaped core into the bobbin with the two pieces of the core touching. Secure the core in place with a piece of wire.

5 Version of 8 The easiest way to do this is to pass a piece of wire between the core and rectangular opening on the bobbin on both sides of the core, then twist both ends of the wire together. Answer Questions 1 4. MAGNETICALLY COUPLED COILS In this section, you will determine the self inductance and mutual inductance of your transformer. For this lab, the side of your transformer with the smaller inductance will be called the primary side. The side with the larger inductance will be called the secondary side. SINUSOIDAL CHARACTERIZATION You can use sinusoidal analysis to determine the inductance of each winding of the transformer, L1 and L2, and to find the mutual inductance M in Figure Ω V Sine Wave V i V 1 L Figure 1. Sinusodial Characterization for an Inductor Figure 1 shows the circuit you will be using to determine the inductance of your transformer. To determine the value of the primary side of your transformer, you need to find V 1 as a phasor o relative to V i. If we choose to use V i as our reference ( V i = 1 0 ), V 1 should have a smaller amplitude and a negative angle. To find V 1, construct the circuit shown in Figure 1. Measure the peak to peak amplitude of V i and V 1 with the oscilloscope. To make your readings more accurate, you will need to average the input from your circuit on the oscilloscope. To do this, press the Menu button directly below the waveform intensity knob. Then press the screen menu button below the Mode label and then the screen menu button next to the Average label. In this mode, the oscilloscope takes the average of the input over a specified length of time. You can change this length of time using the selector knob just to the left of the Measure and Cursor buttons. As you increase the time, your waveform will appear cleaner. For this experiment, set this time to 32. The current setting is displayed just below the Average label in the Acquire menu. Next, use the cursors to measure the phase shift of the two sinusoids. To do this, you will need to have Channel 1 and Channel 2 coupling set to AC. (Use the vertical menu button to make this change.) Next push the Cursor button and select vertical bars. You will need to line up one of the vertical bars on the spot where the rising portion of one of the waves crosses the horizontal axis. Line up the other vertical bar on the spot where the rising portion of the second wave crosses the horizontal axis as in Figure 2.

6 Version of 8 Estimating Relative Phase Figure 2. Sample Phase Measurement In Figure 2, the signal on Channel 2 crosses 0 V approximately 312 µs before the signal on Channel 1. If these sinusoidal signals have a frequency of 500 Hz (period = 2 ms), the phase of 312µs o o the signal on Channel 2 is 360 = 56.16, relative to the signal on Channel 1. 2ms To decrease your error, repeat the above procedure using the falling portions of the waves. Then average the two measurements.

7 Version of 8 Estimating Signal Amplitude You should know how to use the oscilloscope to measure the amplitude of sinusoidal voltages. Be careful to distinguish between peaktopeak, amplitude, and RMS estimates. Use the techniques described above and your previous answers to estimate the inductance on each winding of the transformer. You will need to use the DMM to find the exact value of your 47 Ω resistor. Repeat this process using three different frequencies for V i : 500 Hz, 1 khz, and 2 khz. Answer Question 5. + i M + 1 V Sine Wave V in V 1 + L 1 L 2 V 2 47 Ω Figure 3. Circuit For Determining M To find the mutual inductance of your transformer, construct the circuit shown in Figure 3. Since there is no current flowing through L 2, there will be no reflected impedance, and therefore, V2 = jω M i. V 1 can be foud using Ohm s law and i. (Be sure to measure V 1 and V 2 with respect to V in.) Answer Question 6 7. SPEAKER CHARACTERIZATION Using the method described in the previous section, estimate the inductance of the speaker in your lab kit at three different frequencies: 500 Hz, 1 khz and 2 khz. Limit the amplitude of your input voltage to 1 V. Don t forget to account for the 8 Ω resistance in the speaker. Answer Questions Connect your transformer to the speaker to boost the power delivered to the speaker. Answer Questions Design a circuit that will maximize power transfer to your speaker at 2 khz. You should find that this will require at least one capacitor. Answer Questions

8 Version of 8 OPAMPS AND SPEAKERS Design and build a circuit using opamps that will amplify a 1 V signal by a factor of 10. Make sure that the circuit does not invert the signal. Connect your circuit to the speaker. Answer Questions

LABORATORY 4. Palomar College ENGR210 Spring 2017 ASSIGNED: 3/21/17

LABORATORY 4. Palomar College ENGR210 Spring 2017 ASSIGNED: 3/21/17 LABORATORY 4 ASSIGNED: 3/21/17 OBJECTIVE: The purpose of this lab is to evaluate the transient and steady-state circuit response of first order and second order circuits. MINIMUM EQUIPMENT LIST: You will

More information

LAB 1: Familiarity with Laboratory Equipment (_/10)

LAB 1: Familiarity with Laboratory Equipment (_/10) LAB 1: Familiarity with Laboratory Equipment (_/10) PURPOSE o gain familiarity with basic laboratory equipment oscilloscope, oscillator, multimeter and electronic components. EQUIPMEN (i) Oscilloscope

More information

AC Circuits. "Look for knowledge not in books but in things themselves." W. Gilbert ( )

AC Circuits. Look for knowledge not in books but in things themselves. W. Gilbert ( ) AC Circuits "Look for knowledge not in books but in things themselves." W. Gilbert (1540-1603) OBJECTIVES To study some circuit elements and a simple AC circuit. THEORY All useful circuits use varying

More information

Physics 310 Lab 2 Circuit Transients and Oscilloscopes

Physics 310 Lab 2 Circuit Transients and Oscilloscopes Physics 310 Lab 2 Circuit Transients and Oscilloscopes Equipment: function generator, oscilloscope, two BNC cables, BNC T connector, BNC banana adapter, breadboards, wire packs, some banana cables, three

More information

University of Jordan School of Engineering Electrical Engineering Department. EE 219 Electrical Circuits Lab

University of Jordan School of Engineering Electrical Engineering Department. EE 219 Electrical Circuits Lab University of Jordan School of Engineering Electrical Engineering Department EE 219 Electrical Circuits Lab EXPERIMENT 4 TRANSIENT ANALYSIS Prepared by: Dr. Mohammed Hawa EXPERIMENT 4 TRANSIENT ANALYSIS

More information

Lab 3: AC Low pass filters (version 1.3)

Lab 3: AC Low pass filters (version 1.3) Lab 3: AC Low pass filters (version 1.3) WARNING: Use electrical test equipment with care! Always double-check connections before applying power. Look for short circuits, which can quickly destroy expensive

More information

Lab 13 AC Circuit Measurements

Lab 13 AC Circuit Measurements Lab 13 AC Circuit Measurements Objectives concepts 1. what is impedance, really? 2. function generator and oscilloscope 3. RMS vs magnitude vs Peak-to-Peak voltage 4. phase between sinusoids skills 1.

More information

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering EXPERIMENT 2 BASIC CIRCUIT ELEMENTS OBJECTIVES The purpose of this experiment is to familiarize the student with

More information

EE-2302 Passive Filters and Frequency Response

EE-2302 Passive Filters and Frequency Response EE2302 Passive Filters and Frequency esponse Objective he student should become acquainted with simple passive filters for performing highpass, lowpass, and bandpass operations. he experimental tasks also

More information

Lab E5: Filters and Complex Impedance

Lab E5: Filters and Complex Impedance E5.1 Lab E5: Filters and Complex Impedance Note: It is strongly recommended that you complete lab E4: Capacitors and the RC Circuit before performing this experiment. Introduction Ohm s law, a well known

More information

Question Paper Profile

Question Paper Profile I Scheme Question Paper Profile Program Name : Electrical Engineering Program Group Program Code : EE/EP/EU Semester : Third Course Title : Electrical Circuits Max. Marks : 70 Time: 3 Hrs. Instructions:

More information

University of Jordan School of Engineering Electrical Engineering Department. EE 204 Electrical Engineering Lab

University of Jordan School of Engineering Electrical Engineering Department. EE 204 Electrical Engineering Lab University of Jordan School of Engineering Electrical Engineering Department EE 204 Electrical Engineering Lab EXPERIMENT 1 MEASUREMENT DEVICES Prepared by: Prof. Mohammed Hawa EXPERIMENT 1 MEASUREMENT

More information

AME140 Lab #2 INTRODUCTION TO ELECTRONIC TEST EQUIPMENT AND BASIC ELECTRONICS MEASUREMENTS

AME140 Lab #2 INTRODUCTION TO ELECTRONIC TEST EQUIPMENT AND BASIC ELECTRONICS MEASUREMENTS INTRODUCTION TO ELECTRONIC TEST EQUIPMENT AND BASIC ELECTRONICS MEASUREMENTS The purpose of this document is to guide students through a few simple activities to increase familiarity with basic electronics

More information

Exercise 1: AC Waveform Generator Familiarization

Exercise 1: AC Waveform Generator Familiarization Exercise 1: AC Waveform Generator Familiarization EXERCISE OBJECTIVE When you have completed this exercise, you will be able to operate an ac waveform generator by using equipment provided. You will verify

More information

Instructions for the final examination:

Instructions for the final examination: School of Information, Computer and Communication Technology Sirindhorn International Institute of Technology Thammasat University Practice Problems for the Final Examination COURSE : ECS304 Basic Electrical

More information

LAB II. INTRODUCTION TO LAB EQUIPMENT

LAB II. INTRODUCTION TO LAB EQUIPMENT 1. OBJECTIVE LAB II. INTRODUCTION TO LAB EQUIPMENT In this lab you will learn how to properly operate the oscilloscope Keysight DSOX1102A, the Keithley Source Measure Unit (SMU) 2430, the function generator

More information

University of Pennsylvania Department of Electrical and Systems Engineering. ESE 206: Electrical Circuits and Systems II - Lab

University of Pennsylvania Department of Electrical and Systems Engineering. ESE 206: Electrical Circuits and Systems II - Lab University of Pennsylvania Department of Electrical and Systems Engineering ESE 206: Electrical Circuits and Systems II - Lab AC POWER ANALYSIS AND DESIGN I. Purpose and Equipment: Provide experimental

More information

Sirindhorn International Institute of Technology Thammasat University at Rangsit

Sirindhorn International Institute of Technology Thammasat University at Rangsit Sirindhorn International Institute of Technology Thammasat University at Rangsit School of Information, Computer and Communication Technology COURSE : ECS 210 Basic Electrical Engineering Lab INSTRUCTOR

More information

ET 304A Laboratory Tutorial-Circuitmaker For Transient and Frequency Analysis

ET 304A Laboratory Tutorial-Circuitmaker For Transient and Frequency Analysis ET 304A Laboratory Tutorial-Circuitmaker For Transient and Frequency Analysis All circuit simulation packages that use the Pspice engine allow users to do complex analysis that were once impossible to

More information

Inductors and Transformers

Inductors and Transformers MEHRAN UNIVERSITY OF ENGINEERING AND TECHNOLOGY, JAMSHORO DEPARTMENT OF ELECTRONIC ENGINEERING ELECTRONIC WORKSHOP # 05 Inductors and Transformers Roll. No: Checked by: Date: Grade: Object: To become familiar

More information

Using Circuits, Signals and Instruments

Using Circuits, Signals and Instruments Using Circuits, Signals and Instruments To be ignorant of one s ignorance is the malady of the ignorant. A. B. Alcott (1799-1888) Some knowledge of electrical and electronic technology is essential for

More information

EE 221 L CIRCUIT II LABORATORY 4: AC CIRCUITS, CAPACITORS AND INDUCTORS UNIVERSITY OF NEVADA, LAS VEGAS OBJECTIVE COMPONENTS & EQUIPMENT BACKGROUND

EE 221 L CIRCUIT II LABORATORY 4: AC CIRCUITS, CAPACITORS AND INDUCTORS UNIVERSITY OF NEVADA, LAS VEGAS OBJECTIVE COMPONENTS & EQUIPMENT BACKGROUND EE 221 L CIRCUIT II LABORATORY 4: AC CIRCUITS, CAPACITORS AND INDUCTORS DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING UNIVERSITY OF NEVADA, LAS VEGAS OBJECTIVE Compare the difference between DC and

More information

Physics Class 12 th NCERT Solutions

Physics Class 12 th NCERT Solutions Chapter.7 Alternating Current Class XII Subject Physics 7.1. A 100 Ω resistor is connected to a 220 V, 50 Hz ac supply. a) What is the rms value of current in the circuit? b) What is the net power consumed

More information

PHYS 3322 Modern Laboratory Methods I AC R, RC, and RL Circuits

PHYS 3322 Modern Laboratory Methods I AC R, RC, and RL Circuits Purpose PHYS 3322 Modern Laboratory Methods I AC, C, and L Circuits For a given frequency, doubling of the applied voltage to resistors, capacitors, and inductors doubles the current. Hence, each of these

More information

ECE 2274 Lab 2. Your calculator will have a setting that will automatically generate the correct format.

ECE 2274 Lab 2. Your calculator will have a setting that will automatically generate the correct format. ECE 2274 Lab 2 Forward (DO NOT TURN IN) You are expected to use engineering exponents for all answers (p,n,µ,m, N/A, k, M, G) and to give each with a precision between one and three leading digits and

More information

Simple AC Circuits. Introduction

Simple AC Circuits. Introduction Simple AC Circuits Introduction Each problem in this problem set involves the steady state response of a linear, time-invariant circuit to a single sinusoidal input. Such a response is known to be sinusoidal

More information

CHAPTER 9. Sinusoidal Steady-State Analysis

CHAPTER 9. Sinusoidal Steady-State Analysis CHAPTER 9 Sinusoidal Steady-State Analysis 9.1 The Sinusoidal Source A sinusoidal voltage source (independent or dependent) produces a voltage that varies sinusoidally with time. A sinusoidal current source

More information

ECE 2274 Lab 2 (Network Theorems)

ECE 2274 Lab 2 (Network Theorems) ECE 2274 Lab 2 (Network Theorems) Forward (DO NOT TURN IN) You are expected to use engineering exponents for all answers (p,n,µ,m, N/A, k, M, G) and to give each with a precision between one and three

More information

ECE 2006 University of Minnesota Duluth Lab 11. AC Circuits

ECE 2006 University of Minnesota Duluth Lab 11. AC Circuits 1. Objective AC Circuits In this lab, the student will study sinusoidal voltages and currents in order to understand frequency, period, effective value, instantaneous power and average power. Also, the

More information

Sept 13 Pre-lab due Sept 12; Lab memo due Sept 19 at the START of lab time, 1:10pm

Sept 13 Pre-lab due Sept 12; Lab memo due Sept 19 at the START of lab time, 1:10pm Sept 13 Pre-lab due Sept 12; Lab memo due Sept 19 at the START of lab time, 1:10pm EGR 220: Engineering Circuit Theory Lab 1: Introduction to Laboratory Equipment Pre-lab Read through the entire lab handout

More information

A Practical Exercise Name: Section:

A Practical Exercise Name: Section: AC Thèvenin Updated 17 AUG 2016 A Practical Exercise Name: Section: I. Purpose. 1. Review the construction and analysis of AC circuits using a DMM and/or oscilloscope. 2. Introduce the AC Thèvenin equivalent

More information

RLC Frequency Response

RLC Frequency Response 1. Introduction RLC Frequency Response The student will analyze the frequency response of an RLC circuit excited by a sinusoid. Amplitude and phase shift of circuit components will be analyzed at different

More information

Lab 4: Analysis of the Stereo Amplifier

Lab 4: Analysis of the Stereo Amplifier ECE 212 Spring 2010 Circuit Analysis II Names: Lab 4: Analysis of the Stereo Amplifier Objectives In this lab exercise you will use the power supply to power the stereo amplifier built in the previous

More information

University of Jordan School of Engineering Electrical Engineering Department. EE 219 Electrical Circuits Lab

University of Jordan School of Engineering Electrical Engineering Department. EE 219 Electrical Circuits Lab University of Jordan School of Engineering Electrical Engineering Department EE 219 Electrical Circuits Lab EXPERIMENT 7 RESONANCE Prepared by: Dr. Mohammed Hawa EXPERIMENT 7 RESONANCE OBJECTIVE This experiment

More information

Exercise 1: Series RLC Circuits

Exercise 1: Series RLC Circuits RLC Circuits AC 2 Fundamentals Exercise 1: Series RLC Circuits EXERCISE OBJECTIVE When you have completed this exercise, you will be able to analyze series RLC circuits by using calculations and measurements.

More information

EK307 Active Filters and Steady State Frequency Response

EK307 Active Filters and Steady State Frequency Response EK307 Active Filters and Steady State Frequency Response Laboratory Goal: To explore the properties of active signal-processing filters Learning Objectives: Active Filters, Op-Amp Filters, Bode plots Suggested

More information

332:223 Principles of Electrical Engineering I Laboratory Experiment #2 Title: Function Generators and Oscilloscopes Suggested Equipment:

332:223 Principles of Electrical Engineering I Laboratory Experiment #2 Title: Function Generators and Oscilloscopes Suggested Equipment: RUTGERS UNIVERSITY The State University of New Jersey School of Engineering Department Of Electrical and Computer Engineering 332:223 Principles of Electrical Engineering I Laboratory Experiment #2 Title:

More information

29:128 Homework Problems

29:128 Homework Problems 29:128 Homework Problems Revised 22 Feb 2012 29:128 Homework 1 (15 points) references: Sections 1.6-1.7 & 4.8, Meyer Chapter 1 of Horowitz and Hill, 2nd Edition (1) In the circuit shown below, V in = 9

More information

Operational Amplifiers: Part II

Operational Amplifiers: Part II 1. Introduction Operational Amplifiers: Part II The name "operational amplifier" comes from this amplifier's ability to perform mathematical operations. Three good examples of this are the summing amplifier,

More information

Integrators, differentiators, and simple filters

Integrators, differentiators, and simple filters BEE 233 Laboratory-4 Integrators, differentiators, and simple filters 1. Objectives Analyze and measure characteristics of circuits built with opamps. Design and test circuits with opamps. Plot gain vs.

More information

QUESTION BANK ETE (17331) CM/IF. Chapter1: DC Circuits

QUESTION BANK ETE (17331) CM/IF. Chapter1: DC Circuits QUESTION BANK ETE (17331) CM/IF Chapter1: DC Circuits Q1. State & explain Ohms law. Also explain concept of series & parallel circuit with the help of diagram. 3M Q2. Find the value of resistor in fig.

More information

R 1 R 2. (3) Suppose you have two ac signals, which we ll call signals A and B, which have peak-to-peak amplitudes of 30 mv and 600 mv, respectively.

R 1 R 2. (3) Suppose you have two ac signals, which we ll call signals A and B, which have peak-to-peak amplitudes of 30 mv and 600 mv, respectively. 29:128 Homework Problems 29:128 Homework 0 reference: Chapter 1 of Horowitz and Hill (1) In the circuit shown below, V in = 9 V, R 1 = 1.5 kω, R 2 = 5.6 kω, (a) Calculate V out (b) Calculate the power

More information

AC reactive circuit calculations

AC reactive circuit calculations AC reactive circuit calculations This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

Exercise 1: Inductors

Exercise 1: Inductors Exercise 1: Inductors EXERCISE OBJECTIVE When you have completed this exercise, you will be able to describe the effect an inductor has on dc and ac circuits by using measured values. You will verify your

More information

EE 368 Electronics Lab. Experiment 10 Operational Amplifier Applications (2)

EE 368 Electronics Lab. Experiment 10 Operational Amplifier Applications (2) EE 368 Electronics Lab Experiment 10 Operational Amplifier Applications (2) 1 Experiment 10 Operational Amplifier Applications (2) Objectives To gain experience with Operational Amplifier (Op-Amp). To

More information

Experiment 8: An AC Circuit

Experiment 8: An AC Circuit Experiment 8: An AC Circuit PART ONE: AC Voltages. Set up this circuit. Use R = 500 Ω, L = 5.0 mh and C =.01 μf. A signal generator built into the interface provides the emf to run the circuit from Output

More information

Experiment #2: Introduction to Lab Equipment: Function Generator, Oscilloscope, and Multisim

Experiment #2: Introduction to Lab Equipment: Function Generator, Oscilloscope, and Multisim SCHOOL OF ENGINEERING AND APPLIED SCIENCE DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING ECE 2110: CIRCUIT THEORY LABORATORY Experiment #2: Introduction to Lab Equipment: Function Generator, Oscilloscope,

More information

EE2210 Laboratory Project 1 Fall 2013 Function Generator and Oscilloscope

EE2210 Laboratory Project 1 Fall 2013 Function Generator and Oscilloscope EE2210 Laboratory Project 1 Fall 2013 Function Generator and Oscilloscope For students to become more familiar with oscilloscopes and function generators. Pre laboratory Work Read the TDS 210 Oscilloscope

More information

Lab 3: RC Circuits. Construct circuit 2 in EveryCircuit. Set values for the capacitor and resistor to match those in figure 2 and set the frequency to

Lab 3: RC Circuits. Construct circuit 2 in EveryCircuit. Set values for the capacitor and resistor to match those in figure 2 and set the frequency to Lab 3: RC Circuits Prelab Deriving equations for the output voltage of the voltage dividers you constructed in lab 2 was fairly simple. Now we want to derive an equation for the output voltage of a circuit

More information

ME 365 EXPERIMENT 7 SIGNAL CONDITIONING AND LOADING

ME 365 EXPERIMENT 7 SIGNAL CONDITIONING AND LOADING ME 365 EXPERIMENT 7 SIGNAL CONDITIONING AND LOADING Objectives: To familiarize the student with the concepts of signal conditioning. At the end of the lab, the student should be able to: Understand the

More information

LAB I. INTRODUCTION TO LAB EQUIPMENT

LAB I. INTRODUCTION TO LAB EQUIPMENT 1. OBJECTIVE LAB I. INTRODUCTION TO LAB EQUIPMENT In this lab you will learn how to properly operate the oscilloscope Agilent MSO6032A, the Keithley Source Measure Unit (SMU) 2430, the function generator

More information

LAB 8: Activity P52: LRC Circuit

LAB 8: Activity P52: LRC Circuit LAB 8: Activity P52: LRC Circuit Equipment: Voltage Sensor 1 Multimeter 1 Patch Cords 2 AC/DC Electronics Lab (100 μf capacitor; 10 Ω resistor; Inductor Coil; Iron core; 5 inch wire lead) The purpose of

More information

ELECTROMAGNETIC INDUCTION AND ALTERNATING CURRENT (Assignment)

ELECTROMAGNETIC INDUCTION AND ALTERNATING CURRENT (Assignment) ELECTROMAGNETIC INDUCTION AND ALTERNATING CURRENT (Assignment) 1. In an A.C. circuit A ; the current leads the voltage by 30 0 and in circuit B, the current lags behind the voltage by 30 0. What is the

More information

EECS40 RLC Lab guide

EECS40 RLC Lab guide EECS40 RLC Lab guide Introduction Second-Order Circuits Second order circuits have both inductor and capacitor components, which produce one or more resonant frequencies, ω0. In general, a differential

More information

An induced emf is the negative of a changing magnetic field. Similarly, a self-induced emf would be found by

An induced emf is the negative of a changing magnetic field. Similarly, a self-induced emf would be found by This is a study guide for Exam 4. You are expected to understand and be able to answer mathematical questions on the following topics. Chapter 32 Self-Induction and Induction While a battery creates an

More information

Experiment 1.A. Working with Lab Equipment. ECEN 2270 Electronics Design Laboratory 1

Experiment 1.A. Working with Lab Equipment. ECEN 2270 Electronics Design Laboratory 1 .A Working with Lab Equipment Electronics Design Laboratory 1 1.A.0 1.A.1 3 1.A.4 Procedures Turn in your Pre Lab before doing anything else Setup the lab waveform generator to output desired test waveforms,

More information

University of Portland EE 271 Electrical Circuits Laboratory. Experiment: Inductors

University of Portland EE 271 Electrical Circuits Laboratory. Experiment: Inductors University of Portland EE 271 Electrical Circuits Laboratory Experiment: Inductors I. Objective The objective of this experiment is to verify the relationship between voltage and current in an inductor,

More information

Experiment 9 AC Circuits

Experiment 9 AC Circuits Experiment 9 AC Circuits "Look for knowledge not in books but in things themselves." W. Gilbert (1540-1603) OBJECTIVES To study some circuit elements and a simple AC circuit. THEORY All useful circuits

More information

Lab 9: Operational amplifiers II (version 1.5)

Lab 9: Operational amplifiers II (version 1.5) Lab 9: Operational amplifiers II (version 1.5) WARNING: Use electrical test equipment with care! Always double-check connections before applying power. Look for short circuits, which can quickly destroy

More information

Lab E2: B-field of a Solenoid. In the case that the B-field is uniform and perpendicular to the area, (1) reduces to

Lab E2: B-field of a Solenoid. In the case that the B-field is uniform and perpendicular to the area, (1) reduces to E2.1 Lab E2: B-field of a Solenoid In this lab, we will explore the magnetic field created by a solenoid. First, we must review some basic electromagnetic theory. The magnetic flux over some area A is

More information

UNIVERSITY OF CALIFORNIA, SANTA BARBARA Department of Electrical and Computer Engineering. ECE 2A & 2B Laboratory Equipment Information

UNIVERSITY OF CALIFORNIA, SANTA BARBARA Department of Electrical and Computer Engineering. ECE 2A & 2B Laboratory Equipment Information UNIVERSITY OF CALIFORNIA, SANTA BARBARA Department of Electrical and Computer Engineering ECE 2A & 2B Laboratory Equipment Information Table of Contents Digital Multi-Meter (DMM)... 1 Features... 1 Using

More information

total j = BA, [1] = j [2] total

total j = BA, [1] = j [2] total Name: S.N.: Experiment 2 INDUCTANCE AND LR CIRCUITS SECTION: PARTNER: DATE: Objectives Estimate the inductance of the solenoid used for this experiment from the formula for a very long, thin, tightly wound

More information

Lab #2: Electrical Measurements II AC Circuits and Capacitors, Inductors, Oscillators and Filters

Lab #2: Electrical Measurements II AC Circuits and Capacitors, Inductors, Oscillators and Filters Lab #2: Electrical Measurements II AC Circuits and Capacitors, Inductors, Oscillators and Filters Goal: In circuits with a time-varying voltage, the relationship between current and voltage is more complicated

More information

ME 365 EXPERIMENT 1 FAMILIARIZATION WITH COMMONLY USED INSTRUMENTATION

ME 365 EXPERIMENT 1 FAMILIARIZATION WITH COMMONLY USED INSTRUMENTATION Objectives: ME 365 EXPERIMENT 1 FAMILIARIZATION WITH COMMONLY USED INSTRUMENTATION The primary goal of this laboratory is to study the operation and limitations of several commonly used pieces of instrumentation:

More information

Electrical Fundamentals and Basic Components Chapters T2, T3, G4

Electrical Fundamentals and Basic Components Chapters T2, T3, G4 Electrical Fundamentals and Basic Components Chapters T2, T3, G4 Some Basic Math, Electrical Fundamentals, AC Power, The Basics of Basic Components, A Little More Component Detail, Reactance and Impedance

More information

Lab Equipment EECS 311 Fall 2009

Lab Equipment EECS 311 Fall 2009 Lab Equipment EECS 311 Fall 2009 Contents Lab Equipment Overview pg. 1 Lab Components.. pg. 4 Probe Compensation... pg. 8 Finite Instrumentation Impedance. pg.10 Simulation Tools..... pg. 10 1 - Laboratory

More information

Electric Circuit Fall 2017 Lab10. LABORATORY 10 RLC Circuits. Guide. Figure 1: Voltage and current in an AC circuit.

Electric Circuit Fall 2017 Lab10. LABORATORY 10 RLC Circuits. Guide. Figure 1: Voltage and current in an AC circuit. LABORATORY 10 RLC Circuits Guide Introduction RLC circuit When an AC signal is input to a RLC circuit, voltage across each element varies as a function of time. The voltage will oscillate with a frequency

More information

Instrument Usage in Circuits Lab

Instrument Usage in Circuits Lab Instrument Usage in Circuits Lab This document contains descriptions of the various components and instruments that will be used in Circuit Analysis laboratory. Descriptions currently exist for the following

More information

Non-ideal Behavior of Electronic Components at High Frequencies and Associated Measurement Problems

Non-ideal Behavior of Electronic Components at High Frequencies and Associated Measurement Problems Nonideal Behavior of Electronic Components at High Frequencies and Associated Measurement Problems Matthew Beckler beck0778@umn.edu EE30 Lab Section 008 October 27, 2006 Abstract In the world of electronics,

More information

CHAPTER 6: ALTERNATING CURRENT

CHAPTER 6: ALTERNATING CURRENT CHAPTER 6: ALTERNATING CURRENT PSPM II 2005/2006 NO. 12(C) 12. (c) An ac generator with rms voltage 240 V is connected to a RC circuit. The rms current in the circuit is 1.5 A and leads the voltage by

More information

Name: Resistors and Basic Resistive Circuits. Objective: To gain experience with data acquisition proto-boards physical resistors. Table of Contents:

Name: Resistors and Basic Resistive Circuits. Objective: To gain experience with data acquisition proto-boards physical resistors. Table of Contents: Objective: To gain experience with data acquisition proto-boards physical resistors Table of Contents: Name: Resistors and Basic Resistive Circuits Pre-Lab Assignment 1 Background 2 National Instruments

More information

Lab 3 Transient Response of RC & RL Circuits

Lab 3 Transient Response of RC & RL Circuits Lab 3 Transient Response of RC & RL Circuits Last Name: First Name: Student Number: Lab Section: Monday Tuesday Wednesday Thursday Friday TA Signature: Note: The Pre-Lab section must be completed prior

More information

Lab #5 Steady State Power Analysis

Lab #5 Steady State Power Analysis Lab #5 Steady State Power Analysis Steady state power analysis refers to the power analysis of circuits that have one or more sinusoid stimuli. This lab covers the concepts of RMS voltage, maximum power

More information

Chapter 30 Inductance, Electromagnetic. Copyright 2009 Pearson Education, Inc.

Chapter 30 Inductance, Electromagnetic. Copyright 2009 Pearson Education, Inc. Chapter 30 Inductance, Electromagnetic Oscillations, and AC Circuits 30-7 AC Circuits with AC Source Resistors, capacitors, and inductors have different phase relationships between current and voltage

More information

APPENDIX D DISCUSSION OF ELECTRONIC INSTRUMENTS

APPENDIX D DISCUSSION OF ELECTRONIC INSTRUMENTS APPENDIX D DISCUSSION OF ELECTRONIC INSTRUMENTS DC POWER SUPPLIES We will discuss these instruments one at a time, starting with the DC power supply. The simplest DC power supplies are batteries which

More information

Department of Electrical & Computer Engineering Technology. EET 3086C Circuit Analysis Laboratory Experiments. Masood Ejaz

Department of Electrical & Computer Engineering Technology. EET 3086C Circuit Analysis Laboratory Experiments. Masood Ejaz Department of Electrical & Computer Engineering Technology EET 3086C Circuit Analysis Laboratory Experiments Masood Ejaz Experiment # 1 DC Measurements of a Resistive Circuit and Proof of Thevenin Theorem

More information

Faculty of Engineering, Thammasat University

Faculty of Engineering, Thammasat University Faculty of Engineering, Thammasat University Experiment 6: Oscilloscope (For room 506) Objectives: 1. To familiarize you with the Oscilloscope and Function Generator User Manual: Oscilloscope 1 5 9 4 7

More information

Electronics and Instrumentation ENGR-4300 Spring 2004 Section Experiment 5 Introduction to AC Steady State

Electronics and Instrumentation ENGR-4300 Spring 2004 Section Experiment 5 Introduction to AC Steady State Experiment 5 Introduction to C Steady State Purpose: This experiment addresses combinations of resistors, capacitors and inductors driven by sinusoidal voltage sources. In addition to the usual simulation

More information

Lab #1 Lab Introduction

Lab #1 Lab Introduction Cir cuit s 212 Lab Lab #1 Lab Introduction Special Information for this Lab s Report Because this is a one-week lab, please hand in your lab report for this lab at the beginning of next week s lab. The

More information

2. Solve this binary equation. Answer in a decimal number form = A. 42 B. 54 C. 15 D

2. Solve this binary equation. Answer in a decimal number form = A. 42 B. 54 C. 15 D Electronics Practice Test By David Scott, Manfred Brancard and Gary Troutman 1. A few capacitors are in parallel. Calculate the total capacitance. The capacitor values are 1uF, 2uF, 3uF, and 4uF. The total

More information

Exp. #2-6 : Measurement of the Characteristics of,, and Circuits by Using an Oscilloscope

Exp. #2-6 : Measurement of the Characteristics of,, and Circuits by Using an Oscilloscope PAGE 1/14 Exp. #2-6 : Measurement of the Characteristics of,, and Circuits by Using an Oscilloscope Student ID Major Name Team No. Experiment Lecturer Student's Mentioned Items Experiment Class Date Submission

More information

ET1210: Module 5 Inductance and Resonance

ET1210: Module 5 Inductance and Resonance Part 1 Inductors Theory: When current flows through a coil of wire, a magnetic field is created around the wire. This electromagnetic field accompanies any moving electric charge and is proportional to

More information

The RLC Series Circuit with an AC Source

The RLC Series Circuit with an AC Source The R Series ircuit with an A Source Introduction Ohm s law and R circuit labs use a steady current. However, this lab uses a different power supply, which is alternating current (A). The previous electronics

More information

Real Analog - Circuits 1 Chapter 11: Lab Projects

Real Analog - Circuits 1 Chapter 11: Lab Projects Real Analog - Circuits 1 Chapter 11: Lab Projects 11.2.1: Signals with Multiple Frequency Components Overview: In this lab project, we will calculate the magnitude response of an electrical circuit and

More information

OPERATIONAL AMPLIFIERS LAB

OPERATIONAL AMPLIFIERS LAB 1 of 6 BEFORE YOU BEGIN PREREQUISITE LABS OPERATIONAL AMPLIFIERS LAB Introduction to Matlab Introduction to Arbitrary/Function Generator Resistive Circuits EXPECTED KNOWLEDGE Students should be familiar

More information

Waveform Generators and Oscilloscopes. Lab 6

Waveform Generators and Oscilloscopes. Lab 6 Waveform Generators and Oscilloscopes Lab 6 1 Equipment List WFG TEK DPO 4032A (or MDO3012) Resistors: 10kΩ, 1kΩ Capacitors: 0.01uF 2 Waveform Generators (WFG) The WFG supplies a variety of timevarying

More information

AC CIRCUITS - CAPACITORS AND INDUCTORS

AC CIRCUITS - CAPACITORS AND INDUCTORS EXPRIMENT#8 AC CIRCUITS - CAPACITORS AND INDUCTORS NOTE: Two weeks are allocated for this experiment. Before performing this experiment, review the Proper Oscilloscope Use section of Experiment #7. Objective

More information

Physics 334 Notes for Lab 2 Capacitors

Physics 334 Notes for Lab 2 Capacitors Physics 334 Notes for Lab 2 Capacitors January 19, 2009 Do the Lab Manual sections in the following order 2-1, 2-3, 2-4, 2-2, 2-5, 2-6, 2-8 (Skip 2-7 and 2-9). First, here s a review of some important

More information

ECE 53A: Fundamentals of Electrical Engineering I

ECE 53A: Fundamentals of Electrical Engineering I ECE 53A: Fundamentals of Electrical Engineering I Laboratory Assignment #1: Instrument Operation, Basic Resistor Measurements and Kirchhoff s Laws Fall 2007 General Guidelines: - Record data and observations

More information

Experiment P45: LRC Circuit (Power Amplifier, Voltage Sensor)

Experiment P45: LRC Circuit (Power Amplifier, Voltage Sensor) PASCO scientific Vol. 2 Physics Lab Manual: P45-1 Experiment P45: (Power Amplifier, Voltage Sensor) Concept Time SW Interface Macintosh file Windows file circuits 30 m 700 P45 P45_LRCC.SWS EQUIPMENT NEEDED

More information

University of Michigan EECS 311: Electronic Circuits Fall 2008 LAB 2 ACTIVE FILTERS

University of Michigan EECS 311: Electronic Circuits Fall 2008 LAB 2 ACTIVE FILTERS University of Michigan EECS 311: Electronic Circuits Fall 2008 LAB 2 ACTIVE FILTERS Issued 9/22/2008 Pre Lab Completed 9/29/2008 Lab Due in Lecture 10/6/2008 Introduction In this lab you will design a

More information

EE 210: CIRCUITS AND DEVICES

EE 210: CIRCUITS AND DEVICES EE 210: CIRCUITS AND DEVICES LAB #3: VOLTAGE AND CURRENT MEASUREMENTS This lab features a tutorial on the instrumentation that you will be using throughout the semester. More specifically, you will see

More information

VALLIAMMAI ENGINEERING COLLEGE

VALLIAMMAI ENGINEERING COLLEGE P a g e 2 Question Bank Programme Subject Semester / Branch : BE : EE6201-CIRCUIT THEORY : II/EEE,ECE &EIE UNIT-I PART-A 1. Define Ohm s Law (B.L.T- 1) 2. List and define Kirchoff s Laws for electric circuits.

More information

ECE 2201 PRELAB 6 BJT COMMON EMITTER (CE) AMPLIFIER

ECE 2201 PRELAB 6 BJT COMMON EMITTER (CE) AMPLIFIER ECE 2201 PRELAB 6 BJT COMMON EMITTER (CE) AMPLIFIER Hand Analysis P1. Determine the DC bias for the BJT Common Emitter Amplifier circuit of Figure 61 (in this lab) including the voltages V B, V C and V

More information

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 Q1. Domestic users in the United Kingdom are supplied with mains electricity at a root mean square voltage of 230V. (a) State what is meant by root mean square voltage.......... (1) (b) Calculate the peak

More information

CHAPTER 6. Motor Driver

CHAPTER 6. Motor Driver CHAPTER 6 Motor Driver In this lab, we will construct the circuitry that your robot uses to drive its motors. However, before testing the motor circuit we will begin by making sure that you are able to

More information

Sonoma State University Department of Engineering Science Spring 2017

Sonoma State University Department of Engineering Science Spring 2017 EE 110 Introduction to Engineering & Laboratory Experience Saeid Rahimi, Ph.D. Lab 4 Introduction to AC Measurements (I) AC signals, Function Generators and Oscilloscopes Function Generator (AC) Battery

More information

Introduction to oscilloscope. and time dependent circuits

Introduction to oscilloscope. and time dependent circuits Physics 9 Intro to oscilloscope, v.1.0 p. 1 NAME: SECTION DAY/TIME: TA: LAB PARTNER: Introduction to oscilloscope and time dependent circuits Introduction In this lab, you ll learn the basics of how to

More information

Group: Names: Resistor Band Colors Measured Value ( ) R 1 : 1k R 2 : 1k R 3 : 2k R 4 : 1M R 5 : 1M

Group: Names: Resistor Band Colors Measured Value ( ) R 1 : 1k R 2 : 1k R 3 : 2k R 4 : 1M R 5 : 1M 2.4 Laboratory Procedure / Summary Sheet Group: Names: (1) Select five separate resistors whose nominal values are listed below. Record the band colors for each resistor in the table below. Then connect

More information

Equipment and materials to be checked out from stockroom: ECE 2210 kit, optional, if available. Analog BK precision multimeter or similar.

Equipment and materials to be checked out from stockroom: ECE 2210 kit, optional, if available. Analog BK precision multimeter or similar. p1 ECE 2210 Capacitors Lab University of Utah Electrical & Computer Engineering Department ECE 2210/2200 Lab 5 Capacitors A. Stolp, 10/4/99 rev 9/23/08 Objectives 1.) Observe charging and discharging of

More information