Class XII Chapter 7 Alternating Current Physics

Size: px
Start display at page:

Download "Class XII Chapter 7 Alternating Current Physics"

Transcription

1 Question 7.1: A 100 Ω resistor is connected to a 220 V, 50 Hz ac supply. (a) What is the rms value of current in the circuit? (b) What is the net power consumed over a full cycle? Resistance of the resistor, R = 100 Ω Supply voltage, V = 220 V Frequency, ν = 50 Hz (a) The rms value of current in the circuit is given as: (b) The net power consumed over a full cycle is given as: P = VI = = 484 W Question 7.2: (a) The peak voltage of an ac supply is 300 V. What is the rms voltage? (b) The rms value of current in an ac circuit is 10 A. What is the peak current? (a) Peak voltage of the ac supply, V 0 = 300 V Rms voltage is given as: (b) Therms value of current is given as: I = 10 A Now, peak current is given as: Page 1 of 29

2 Question 7.3: A 44 mh inductor is connected to 220 V, 50 Hz ac supply. Determine the rms value of the current in the circuit. Inductance of inductor, L = 44 mh = H Supply voltage, V = 220 V Frequency, ν = 50 Hz Angular frequency, ω= Inductive reactance, X L = ω L Rms value of current is given as: Hence, the rms value of current in the circuit is A. Question 7.4: A 60 µf capacitor is connected to a 110 V, 60 Hz ac supply. Determine the rms value of the current in the circuit. Capacitance of capacitor, C = 60 µf = F Supply voltage, V = 110 V Frequency, ν = 60 Hz Angular frequency, ω= Capacitive reactance Rms value of current is given as: Page 2 of 29

3 Hence, the rms value of current is 2.49 A. Question 7.5: In Exercises 7.3 and 7.4, what is the net power absorbed by each circuit over a complete cycle. Explain your answer. In the inductive circuit, Rms value of current, I = A Rms value of voltage, V = 220 V Hence, the net power absorbed can be obtained by the relation, P = VI cos Φ Where, Φ = Phase difference between V and I For a pure inductive circuit, the phase difference between alternating voltage and current is 90 i.e., Φ= 90. Hence, P = 0 i.e., the net power is zero. In the capacitive circuit, Rms value of current, I = 2.49 A Rms value of voltage, V = 110 V Hence, the net power absorbed can ve obtained as: P = VI Cos Φ For a pure capacitive circuit, the phase difference between alternating voltage and current is 90 i.e., Φ= 90. Hence, P = 0 i.e., the net power is zero. Question 7.6: Obtain the resonant frequency ωr of a series LCR circuit with L = 2.0 H, C = 32 µf and R = 10 Ω. What is the Q-value of this circuit? Page 3 of 29

4 Inductance, L = 2.0 H Capacitance, C = 32 µf = F Resistance, R = 10 Ω Resonant frequency is given by the relation, Now, Q-value of the circuit is given as: Hence, the Q-Value of this circuit is 25. Question 7.7: A charged 30 µf capacitor is connected to a 27 mh inductor. What is the angular frequency of free oscillations of the circuit? Capacitance, C = 30µF = F Inductance, L = 27 mh = H Angular frequency is given as: Hence, the angular frequency of free oscillations of the circuit is rad/s. Question 7.8: Suppose the initial charge on the capacitor in Exercise 7.7 is 6 mc. What is the total energy stored in the circuit initially? What is the total energy at later time? Page 4 of 29

5 Capacitance of the capacitor, C = 30 µf = F Inductance of the inductor, L = 27 mh = H Charge on the capacitor, Q = 6 mc = C Total energy stored in the capacitor can be calculated by the relation, Total energy at a later time will remain the same because energy is shared between the capacitor and the inductor. Question 7.9: A series LCR circuit with R = 20 Ω, L = 1.5 H and C = 35 µf is connected to a variablefrequency 200 V ac supply. When the frequency of the supply equals the natural frequency of the circuit, what is the average power transferred to the circuit in one complete cycle? At resonance, the frequency of the supply power equals the natural frequency of the given LCR circuit. Resistance, R = 20 Ω Inductance, L = 1.5 H Capacitance, C = 35 µf = F AC supply voltage to the LCR circuit, V = 200 V Impedance of the circuit is given by the relation, At resonance, Current in the circuit can be calculated as: Page 5 of 29

6 Hence, the average power transferred to the circuit in one complete cycle= VI = = 2000 W. Question 7.10: A radio can tune over the frequency range of a portion of MW broadcast band: (800 khz to 1200 khz). If its LC circuit has an effective inductance of 200 µh, what must be the range of its variable capacitor? [Hint: For tuning, the natural frequency i.e., the frequency of free oscillations of the LC circuit should be equal to the frequency of the radiowave.] The range of frequency (ν) of a radio is 800 khz to 1200 khz. Lower tuning frequency, ν 1 = 800 khz = Hz Upper tuning frequency, ν 2 = 1200 khz = Hz Effective inductance of circuit L = 200 µh = H Capacitance of variable capacitor for ν 1 is given as : C 1 Where, ω 1 = Angular frequency for capacitor C 1 Capacitance of variable capacitor for ν 2, C 2 Where, Page 6 of 29

7 ω 2 = Angular frequency for capacitor C 2 Hence, the range of the variable capacitor is from pf to pf. Question 7.11: Figure 7.21 shows a series LCR circuit connected to a variable frequency 230 V source. L = 5.0 H, C = 80µF, R = 40 Ω (a) Determine the source frequency which drives the circuit in resonance. (b) Obtain the impedance of the circuit and the amplitude of current at the resonating frequency. (c) Determine the rms potential drops across the three elements of the circuit. Show that the potential drop across the LC combination is zero at the resonating frequency. Inductance of the inductor, L = 5.0 H Capacitance of the capacitor, C = 80 µh = F Resistance of the resistor, R = 40 Ω Potential of the variable voltage source, V = 230 V (a) Resonance angular frequency is given as: Hence, the circuit will come in resonance for a source frequency of 50 rad/s. Page 7 of 29

8 (b) Impedance of the circuit is given by the relation, At resonance, Amplitude of the current at the resonating frequency is given as: Where, V 0 = Peak voltage Hence, at resonance, the impedance of the circuit is 40 Ω and the amplitude of the current is 8.13 A. (c) Rms potential drop across the inductor, (V L ) rms = I ω R L Where, I = rms current Potential drop across the capacitor, Potential drop across the resistor, Page 8 of 29

9 (V R ) rms = IR = 40 = 230 V Potential drop across the LC combination, At resonance, V LC = 0 Hence, it is proved that the potential drop across the LC combination is zero at resonating frequency. Question 7.12: An LC circuit contains a 20 mh inductor and a 50 µf capacitor with an initial charge of 10 mc. The resistance of the circuit is negligible. Let the instant the circuit is closed be t = 0. (a) What is the total energy stored initially? Is it conserved during LC oscillations? (b) What is the natural frequency of the circuit? (c) At what time is the energy stored (i) completely electrical (i.e., stored in the capacitor)? (ii) completely magnetic (i.e., stored in the inductor)? (d) At what times is the total energy shared equally between the inductor and the capacitor? (e) If a resistor is inserted in the circuit, how much energy is eventually dissipated as heat? Inductance of the inductor, L = 20 mh = H Capacitance of the capacitor, C = 50 µf = F Page 9 of 29

10 Initial charge on the capacitor, Q = 10 mc = C (a) Total energy stored initially in the circuit is given as: Hence, the total energy stored in the LC circuit will be conserved because there is no resistor connected in the circuit. (b)natural frequency of the circuit is given by the relation, Natural angular frequency, Hence, the natural frequency of the circuit is 10 3 rad/s. (c) (i) For time period (T ), total charge on the capacitor at time t, For energy stored is electrical, we can write Q = Q. Hence, it can be inferred that the energy stored in the capacitor is completely electrical at time, t = (ii) Magnetic energy is the maximum when electrical energy, Q is equal to 0. Page 10 of 29

11 Hence, it can be inferred that the energy stored in the capacitor is completely magnetic at time, (d) Q 1 = Charge on the capacitor when total energy is equally shared between the capacitor and the inductor at time t. When total energy is equally shared between the inductor and capacitor, the energy stored in the capacitor = (maximum energy). Hence, total energy is equally shared between the inductor and the capacity at time, (e) If a resistor is inserted in the circuit, then total initial energy is dissipated as heat energy in the circuit. The resistance damps out the LC oscillation. Question 7.13: A coil of inductance 0.50 H and resistance 100 Ω is connected to a 240 V, 50 Hz ac supply. (a) What is the maximum current in the coil? (b) What is the time lag between the voltage maximum and the current maximum? Page 11 of 29

12 Inductance of the inductor, L = 0.50 H Resistance of the resistor, R = 100 Ω Potential of the supply voltage, V = 240 V Frequency of the supply, ν = 50 Hz (a) Peak voltage is given as: Angular frequency of the supply, ω = 2 πν = 2π 50 = 100 π rad/s Maximum current in the circuit is given as: (b) Equation for voltage is given as: V = V 0 cos ωt Equation for current is given as: I = I 0 cos (ωt Φ) Where, Φ = Phase difference between voltage and current At time, t = 0. V = V 0 (voltage is maximum) Forωt Φ = 0 i.e., at time, I = I 0 (current is maximum) Hence, the time lag between maximum voltage and maximum current is. Now, phase angle Φis given by the relation, Page 12 of 29

13 Hence, the time lag between maximum voltage and maximum current is 3.2 ms. Question 7.14: Obtain the answers (a) to (b) in Exercise 7.13 if the circuit is connected to a high frequency supply (240 V, 10 khz). Hence, explain the statement that at very high frequency, an inductor in a circuit nearly amounts to an open circuit. How does an inductor behave in a dc circuit after the steady state? Inductance of the inductor, L = 0.5 Hz Resistance of the resistor, R = 100 Ω Potential of the supply voltages, V = 240 V Frequency of the supply,ν = 10 khz = 10 4 Hz Angular frequency, ω = 2πν= 2π 10 4 rad/s (a) Peak voltage, Maximum current, (b) For phase differenceφ, we have the relation: Page 13 of 29

14 It can be observed that I 0 is very small in this case. Hence, at high frequencies, the inductor amounts to an open circuit. In a dc circuit, after a steady state is achieved, ω = 0. Hence, inductor L behaves like a pure conducting object. Question 7.15: A 100 µf capacitor in series with a 40 Ω resistance is connected to a 110 V, 60 Hz supply. (a) What is the maximum current in the circuit? (b) What is the time lag between the current maximum and the voltage maximum? Capacitance of the capacitor, C = 100 µf = F Resistance of the resistor, R = 40 Ω Supply voltage, V = 110 V (a) Frequency of oscillations, ν= 60 Hz Angular frequency, For a RC circuit, we have the relation for impedance as: Peak voltage, V 0 = Maximum current is given as: Page 14 of 29

15 (b) In a capacitor circuit, the voltage lags behind the current by a phase angle ofφ. This angle is given by the relation: Hence, the time lag between maximum current and maximum voltage is 1.55 ms. Question 7.16: Obtain the answers to (a) and (b) in Exercise 7.15 if the circuit is connected to a 110 V, 12 khz supply? Hence, explain the statement that a capacitor is a conductor at very high frequencies. Compare this behaviour with that of a capacitor in a dc circuit after the steady state. Page 15 of 29

16 Capacitance of the capacitor, C = 100 µf = F Resistance of the resistor, R = 40 Ω Supply voltage, V = 110 V Frequency of the supply, ν = 12 khz = Hz Angular Frequency, ω = 2 πν= 2 π = 24π 10 3 rad/s Peak voltage, Maximum current, For an RC circuit, the voltage lags behind the current by a phase angle of Φ given as: Page 16 of 29

17 Hence, Φ tends to become zero at high frequencies. At a high frequency, capacitor C acts as a conductor. In a dc circuit, after the steady state is achieved, ω = 0. Hence, capacitor C amounts to an open circuit. Question 7.17: Keeping the source frequency equal to the resonating frequency of the series LCR circuit, if the three elements, L, C and R are arranged in parallel, show that the total current in the parallel LCR circuit is minimum at this frequency. Obtain the current rms value in each branch of the circuit for the elements and source specified in Exercise 7.11 for this frequency. An inductor (L), a capacitor (C), and a resistor (R) is connected in parallel with each other in a circuit where, L = 5.0 H C = 80 µf = F R = 40 Ω Potential of the voltage source, V = 230 V Impedance (Z) of the given parallel LCR circuit is given as: Page 17 of 29

18 Where, ω = Angular frequency At resonance, Hence, the magnitude of Z is the maximum at 50 rad/s. As a result, the total current is minimum. Rms current flowing through inductor L is given as: Rms current flowing through capacitor C is given as: Rms current flowing through resistor R is given as: Question 7.18: A circuit containing a 80 mh inductor and a 60 µf capacitor in series is connected to a 230 V, 50 Hz supply. The resistance of the circuit is negligible. (a) Obtain the current amplitude and rms values. Page 18 of 29

19 (b) Obtain the rms values of potential drops across each element. (c) What is the average power transferred to the inductor? (d) What is the average power transferred to the capacitor? (e) What is the total average power absorbed by the circuit? [ Average implies averaged over one cycle.] Inductance, L = 80 mh = H Capacitance, C = 60 µf = F Supply voltage, V = 230 V Frequency, ν = 50 Hz Angular frequency, ω = 2πν= 100 π rad/s Peak voltage, V 0 = (a) Maximum current is given as: The negative sign appears because Amplitude of maximum current, Hence, rms value of current, (b) Potential difference across the inductor, V L = I ωl = π = V Page 19 of 29

20 Potential difference across the capacitor, (c) Average power consumed by the inductor is zero as actual voltage leads the current by. (d) Average power consumed by the capacitor is zero as voltage lags current by. (e) The total power absorbed (averaged over one cycle) is zero. Question 7.19: Suppose the circuit in Exercise 7.18 has a resistance of 15 Ω. Obtain the average power transferred to each element of the circuit, and the total power absorbed. Average power transferred to the resistor = W Average power transferred to the capacitor = 0 W Total power absorbed by the circuit = W Inductance of inductor, L = 80 mh = H Capacitance of capacitor, C = 60 µf = F Resistance of resistor, R = 15 Ω Potential of voltage supply, V = 230 V Frequency of signal, ν = 50 Hz Angular frequency of signal, ω = 2πν= 2π (50) = 100π rad/s The elements are connected in series to each other. Hence, impedance of the circuit is given as: Page 20 of 29

21 Current flowing in the circuit, Average power transferred to resistance is given as: P R = I 2 R = (7.25) 2 15 = W Average power transferred to capacitor, P C = Average power transferred to inductor, P L = 0 Total power absorbed by the circuit: = P R + P C + P L = = W Hence, the total power absorbed by the circuit is W. Question 7.20: A series LCR circuit with L = 0.12 H, C = 480 nf, R = 23 Ω is connected to a 230 V variable frequency supply. (a) What is the source frequency for which current amplitude is maximum. Obtain this maximum value. (b) What is the source frequency for which average power absorbed by the circuit is maximum. Obtain the value of this maximum power. (c) For which frequencies of the source is the power transferred to the circuit half the power at resonant frequency? What is the current amplitude at these frequencies? (d) What is the Q-factor of the given circuit? Inductance, L = 0.12 H Capacitance, C = 480 nf = F Resistance, R = 23 Ω Page 21 of 29

22 Supply voltage, V = 230 V Peak voltage is given as: V 0 = = V (a) Current flowing in the circuit is given by the relation, Where, I 0 = maximum at resonance At resonance, we have Where, ω R = Resonance angular frequency Resonant frequency, And, maximum current (b) Maximum average power absorbed by the circuit is given as: Hence, resonant frequency ( ) is Page 22 of 29

23 (c) The power transferred to the circuit is half the power at resonant frequency. Frequencies at which power transferred is half, = Where, Hence, change in frequency, And, Hence, at Hz and Hz frequencies, the power transferred is half. At these frequencies, current amplitude can be given as: (d) Q-factor of the given circuit can be obtained using the relation, Hence, the Q-factor of the given circuit is Question 7.21: Obtain the resonant frequency and Q-factor of a series LCR circuit with L = 3.0 H, C = 27 µf, and R = 7.4 Ω. It is desired to improve the sharpness of the resonance of the Page 23 of 29

24 circuit by reducing its full width at half maximum by a factor of 2. Suggest a suitable way. Inductance, L = 3.0 H Capacitance, C = 27 µf = F Resistance, R = 7.4 Ω At resonance, angular frequency of the source for the given LCR series circuit is given as: Q-factor of the series: To improve the sharpness of the resonance by reducing its full width at half maximum by a factor of 2 without changing, we need to reduce R to half i.e., Resistance = Question 7.22: the following questions: (a) In any ac circuit, is the applied instantaneous voltage equal to the algebraic sum of the instantaneous voltages across the series elements of the circuit? Is the same true for rms voltage? (b) A capacitor is used in the primary circuit of an induction coil. (c) An applied voltage signal consists of a superposition of a dc voltage and an ac voltage of high frequency. The circuit consists of an inductor and a capacitor in series. Show that the dc signal will appear across C and the ac signal across L. Page 24 of 29

25 (d) A choke coil in series with a lamp is connected to a dc line. The lamp is seen to shine brightly. Insertion of an iron core in the choke causes no change in the lamp s brightness. Predict the corresponding observations if the connection is to an ac line. (e) Why is choke coil needed in the use of fluorescent tubes with ac mains? Why can we not use an ordinary resistor instead of the choke coil? (a) Yes; the statement is not true for rms voltage It is true that in any ac circuit, the applied voltage is equal to the average sum of the instantaneous voltages across the series elements of the circuit. However, this is not true for rms voltage because voltages across different elements may not be in phase. (b) High induced voltage is used to charge the capacitor. A capacitor is used in the primary circuit of an induction coil. This is because when the circuit is broken, a high induced voltage is used to charge the capacitor to avoid sparks. (c) The dc signal will appear across capacitor C because for dc signals, the impedance of an inductor (L) is negligible while the impedance of a capacitor (C) is very high (almost infinite). Hence, a dc signal appears across C. For an ac signal of high frequency, the impedance of L is high and that of C is very low. Hence, an ac signal of high frequency appears across L. (d) If an iron core is inserted in the choke coil (which is in series with a lamp connected to the ac line), then the lamp will glow dimly. This is because the choke coil and the iron core increase the impedance of the circuit. (e) A choke coil is needed in the use of fluorescent tubes with ac mains because it reduces the voltage across the tube without wasting much power. An ordinary resistor cannot be used instead of a choke coil for this purpose because it wastes power in the form of heat. Question 7.23: A power transmission line feeds input power at 2300 V to a stepdown transformer with its primary windings having 4000 turns. What should be the number of turns in the secondary in order to get output power at 230 V? Input voltage, V 1 = 2300 Page 25 of 29

26 Number of turns in primary coil, n 1 = 4000 Output voltage, V 2 = 230 V Number of turns in secondary coil = n 2 Voltage is related to the number of turns as: Hence, there are 400 turns in the second winding. Question 7.24: At a hydroelectric power plant, the water pressure head is at a height of 300 m and the water flow available is 100 m 3 s 1. If the turbine generator efficiency is 60%, estimate the electric power available from the plant (g= 9.8 m s 2 ). Height of water pressure head, h = 300 m Volume of water flow per second, V = 100 m 3 /s Efficiency of turbine generator, n = 60% = 0.6 Acceleration due to gravity, g = 9.8 m/s 2 Density of water, ρ = 10 3 kg/m 3 Electric power available from the plant = η hρgv = = W = MW Question 7.25: A small town with a demand of 800 kw of electric power at 220 V is situated 15 km away from an electric plant generating power at 440 V. The resistance of the two wire line carrying power is 0.5 Ω per km. The town gets power from the line through a V step-down transformer at a sub-station in the town. (a) Estimate the line power loss in the form of heat. Page 26 of 29

27 (b) How much power must the plant supply, assuming there is negligible power loss due to leakage? (c) Characterise the step up transformer at the plant. Total electric power required, P = 800 kw = W Supply voltage, V = 220 V Voltage at which electric plant is generating power, V' = 440 V Distance between the town and power generating station, d = 15 km Resistance of the two wire lines carrying power = 0.5 Ω/km Total resistance of the wires, R = ( )0.5 = 15 Ω A step-down transformer of rating V is used in the sub-station. Input voltage, V 1 = 4000 V Output voltage, V 2 = 220 V Rms current in the wire lines is given as: (a) Line power loss = I 2 R = (200) 2 15 = W = 600 kw (b) Assuming that the power loss is negligible due to the leakage of the current: Total power supplied by the plant = 800 kw kw = 1400 kw (c) Voltage drop in the power line = IR = = 3000 V Hence, total voltage transmitted from the plant = = 7000 V Also, the power generated is 440 V. Hence, the rating of the step-up transformer situated at the power plant is 440 V 7000 V. Page 27 of 29

28 Question 7.26: Do the same exercise as above with the replacement of the earlier transformer by a 40, V step-down transformer (Neglect, as before, leakage losses though this may not be a good assumption any longer because of the very high voltage transmission involved). Hence, explain why high voltage transmission is preferred? The rating of a step-down transformer is V 220 V. Input voltage, V 1 = V Output voltage, V 2 = 220 V Total electric power required, P = 800 kw = W Source potential, V = 220 V Voltage at which the electric plant generates power, V' = 440 V Distance between the town and power generating station, d = 15 km Resistance of the two wire lines carrying power = 0.5 Ω/km Total resistance of the wire lines, R = ( )0.5 = 15 Ω P = V 1 I Rms current in the wire line is given as: (a) Line power loss = I 2 R = (20) 2 15 = 6 kw (b) Assuming that the power loss is negligible due to the leakage of current. Hence, power supplied by the plant = 800 kw + 6kW = 806 kw (c) Voltage drop in the power line = IR = = 300 V Hence, voltage that is transmitted by the power plant = = V The power is being generated in the plant at 440 V. Hence, the rating of the step-up transformer needed at the plant is 440 V V. Page 28 of 29

29 Hence, power loss during transmission = In the previous exercise, the power loss due to the same reason is. Since the power loss is less for a high voltage transmission, high voltage transmissions are preferred for this purpose. Page 29 of 29

Physics Class 12 th NCERT Solutions

Physics Class 12 th NCERT Solutions Chapter.7 Alternating Current Class XII Subject Physics 7.1. A 100 Ω resistor is connected to a 220 V, 50 Hz ac supply. a) What is the rms value of current in the circuit? b) What is the net power consumed

More information

Electromagnetic Oscillations and Currents. March 23, 2014 Chapter 30 1

Electromagnetic Oscillations and Currents. March 23, 2014 Chapter 30 1 Electromagnetic Oscillations and Currents March 23, 2014 Chapter 30 1 Driven LC Circuit! The voltage V can be thought of as the projection of the vertical axis of the phasor V m representing the time-varying

More information

Look over Chapter 31 sections 1-4, 6, 8, 9, 10, 11 Examples 1-8. Look over Chapter 21 sections Examples PHYS 2212 PHYS 1112

Look over Chapter 31 sections 1-4, 6, 8, 9, 10, 11 Examples 1-8. Look over Chapter 21 sections Examples PHYS 2212 PHYS 1112 PHYS 2212 Look over Chapter 31 sections 1-4, 6, 8, 9, 10, 11 Examples 1-8 PHYS 1112 Look over Chapter 21 sections 11-14 Examples 16-18 Good Things To Know 1) How AC generators work. 2) How to find the

More information

PHYSICS WORKSHEET CLASS : XII. Topic: Alternating current

PHYSICS WORKSHEET CLASS : XII. Topic: Alternating current PHYSICS WORKSHEET CLASS : XII Topic: Alternating current 1. What is mean by root mean square value of alternating current? 2. Distinguish between the terms effective value and peak value of an alternating

More information

ELECTROMAGNETIC INDUCTION AND ALTERNATING CURRENT (Assignment)

ELECTROMAGNETIC INDUCTION AND ALTERNATING CURRENT (Assignment) ELECTROMAGNETIC INDUCTION AND ALTERNATING CURRENT (Assignment) 1. In an A.C. circuit A ; the current leads the voltage by 30 0 and in circuit B, the current lags behind the voltage by 30 0. What is the

More information

CHAPTER 6: ALTERNATING CURRENT

CHAPTER 6: ALTERNATING CURRENT CHAPTER 6: ALTERNATING CURRENT PSPM II 2005/2006 NO. 12(C) 12. (c) An ac generator with rms voltage 240 V is connected to a RC circuit. The rms current in the circuit is 1.5 A and leads the voltage by

More information

AP Physics C. Alternating Current. Chapter Problems. Sources of Alternating EMF

AP Physics C. Alternating Current. Chapter Problems. Sources of Alternating EMF AP Physics C Alternating Current Chapter Problems Sources of Alternating EMF 1. A 10 cm diameter loop of wire is oriented perpendicular to a 2.5 T magnetic field. What is the magnetic flux through the

More information

15. the power factor of an a.c circuit is.5 what will be the phase difference between voltage and current in this

15. the power factor of an a.c circuit is.5 what will be the phase difference between voltage and current in this 1 1. In a series LCR circuit the voltage across inductor, a capacitor and a resistor are 30 V, 30 V and 60 V respectively. What is the phase difference between applied voltage and current in the circuit?

More information

Physics for Scientists & Engineers 2 2 = 1 LC. Review ( ) Review (2) Review (3) e! Rt. cos "t + # ( ) q = q max. Spring Semester 2005 Lecture 30 U E

Physics for Scientists & Engineers 2 2 = 1 LC. Review ( ) Review (2) Review (3) e! Rt. cos t + # ( ) q = q max. Spring Semester 2005 Lecture 30 U E Review hysics for Scientists & Engineers Spring Semester 005 Lecture 30! If we have a single loop RLC circuit, the charge in the circuit as a function of time is given by! Where q = q max e! Rt L cos "t

More information

Chapter 30 Inductance, Electromagnetic. Copyright 2009 Pearson Education, Inc.

Chapter 30 Inductance, Electromagnetic. Copyright 2009 Pearson Education, Inc. Chapter 30 Inductance, Electromagnetic Oscillations, and AC Circuits 30-7 AC Circuits with AC Source Resistors, capacitors, and inductors have different phase relationships between current and voltage

More information

Chapter 31 Alternating Current

Chapter 31 Alternating Current Chapter 31 Alternating Current In this chapter we will learn how resistors, inductors, and capacitors behave in circuits with sinusoidally vary voltages and currents. We will define the relationship between

More information

not to be republished NCERT ALTERNATING CURRENT Chapter Seven MCQ 1

not to be republished NCERT ALTERNATING CURRENT Chapter Seven MCQ 1 hapter Seven ALTERNATING URRENT MQ 1 7.1 If the rms current in a 50 Hz ac circuit is 5 A, the value of the current 1/300 seconds after its value becomes zero is (a) 5 2 A (b) 5 3/2 A (c) 5/6 A (d) 5/ 2

More information

AC Circuits INTRODUCTION DISCUSSION OF PRINCIPLES. Resistance in an AC Circuit

AC Circuits INTRODUCTION DISCUSSION OF PRINCIPLES. Resistance in an AC Circuit AC Circuits INTRODUCTION The study of alternating current 1 (AC) in physics is very important as it has practical applications in our daily lives. As the name implies, the current and voltage change directions

More information

Chapter 6: Alternating Current. An alternating current is an current that reverses its direction at regular intervals.

Chapter 6: Alternating Current. An alternating current is an current that reverses its direction at regular intervals. Chapter 6: Alternating Current An alternating current is an current that reverses its direction at regular intervals. Overview Alternating Current Phasor Diagram Sinusoidal Waveform A.C. Through a Resistor

More information

RC circuit. Recall the series RC circuit.

RC circuit. Recall the series RC circuit. RC circuit Recall the series RC circuit. If C is discharged and then a constant voltage V is suddenly applied, the charge on, and voltage across, C is initially zero. The charge ultimately reaches the

More information

Chapter 6: Alternating Current

Chapter 6: Alternating Current hapter 6: Alternating urrent 6. Alternating urrent.o 6.. Define alternating current (A) An alternating current (A) is the electrical current which varies periodically with time in direction and magnitude.

More information

Exercise 9: inductor-resistor-capacitor (LRC) circuits

Exercise 9: inductor-resistor-capacitor (LRC) circuits Exercise 9: inductor-resistor-capacitor (LRC) circuits Purpose: to study the relationship of the phase and resonance on capacitor and inductor reactance in a circuit driven by an AC signal. Introduction

More information

UNIT-04 ELECTROMAGNETIC INDUCTION & ALTERNATING CURRNT

UNIT-04 ELECTROMAGNETIC INDUCTION & ALTERNATING CURRNT UNIT-04 ELECTROMAGNETIC INDUCTION & ALTERNATING CURRNT.MARK QUESTIONS:. What is the magnitude of the induced current in the circular loop-a B C D of radius r, if the straight wire PQ carries a steady current

More information

z z" z v 2 ft = 2k ft. 328 Concepts of Physics The energy dissipated in 1000 s = P * 1000 s

z z z v 2 ft = 2k ft. 328 Concepts of Physics The energy dissipated in 1000 s = P * 1000 s 38 Concepts of Physics. A series AC circuit contains an inductor ( mh), a capacitor ( (JF), a resistor ( ft) and an AC source of V, Hz. Find the energy dissipated in the circuit in s. Solution : The time

More information

PHYSICS - CLUTCH CH 29: ALTERNATING CURRENT.

PHYSICS - CLUTCH CH 29: ALTERNATING CURRENT. !! www.clutchprep.com CONCEPT: ALTERNATING VOLTAGES AND CURRENTS BEFORE, we only considered DIRECT CURRENTS, currents that only move in - NOW we consider ALTERNATING CURRENTS, currents that move in Alternating

More information

No Brain Too Small PHYSICS

No Brain Too Small PHYSICS ELECTRICITY: AC QUESTIONS No Brain Too Small PHYSICS MEASURING IRON IN SAND (2016;3) Vivienne wants to measure the amount of iron in ironsand mixtures collected from different beaches. The diagram below

More information

Chapter 33. Alternating Current Circuits

Chapter 33. Alternating Current Circuits Chapter 33 Alternating Current Circuits Alternating Current Circuits Electrical appliances in the house use alternating current (AC) circuits. If an AC source applies an alternating voltage to a series

More information

1. If the flux associated with a coil varies at the rate of 1 weber/min,the induced emf is

1. If the flux associated with a coil varies at the rate of 1 weber/min,the induced emf is 1. f the flux associated with a coil varies at the rate of 1 weber/min,the induced emf is 1 1. 1V 2. V 60 3. 60V 4. Zero 2. Lenz s law is the consequence of the law of conservation of 1. Charge 2. Mass

More information

Chapter 31. Alternating Current. PowerPoint Lectures for University Physics, 14th Edition Hugh D. Young and Roger A. Freedman Lectures by Jason Harlow

Chapter 31. Alternating Current. PowerPoint Lectures for University Physics, 14th Edition Hugh D. Young and Roger A. Freedman Lectures by Jason Harlow Chapter 31 Alternating Current PowerPoint Lectures for University Physics, 14th Edition Hugh D. Young and Roger A. Freedman Lectures by Jason Harlow Learning Goals for Chapter 31 Looking forward at How

More information

Chapter 33. Alternating Current Circuits

Chapter 33. Alternating Current Circuits Chapter 33 Alternating Current Circuits C HAP T E O UTLI N E 33 1 AC Sources 33 2 esistors in an AC Circuit 33 3 Inductors in an AC Circuit 33 4 Capacitors in an AC Circuit 33 5 The L Series Circuit 33

More information

An induced emf is the negative of a changing magnetic field. Similarly, a self-induced emf would be found by

An induced emf is the negative of a changing magnetic field. Similarly, a self-induced emf would be found by This is a study guide for Exam 4. You are expected to understand and be able to answer mathematical questions on the following topics. Chapter 32 Self-Induction and Induction While a battery creates an

More information

ALTERNATING CURRENT. Lesson-1. Alternating Current and Voltage

ALTERNATING CURRENT. Lesson-1. Alternating Current and Voltage esson- ATENATING UENT Alternating urrent and oltage An alternating current or voltage is that variation of current or voltage respectively whose magnitude and direction vary periodically and continuously

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK UNIT I BASIC CIRCUITS ANALYSIS PART A (2-MARKS)

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK UNIT I BASIC CIRCUITS ANALYSIS PART A (2-MARKS) KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK YEAR / SEM : I / II SUBJECT CODE & NAME : EE 1151 CIRCUIT THEORY UNIT I BASIC CIRCUITS ANALYSIS PART A (2-MARKS)

More information

LRC Circuit PHYS 296 Your name Lab section

LRC Circuit PHYS 296 Your name Lab section LRC Circuit PHYS 296 Your name Lab section PRE-LAB QUIZZES 1. What will we investigate in this lab? 2. Figure 1 on the following page shows an LRC circuit with the resistor of 1 Ω, the capacitor of 33

More information

Physics Jonathan Dowling. Lecture 35: MON 16 NOV Electrical Oscillations, LC Circuits, Alternating Current II

Physics Jonathan Dowling. Lecture 35: MON 16 NOV Electrical Oscillations, LC Circuits, Alternating Current II hysics 2113 Jonathan Dowling Lecture 35: MON 16 NOV Electrical Oscillations, LC Circuits, Alternating Current II Damped LCR Oscillator Ideal LC circuit without resistance: oscillations go on forever; ω

More information

Hours / 100 Marks Seat No.

Hours / 100 Marks Seat No. 17323 14115 3 Hours / 100 Seat No. Instructions (1) All Questions are Compulsory. (2) Illustrate your answers with neat sketches wherever necessary. (3) Figures to the right indicate full marks. (4) Assume

More information

Alternating current circuits- Series RLC circuits

Alternating current circuits- Series RLC circuits FISI30 Física Universitaria II Professor J.. ersosimo hapter 8 Alternating current circuits- Series circuits 8- Introduction A loop rotated in a magnetic field produces a sinusoidal voltage and current.

More information

Aligarh College of Engineering & Technology (College Code: 109) Affiliated to UPTU, Approved by AICTE Electrical Engg.

Aligarh College of Engineering & Technology (College Code: 109) Affiliated to UPTU, Approved by AICTE Electrical Engg. Aligarh College of Engineering & Technology (College Code: 19) Electrical Engg. (EE-11/21) Unit-I DC Network Theory 1. Distinguish the following terms: (a) Active and passive elements (b) Linearity and

More information

Lecture 16 Date: Frequency Response (Contd.)

Lecture 16 Date: Frequency Response (Contd.) Lecture 16 Date: 03.10.2017 Frequency Response (Contd.) Bode Plot (contd.) Bode Plot (contd.) Bode Plot (contd.) not every transfer function has all seven factors. To sketch the Bode plots for a generic

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 11 Electricity and Magnetism AC circuits and EM waves Resonance in a Series RLC circuit Transformers Maxwell, Hertz and EM waves Electromagnetic Waves 6/18/2007 http://www.physics.wayne.edu/~alan/2140website/main.htm

More information

Electrical Theory. Power Principles and Phase Angle. PJM State & Member Training Dept. PJM /22/2018

Electrical Theory. Power Principles and Phase Angle. PJM State & Member Training Dept. PJM /22/2018 Electrical Theory Power Principles and Phase Angle PJM State & Member Training Dept. PJM 2018 Objectives At the end of this presentation the learner will be able to: Identify the characteristics of Sine

More information

AC Circuit. What is alternating current? What is an AC circuit?

AC Circuit. What is alternating current? What is an AC circuit? Chapter 21 Alternating Current Circuits and Electromagnetic Waves 1. Alternating Current 2. Resistor in an AC circuit 3. Capacitor in an AC circuit 4. Inductor in an AC circuit 5. RLC series circuit 6.

More information

Chapter 11. Alternating Current

Chapter 11. Alternating Current Unit-2 ECE131 BEEE Chapter 11 Alternating Current Objectives After completing this chapter, you will be able to: Describe how an AC voltage is produced with an AC generator (alternator) Define alternation,

More information

EXPERIMENT FREQUENCY RESPONSE OF AC CIRCUITS. Structure. 8.1 Introduction Objectives

EXPERIMENT FREQUENCY RESPONSE OF AC CIRCUITS. Structure. 8.1 Introduction Objectives EXPERIMENT 8 FREQUENCY RESPONSE OF AC CIRCUITS Frequency Response of AC Circuits Structure 81 Introduction Objectives 8 Characteristics of a Series-LCR Circuit 83 Frequency Responses of a Resistor, an

More information

I. Introduction to Simple Circuits of Resistors

I. Introduction to Simple Circuits of Resistors 2 Problem Set for Dr. Todd Huffman Michaelmas Term I. Introduction to Simple ircuits of esistors 1. For the following circuit calculate the currents through and voltage drops across all resistors. The

More information

Oscillators. An oscillator may be described as a source of alternating voltage. It is different than amplifier.

Oscillators. An oscillator may be described as a source of alternating voltage. It is different than amplifier. Oscillators An oscillator may be described as a source of alternating voltage. It is different than amplifier. An amplifier delivers an output signal whose waveform corresponds to the input signal but

More information

Physics 115. Inductors, Capacitors, and RLC circuits. General Physics II. Session 34

Physics 115. Inductors, Capacitors, and RLC circuits. General Physics II. Session 34 Physics 115 General Physics II Session 34 Inductors, Capacitors, and RLC circuits R. J. Wilkes Email: phy115a@u.washington.edu Home page: http://courses.washington.edu/phy115a/ 06/05/13 1 Lecture Schedule

More information

Experiment 7: Undriven & Driven RLC Circuits

Experiment 7: Undriven & Driven RLC Circuits MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2006 OBJECTIVES Experiment 7: Undriven & Driven RLC Circuits 1. To explore the time dependent behavior of RLC Circuits, both driven

More information

Chapter Moving Charges and Magnetism

Chapter Moving Charges and Magnetism 100 Chapter Moving Charges and Magnetism 1. The power factor of an AC circuit having resistance (R) and inductance (L) connected in series and an angular velocity ω is [2013] 2. [2002] zero RvB vbl/r vbl

More information

AC Power Instructor Notes

AC Power Instructor Notes Chapter 7: AC Power Instructor Notes Chapter 7 surveys important aspects of electric power. Coverage of Chapter 7 can take place immediately following Chapter 4, or as part of a later course on energy

More information

AC CURRENTS, VOLTAGES, FILTERS, and RESONANCE

AC CURRENTS, VOLTAGES, FILTERS, and RESONANCE July 22, 2008 AC Currents, Voltages, Filters, Resonance 1 Name Date Partners AC CURRENTS, VOLTAGES, FILTERS, and RESONANCE V(volts) t(s) OBJECTIVES To understand the meanings of amplitude, frequency, phase,

More information

Worksheet for Exploration 31.1: Amplitude, Frequency and Phase Shift

Worksheet for Exploration 31.1: Amplitude, Frequency and Phase Shift Worksheet for Exploration 31.1: Amplitude, Frequency and Phase Shift We characterize the voltage (or current) in AC circuits in terms of the amplitude, frequency (period) and phase. The sinusoidal voltage

More information

Advanced Circuits Topics Part 2 by Dr. Colton (Fall 2017)

Advanced Circuits Topics Part 2 by Dr. Colton (Fall 2017) Part 2: Some Possibly New Things Advanced Circuits Topics Part 2 by Dr. Colton (Fall 2017) These are some topics that you may or may not have learned in Physics 220 and/or 145. This handout continues where

More information

Alternating Current. Slide 1 / 69. Slide 2 / 69. Slide 3 / 69. Topics to be covered. Sources of Alternating EMF. Sources of alternating EMF

Alternating Current. Slide 1 / 69. Slide 2 / 69. Slide 3 / 69. Topics to be covered. Sources of Alternating EMF. Sources of alternating EMF Slide 1 / 69 lternating urrent Sources of alternating EMF Transformers ircuits and Impedance Topics to be covered Slide 2 / 69 LR Series ircuits Resonance in ircuit Oscillations Sources of lternating EMF

More information

Alternating Current. Slide 2 / 69. Slide 1 / 69. Slide 3 / 69. Slide 4 / 69. Slide 6 / 69. Slide 5 / 69. Topics to be covered

Alternating Current. Slide 2 / 69. Slide 1 / 69. Slide 3 / 69. Slide 4 / 69. Slide 6 / 69. Slide 5 / 69. Topics to be covered Slide 1 / 69 lternating urrent Sources of alternating EMF ircuits and Impedance Slide 2 / 69 Topics to be covered LR Series ircuits Resonance in ircuit Oscillations Slide 3 / 69 Sources of lternating EMF

More information

Wireless Communication

Wireless Communication Equipment and Instruments Wireless Communication An oscilloscope, a signal generator, an LCR-meter, electronic components (see the table below), a container for components, and a Scotch tape. Component

More information

Series and Parallel Resonant Circuits

Series and Parallel Resonant Circuits Series and Parallel Resonant Circuits Aim: To obtain the characteristics of series and parallel resonant circuits. Apparatus required: Decade resistance box, Decade inductance box, Decade capacitance box

More information

PHASES IN A SERIES LRC CIRCUIT

PHASES IN A SERIES LRC CIRCUIT PHASES IN A SERIES LRC CIRCUIT Introduction: In this lab, we will use a computer interface to analyze a series circuit consisting of an inductor (L), a resistor (R), a capacitor (C), and an AC power supply.

More information

Chapter 2-1 Transformers

Chapter 2-1 Transformers Principles of Electric Machines and Power Electronics Chapter 2-1 Transformers Third Edition P. C. Sen Transformer application 1: power transmission Ideal Transformer Assumptions: 1. Negligible winding

More information

BEST BMET CBET STUDY GUIDE MODULE ONE

BEST BMET CBET STUDY GUIDE MODULE ONE BEST BMET CBET STUDY GUIDE MODULE ONE 1 OCTOBER, 2008 1. The phase relation for pure capacitance is a. current leads voltage by 90 degrees b. current leads voltage by 180 degrees c. current lags voltage

More information

Question Paper Profile

Question Paper Profile I Scheme Question Paper Profile Program Name : Electrical Engineering Program Group Program Code : EE/EP/EU Semester : Third Course Title : Electrical Circuits Max. Marks : 70 Time: 3 Hrs. Instructions:

More information

Radio Frequency Electronics

Radio Frequency Electronics Radio Frequency Electronics Frederick Emmons Terman Transformers Masters degree from Stanford and Ph.D. from MIT Later a professor at Stanford His students include William Hewlett and David Packard Wrote

More information

Exam 3 Solutions. ! r, the ratio is ( N ) ( ) ( )( ) 2. PHY2054 Spring Prof. Pradeep Kumar Prof. Paul Avery Prof. Yoonseok Lee Mar.

Exam 3 Solutions. ! r, the ratio is ( N ) ( ) ( )( ) 2. PHY2054 Spring Prof. Pradeep Kumar Prof. Paul Avery Prof. Yoonseok Lee Mar. PHY054 Spring 009 Prof. Pradeep Kumar Prof. Paul Avery Prof. Yoonseok Lee Mar. 7, 009 Exam 3 Solutions 1. Two coils (A and B) made out of the same wire are in a uniform magnetic field with the coil axes

More information

Course ELEC Introduction to electric power and energy systems. Additional exercises with answers December reactive power compensation

Course ELEC Introduction to electric power and energy systems. Additional exercises with answers December reactive power compensation Course ELEC0014 - Introduction to electric power and energy systems Additional exercises with answers December 2017 Exercise A1 Consider the system represented in the figure below. The four transmission

More information

WALJAT COLLEGES OF APPLIED SCIENCES In academic partnership with BIRLA INSTITUTE OF TECHNOLOGY Question Bank Course: EC Session:

WALJAT COLLEGES OF APPLIED SCIENCES In academic partnership with BIRLA INSTITUTE OF TECHNOLOGY Question Bank Course: EC Session: WLJT OLLEGES OF PPLIED SIENES In academic partnership with IRL INSTITUTE OF TEHNOLOGY Question ank ourse: E Session: 20052006 Semester: II Subject: E2001 asic Electrical Engineering 1. For the resistive

More information

LECTURE.3 : AC-DC CONVERSION

LECTURE.3 : AC-DC CONVERSION LECTURE.3 : AC-DC CONVERSION (RECTIFICATIONS) 3.1Basic Rectifier Circuits Several types of rectifier circuits are available: single-phase and three-phase half-wave and full-wave, controlled and uncontrolled,

More information

FREQUENCY RESPONSE AND PASSIVE FILTERS LABORATORY

FREQUENCY RESPONSE AND PASSIVE FILTERS LABORATORY FREQUENCY RESPONSE AND PASSIVE FILTERS LABORATORY In this experiment we will analytically determine and measure the frequency response of networks containing resistors, AC source/sources, and energy storage

More information

LCR CIRCUITS Institute of Lifelong Learning, University of Delhi

LCR CIRCUITS Institute of Lifelong Learning, University of Delhi L UTS nstitute of Lifelong Learning, University of Delhi L UTS PHYSS (LAB MANUAL) nstitute of Lifelong Learning, University of Delhi PHYSS (LAB MANUAL) L UTS ntroduction ircuits containing an inductor

More information

CHAPTER 9. Sinusoidal Steady-State Analysis

CHAPTER 9. Sinusoidal Steady-State Analysis CHAPTER 9 Sinusoidal Steady-State Analysis 9.1 The Sinusoidal Source A sinusoidal voltage source (independent or dependent) produces a voltage that varies sinusoidally with time. A sinusoidal current source

More information

ALTERNATING CURRENT CIRCUITS

ALTERNATING CURRENT CIRCUITS CHAPTE 23 ALTENATNG CUENT CCUTS CONCEPTUAL QUESTONS 1. EASONNG AND SOLUTON A light bulb and a parallel plate capacitor (including a dielectric material between the plates) are connected in series to the

More information

Study of Inductive and Capacitive Reactance and RLC Resonance

Study of Inductive and Capacitive Reactance and RLC Resonance Objective Study of Inductive and Capacitive Reactance and RLC Resonance To understand how the reactance of inductors and capacitors change with frequency, and how the two can cancel each other to leave

More information

AC Circuits. Nikola Tesla

AC Circuits. Nikola Tesla AC Circuits Nikola Tesla 1856-1943 Mar 26, 2012 Alternating Current Circuits Electrical appliances in the house use alternating current (AC) circuits. If an AC source applies an alternating voltage of

More information

PHYS 1441 Section 001 Lecture #22 Wednesday, Nov. 29, 2017

PHYS 1441 Section 001 Lecture #22 Wednesday, Nov. 29, 2017 PHYS 1441 Section 001 Lecture #22 Chapter 29:EM Induction & Faraday s Law Transformer Electric Field Due to Changing Magnetic Flux Chapter 30: Inductance Mutual and Self Inductance Energy Stored in Magnetic

More information

Chapter 25 Alternating Currents

Chapter 25 Alternating Currents Chapter 25 Alternating Currents GOALS When you have mastered the contents of this chapter, you will be able to achieve the following goals: Definitions Define each of the following terms and use it in

More information

FGJTCFWP"KPUVKVWVG"QH"VGEJPQNQI[" FGRCTVOGPV"QH"GNGEVTKECN"GPIKPGGTKPI" VGG"246"JKIJ"XQNVCIG"GPIKPGGTKPI

FGJTCFWPKPUVKVWVGQHVGEJPQNQI[ FGRCTVOGPVQHGNGEVTKECNGPIKPGGTKPI VGG246JKIJXQNVCIGGPIKPGGTKPI FGJTFWP"KPUKWG"QH"GEJPQNQI[" FGRTOGP"QH"GNGETKEN"GPIKPGGTKPI" GG"46"JKIJ"XQNIG"GPIKPGGTKPI Resonant Transformers: The fig. (b) shows the equivalent circuit of a high voltage testing transformer (shown

More information

Lab 1: Basic RL and RC DC Circuits

Lab 1: Basic RL and RC DC Circuits Name- Surname: ID: Department: Lab 1: Basic RL and RC DC Circuits Objective In this exercise, the DC steady state response of simple RL and RC circuits is examined. The transient behavior of RC circuits

More information

Downloaded from / 1

Downloaded from   / 1 PURWANCHAL UNIVERSITY II SEMESTER FINAL EXAMINATION-2008 LEVEL : B. E. (Computer/Electronics & Comm.) SUBJECT: BEG123EL, Electrical Engineering-I Full Marks: 80 TIME: 03:00 hrs Pass marks: 32 Candidates

More information

Chapter 21. Alternating Current Circuits and Electromagnetic Waves

Chapter 21. Alternating Current Circuits and Electromagnetic Waves Chapter 21 Alternating Current Circuits and Electromagnetic Waves AC Circuit An AC circuit consists of a combination of circuit elements and an AC generator or source The output of an AC generator is sinusoidal

More information

VALLIAMMAI ENGINEERING COLLEGE

VALLIAMMAI ENGINEERING COLLEGE P a g e 2 Question Bank Programme Subject Semester / Branch : BE : EE6201-CIRCUIT THEORY : II/EEE,ECE &EIE UNIT-I PART-A 1. Define Ohm s Law (B.L.T- 1) 2. List and define Kirchoff s Laws for electric circuits.

More information

RLC-circuits TEP. f res. = 1 2 π L C.

RLC-circuits TEP. f res. = 1 2 π L C. RLC-circuits TEP Keywords Damped and forced oscillations, Kirchhoff s laws, series and parallel tuned circuit, resistance, capacitance, inductance, reactance, impedance, phase displacement, Q-factor, band-width

More information

DC and AC Circuits. Objective. Theory. 1. Direct Current (DC) R-C Circuit

DC and AC Circuits. Objective. Theory. 1. Direct Current (DC) R-C Circuit [International Campus Lab] Objective Determine the behavior of resistors, capacitors, and inductors in DC and AC circuits. Theory ----------------------------- Reference -------------------------- Young

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring Experiment 11: Driven RLC Circuit

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring Experiment 11: Driven RLC Circuit MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.2 Spring 24 Experiment 11: Driven LC Circuit OBJECTIVES 1. To measure the resonance frequency and the quality factor of a driven LC circuit.

More information

AC Circuits. "Look for knowledge not in books but in things themselves." W. Gilbert ( )

AC Circuits. Look for knowledge not in books but in things themselves. W. Gilbert ( ) AC Circuits "Look for knowledge not in books but in things themselves." W. Gilbert (1540-1603) OBJECTIVES To study some circuit elements and a simple AC circuit. THEORY All useful circuits use varying

More information

PHYS 1444 Section 501 Lecture #20

PHYS 1444 Section 501 Lecture #20 PHYS 1444 Section 501 Lecture #0 Monday, Apr. 17, 006 Transformer Generalized Faraday s Law Inductance Mutual Inductance Self Inductance Inductor Energy Stored in the Magnetic Field 1 Announcements Quiz

More information

ENGINEERING COUNCIL CERTIFICATE LEVEL ENGINEERING SCIENCE C103 TUTORIAL 18 ALTERNATING CURRENT

ENGINEERING COUNCIL CERTIFICATE LEVEL ENGINEERING SCIENCE C103 TUTORIAL 18 ALTERNATING CURRENT ENGINEERING OUNIL ERTIFIATE LEVEL ENGINEERING SIENE 03 TUTORIAL 8 ALTERNATING URRENT On completion of this tutorial you should be able to do the following. Explain alternating current. Explain Root Mean

More information

ECE 215 Lecture 8 Date:

ECE 215 Lecture 8 Date: ECE 215 Lecture 8 Date: 28.08.2017 Phase Shifter, AC bridge AC Circuits: Steady State Analysis Phase Shifter the circuit current I leads the applied voltage by some phase angle θ, where 0 < θ < 90 ο depending

More information

Chapter 2. The Fundamentals of Electronics: A Review

Chapter 2. The Fundamentals of Electronics: A Review Chapter 2 The Fundamentals of Electronics: A Review Topics Covered 2-1: Gain, Attenuation, and Decibels 2-2: Tuned Circuits 2-3: Filters 2-4: Fourier Theory 2-1: Gain, Attenuation, and Decibels Most circuits

More information

VETRI VINAYAHA COLLEGE OF ENGINEERING AND TECHNOLOGY

VETRI VINAYAHA COLLEGE OF ENGINEERING AND TECHNOLOGY VETRI VINAYAHA COLLEGE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING I-YEAR/II-SEMESTER- EEE&ECE EE6201- CIRCUIT THEORY Two Marks with Answers PREPARED BY: Mr.A.Thirukkumaran,

More information

Reg. No. : BASIC ELECTRICAL TECHNOLOGY (ELE 101)

Reg. No. : BASIC ELECTRICAL TECHNOLOGY (ELE 101) Department of Electrical and Electronics Engineering Reg. No. : MNIPL INSTITUTE OF TECHNOLOGY, MNIPL ( Constituent Institute of Manipal University, Manipal) FIRST SEMESTER B.E. DEGREE MKEUP EXMINTION (REVISED

More information

#8A RLC Circuits: Free Oscillations

#8A RLC Circuits: Free Oscillations #8A RL ircuits: Free Oscillations Goals In this lab we investigate the properties of a series RL circuit. Such circuits are interesting, not only for there widespread application in electrical devices,

More information

Experiment 18: Driven RLC Circuit

Experiment 18: Driven RLC Circuit MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8. Spring 3 Experiment 8: Driven LC Circuit OBJECTIVES To measure the resonance frequency and the quality factor of a driven LC circuit INTODUCTION

More information

Level 3 Physics, 2018

Level 3 Physics, 2018 91526 915260 3SUPERVISOR S Level 3 Physics, 2018 91526 Demonstrate understanding of electrical systems 2.00 p.m. Tuesday 20 November 2018 Credits: Six Achievement Achievement with Merit Achievement with

More information

Chapter 7. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 7. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 7 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Learning Objectives 1. Understand the meaning of instantaneous and average power, master AC power notation,

More information

EE301 ELECTRONIC CIRCUITS CHAPTER 2 : OSCILLATORS. Lecturer : Engr. Muhammad Muizz Bin Mohd Nawawi

EE301 ELECTRONIC CIRCUITS CHAPTER 2 : OSCILLATORS. Lecturer : Engr. Muhammad Muizz Bin Mohd Nawawi EE301 ELECTRONIC CIRCUITS CHAPTER 2 : OSCILLATORS Lecturer : Engr. Muhammad Muizz Bin Mohd Nawawi 2.1 INTRODUCTION An electronic circuit which is designed to generate a periodic waveform continuously at

More information

QUESTION BANK ETE (17331) CM/IF. Chapter1: DC Circuits

QUESTION BANK ETE (17331) CM/IF. Chapter1: DC Circuits QUESTION BANK ETE (17331) CM/IF Chapter1: DC Circuits Q1. State & explain Ohms law. Also explain concept of series & parallel circuit with the help of diagram. 3M Q2. Find the value of resistor in fig.

More information

Experiment 9 AC Circuits

Experiment 9 AC Circuits Experiment 9 AC Circuits "Look for knowledge not in books but in things themselves." W. Gilbert (1540-1603) OBJECTIVES To study some circuit elements and a simple AC circuit. THEORY All useful circuits

More information

UNIT 1 CIRCUIT ANALYSIS 1 What is a graph of a network? When all the elements in a network is replaced by lines with circles or dots at both ends.

UNIT 1 CIRCUIT ANALYSIS 1 What is a graph of a network? When all the elements in a network is replaced by lines with circles or dots at both ends. UNIT 1 CIRCUIT ANALYSIS 1 What is a graph of a network? When all the elements in a network is replaced by lines with circles or dots at both ends. 2 What is tree of a network? It is an interconnected open

More information

INTRODUCTION TO AC FILTERS AND RESONANCE

INTRODUCTION TO AC FILTERS AND RESONANCE AC Filters & Resonance 167 Name Date Partners INTRODUCTION TO AC FILTERS AND RESONANCE OBJECTIVES To understand the design of capacitive and inductive filters To understand resonance in circuits driven

More information

Lecture Outline Chapter 24. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 24. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 24 Physics, 4 th Edition James S. Walker Chapter 24 Alternating-Current Circuits Units of Chapter 24 Alternating Voltages and Currents Capacitors in AC Circuits RC Circuits Inductors

More information

EECS40 RLC Lab guide

EECS40 RLC Lab guide EECS40 RLC Lab guide Introduction Second-Order Circuits Second order circuits have both inductor and capacitor components, which produce one or more resonant frequencies, ω0. In general, a differential

More information

EE12: Laboratory Project (Part-2) AM Transmitter

EE12: Laboratory Project (Part-2) AM Transmitter EE12: Laboratory Project (Part-2) AM Transmitter ECE Department, Tufts University Spring 2008 1 Objective This laboratory exercise is the second part of the EE12 project of building an AM transmitter in

More information

Properties of Inductor and Applications

Properties of Inductor and Applications LABORATORY Experiment 3 Properties of Inductor and Applications 1. Objectives To investigate the properties of inductor for different types of magnetic material To calculate the resonant frequency of a

More information

y 2irfCj Resonance in AC Circuits Summary v v The rms current in an LRC series circuit is given by (see Eqs , 21-15, 21-llb, and 21-12b):

y 2irfCj Resonance in AC Circuits Summary v v The rms current in an LRC series circuit is given by (see Eqs , 21-15, 21-llb, and 21-12b): -* Resonance in AC Circuits The rms current in an LRC series circuit is given by (see Eqs. 21-14, 21-15, 21-llb, and 21-12b): -'rms v v

More information

Exercise 1: Series Resonant Circuits

Exercise 1: Series Resonant Circuits Series Resonance AC 2 Fundamentals Exercise 1: Series Resonant Circuits EXERCISE OBJECTIVE When you have completed this exercise, you will be able to compute the resonant frequency, total current, and

More information

CIRCLE DIAGRAMS. Learning Objectives. Combinations of R and C circuits

CIRCLE DIAGRAMS. Learning Objectives. Combinations of R and C circuits H A P T E R18 earning Objectives ircle Diagram of a Series ircuit Rigorous Mathematical Treatment onstant Resistance but ariable Reactance Properties of onstant Reactance But ariable Resistance ircuit

More information