PHYS 3322 Modern Laboratory Methods I AC R, RC, and RL Circuits

Size: px
Start display at page:

Download "PHYS 3322 Modern Laboratory Methods I AC R, RC, and RL Circuits"

Transcription

1 Purpose PHYS 3322 Modern Laboratory Methods I AC, C, and L Circuits For a given frequency, doubling of the applied voltage to resistors, capacitors, and inductors doubles the current. Hence, each of these circuit elements obeys Ohm s Law and are called linear devices. esistors, capacitors, and inductors are passive devices in the sense that they do not have a built in power supply. The frequency response of these circuit elements renders them useful for many applications, a few of which will be studied in this and a subsequent experiment. This experiment focuses on increasing your understanding of the frequency response of resistive, capacitive, and inductive impedance in multi-component circuits both theoretically and experimentally by use of the transfer functions for each circuit element. Background The AC C circuit, as well as the AC L circuit, falls into the realm of circuits used to filter unwanted signals. The properties of these passive filters are dependent on the values of, C, and L, as well as the Figure 1a shows how an C filter might be inserted into a circuit and Figure 1b shows the magnitude of the transfer function V / versus the input V OUT =V V / (a) frequency (Hz) (b) Figure 1. a) Circuit diagram for the series C circuit as a high pass filter. b) The magnitude of the transfer function V / for the series C circuit with =1 kω and C=0.039 µf. Note that the magnitude of the transfer function is plotted versus a log frequency scale. With the setup shown in Figure 1a, low frequencies are filtered or attenuated while high frequencies are passed with little attenuation. Hence, this circuit arrangement is called a high pass filter. The range of frequencies that are filtered is typically called the stopband and the range of frequencies that are not filtered is typically called the passband. Even though the relative smoothness of the transfer function of Figure 1 does not allow identification of a single frequency that divides the stop band from the pass band, a meaningful cutoff frequency for this filter can still be defined. The cutoff frequency for this filter, as well as for the low pass filter, is the frequency for which the magnitude of the transfer function is decreased by the factor 1 / 2 from its maximum value. The factor 1 / 2 appears to an arbitrary choice, however, at the cutoff frequency the average power delivered by the circuit is one-half the maximum average power. Thus the cutoff frequency is also called the half power In the pass band, the average evised: 16 January /5

2 AC, C, and L Circuits power delivered by the circuit is at least 50% of the maximum average power. To be more specific, the pass band is defined as the range of frequencies in which the amplitude of the output voltage is at least 70.7% of the maximum possible amplitude. For the filter shown in Figure 1, the cutoff frequency and the 70.7% amplitude point is marked on the graph with straight lines. The cutoff frequency for the C circuit is, in the ideal case, Equipment ω = 2 πf c = (1) C c 1 Multimeter 47 Ω resistor Function generator 4.7 µf capacitor Oscilloscope 10 mh inductor Procedure The lab consists of three parts: the circuit, the C circuit, and the L circuit. The theoretical expressions for each circuit, assuming ideal circuit elements, were obtained in Transfer Functions of, C, and L Circuits. For the circuits you will experimentally determine the magnitude of the transfer functions and phase relationships as a function of frequency as a comparison to the theoretical expressions as well as experimental values for the magnitude of the current and impedance. For your convenience, questions regarding each circuit are included within each section to assist in making and entering your observations in the lab notebook. These questions are the bare minimum to consider and answer and should by no means be the minimum you, as the student should consider. The answers to the questions, in report form, must be included in the lab write up. It is also advisable to complete the data acquisition, plotting, etc., for each section before continuing on to the next. Obtain the appropriate circuit elements listed above and use the appropriate multimeter to determine the exact values of the resistor, capacitor, and inductor. THE CICUIT esistive impedance effects in an circuit: Measurement of V / function generator ch 1 V Figure 2. Set up for measuring V / and the phase of the current through the resistor Set up the circuit shown in Figure 2. All ground connections are made to the ground connection of the function generator. Set the function generator to output a sinusoidal voltage and set the amplitude to the midpoint of its range. In this circuit the output of the function generator is read from the via channel 2 and the voltage across the resistor is read from channel 1. evised: 16 January /5

3 AC, C, and L Circuits Using both inputs, the phase shift between the input voltage and the voltage across the resistor can be determined. To view the frequency on the, press [Time] on the front panel followed by [Freq] on the display menu. To view the phase shift, press [Time], then on the display menu, press [Next Menu] twice, followed by [Phase]. Determine the magnitude of the transfer function V / as well as the phase difference between the input signal and signal across the resistor as a function of frequency over the range 20 Hz to 2500 Hz. On the same graph, plot the measured transfer function as well as a theoretical curve for the transfer function as a function of On a separate graph, plot the phase difference between the input voltage and the voltage drop across the resistor. Questions: resistive impedance Is a resistor a reactive (i.e. frequency dependent) component in an AC circuit? Looking at the phase differences, how much does the current lead or lag the applied voltage? THE C CICUIT: eactive impedance effects in an C circuit: Measurement of V / Set up the circuit shown in Figure 3. With this setup the input voltage is read via channel 2 and V is read via channel 1. C ch 1 V Figure 3. Setup for measuring V /, and the phase difference between V and. Over the range 20 Hz to 2500 Hz obtain the magnitude of V / and the phase difference between V and. Plot the measured impedance of the circuit along with the calculated impedance on linear scales as a function of Plot the measured current and the calculated current on linear scales as function of For both the measured and theoretical values plot V / versus log f. evised: 16 January /5

4 AC, C, and L Circuits difference on linear scales. eactive impedance effects in an C circuit: Measurement of V C / Set up the circuit shown in Figure 4. With this setup the input voltage is read via channel 2 and V C is read via channel 1. C ch 1 V C Figure 4. Setup for measuring V C /, and the phase difference between V C and. Over the range 20 Hz to 2500 Hz obtain the magnitude of V C / and the phase difference between V C and. For both the measured and theoretical values plot V C / versus log f. difference on linear scales as function of Questions: The C circuit Is a capacitor a reactive (i.e. frequency dependent) component in an AC circuit? Looking at the phase differences, does the current lead or lag the applied voltage? Does the voltage across the capacitor lead or lag the applied voltage? Does the voltage across the capacitor lead or lad the voltage across the resistor? THE L CICUIT: eactive impedance effects in an L circuit: Measurement of V / Set up the circuit shown in Figure 5. With this setup the input voltage is read via channel 2 and V is read via channel 1. L ch 1 V evised: 16 January /5

5 AC, C, and L Circuits Figure 5. Setup for measuring V /, and the phase difference between V and. Measure V and and the phase difference between V and over the frequency range 20 Hz to 2500 Hz. Plot the measured impedance along with the calculated impedance on linear scales as function of Plot the measured current and the calculated current on linear scales as function of For both the measured and theoretical values plot V / versus log f. Plot the measured phase difference along with the theoretical values for the phase difference on linear scales as function of eactive impedance effects in an L circuit - Measurement of V L / Set up the circuit shown in Figure 6. With this setup the input voltage is read via channel 2 and V L is read via channel 1. L ch 1 V L Figure 6. Setup for measuring V L /, and the phase difference between V L and. Measure V L and and the phase difference between V L and over the frequency range 20 Hz to 2500 Hz. For both the measured and theoretical values plot V L / versus log f. difference on linear scales as function of Questions: The L circuit Is an inductor a reactive (i.e. frequency dependent) component in an AC circuit? Does the current lead or lag the applied voltage? Does the voltage across the capacitor lead or lag the applied voltage? Does the voltage across the capacitor lead or lad the voltage across the resistor? Other Questions Three sinusoidal signals at100 Hz, 500 Hz, and 1000 Hz are superimposed. You wish to measure the 1000 Hz signal. Explicitly, how would you do this? evised: 16 January /5

EE-2302 Passive Filters and Frequency Response

EE-2302 Passive Filters and Frequency Response EE2302 Passive Filters and Frequency esponse Objective he student should become acquainted with simple passive filters for performing highpass, lowpass, and bandpass operations. he experimental tasks also

More information

Study of Inductive and Capacitive Reactance and RLC Resonance

Study of Inductive and Capacitive Reactance and RLC Resonance Objective Study of Inductive and Capacitive Reactance and RLC Resonance To understand how the reactance of inductors and capacitors change with frequency, and how the two can cancel each other to leave

More information

University of Jordan School of Engineering Electrical Engineering Department. EE 219 Electrical Circuits Lab

University of Jordan School of Engineering Electrical Engineering Department. EE 219 Electrical Circuits Lab University of Jordan School of Engineering Electrical Engineering Department EE 219 Electrical Circuits Lab EXPERIMENT 7 RESONANCE Prepared by: Dr. Mohammed Hawa EXPERIMENT 7 RESONANCE OBJECTIVE This experiment

More information

BME 3512 Bioelectronics Laboratory Two - Passive Filters

BME 3512 Bioelectronics Laboratory Two - Passive Filters BME 35 Bioelectronics Laboratory Two - Passive Filters Learning Objectives: Understand the basic principles of passive filters. Laboratory Equipment: Agilent Oscilloscope Model 546A Agilent Function Generator

More information

Experiment 9 AC Circuits

Experiment 9 AC Circuits Experiment 9 AC Circuits "Look for knowledge not in books but in things themselves." W. Gilbert (1540-1603) OBJECTIVES To study some circuit elements and a simple AC circuit. THEORY All useful circuits

More information

INTRODUCTION TO AC FILTERS AND RESONANCE

INTRODUCTION TO AC FILTERS AND RESONANCE AC Filters & Resonance 167 Name Date Partners INTRODUCTION TO AC FILTERS AND RESONANCE OBJECTIVES To understand the design of capacitive and inductive filters To understand resonance in circuits driven

More information

LCR CIRCUITS Institute of Lifelong Learning, University of Delhi

LCR CIRCUITS Institute of Lifelong Learning, University of Delhi L UTS nstitute of Lifelong Learning, University of Delhi L UTS PHYSS (LAB MANUAL) nstitute of Lifelong Learning, University of Delhi PHYSS (LAB MANUAL) L UTS ntroduction ircuits containing an inductor

More information

LRC Circuit PHYS 296 Your name Lab section

LRC Circuit PHYS 296 Your name Lab section LRC Circuit PHYS 296 Your name Lab section PRE-LAB QUIZZES 1. What will we investigate in this lab? 2. Figure 1 on the following page shows an LRC circuit with the resistor of 1 Ω, the capacitor of 33

More information

Experiment 2: Transients and Oscillations in RLC Circuits

Experiment 2: Transients and Oscillations in RLC Circuits Experiment 2: Transients and Oscillations in RLC Circuits Will Chemelewski Partner: Brian Enders TA: Nielsen See laboratory book #1 pages 5-7, data taken September 1, 2009 September 7, 2009 Abstract Transient

More information

AC Circuits INTRODUCTION DISCUSSION OF PRINCIPLES. Resistance in an AC Circuit

AC Circuits INTRODUCTION DISCUSSION OF PRINCIPLES. Resistance in an AC Circuit AC Circuits INTRODUCTION The study of alternating current 1 (AC) in physics is very important as it has practical applications in our daily lives. As the name implies, the current and voltage change directions

More information

Experiment 8: An AC Circuit

Experiment 8: An AC Circuit Experiment 8: An AC Circuit PART ONE: AC Voltages. Set up this circuit. Use R = 500 Ω, L = 5.0 mh and C =.01 μf. A signal generator built into the interface provides the emf to run the circuit from Output

More information

EK307 Passive Filters and Steady State Frequency Response

EK307 Passive Filters and Steady State Frequency Response EK307 Passive Filters and Steady State Frequency Response Laboratory Goal: To explore the properties of passive signal-processing filters Learning Objectives: Passive filters, Frequency domain, Bode plots

More information

PHY203: General Physics III Lab page 1 of 5 PCC-Cascade. Lab: AC Circuits

PHY203: General Physics III Lab page 1 of 5 PCC-Cascade. Lab: AC Circuits PHY203: General Physics III Lab page 1 of 5 Lab: AC Circuits OBJECTIVES: EQUIPMENT: Universal Breadboard (Archer 276-169) 2 Simpson Digital Multimeters (464) Function Generator (Global Specialties 2001)*

More information

Lab 3: AC Low pass filters (version 1.3)

Lab 3: AC Low pass filters (version 1.3) Lab 3: AC Low pass filters (version 1.3) WARNING: Use electrical test equipment with care! Always double-check connections before applying power. Look for short circuits, which can quickly destroy expensive

More information

University of Pennsylvania Department of Electrical and Systems Engineering. ESE 206: Electrical Circuits and Systems II - Lab

University of Pennsylvania Department of Electrical and Systems Engineering. ESE 206: Electrical Circuits and Systems II - Lab University of Pennsylvania Department of Electrical and Systems Engineering ESE 206: Electrical Circuits and Systems II - Lab AC POWER ANALYSIS AND DESIGN I. Purpose and Equipment: Provide experimental

More information

Lab #2: Electrical Measurements II AC Circuits and Capacitors, Inductors, Oscillators and Filters

Lab #2: Electrical Measurements II AC Circuits and Capacitors, Inductors, Oscillators and Filters Lab #2: Electrical Measurements II AC Circuits and Capacitors, Inductors, Oscillators and Filters Goal: In circuits with a time-varying voltage, the relationship between current and voltage is more complicated

More information

EK307 Active Filters and Steady State Frequency Response

EK307 Active Filters and Steady State Frequency Response EK307 Active Filters and Steady State Frequency Response Laboratory Goal: To explore the properties of active signal-processing filters Learning Objectives: Active Filters, Op-Amp Filters, Bode plots Suggested

More information

CHAPTER 14. Introduction to Frequency Selective Circuits

CHAPTER 14. Introduction to Frequency Selective Circuits CHAPTER 14 Introduction to Frequency Selective Circuits Frequency-selective circuits Varying source frequency on circuit voltages and currents. The result of this analysis is the frequency response of

More information

AC CURRENTS, VOLTAGES, FILTERS, and RESONANCE

AC CURRENTS, VOLTAGES, FILTERS, and RESONANCE July 22, 2008 AC Currents, Voltages, Filters, Resonance 1 Name Date Partners AC CURRENTS, VOLTAGES, FILTERS, and RESONANCE V(volts) t(s) OBJECTIVES To understand the meanings of amplitude, frequency, phase,

More information

Experiment #10: Passive Filter Design

Experiment #10: Passive Filter Design SCHOOL OF ENGINEEING AND APPLIED SCIENCE DEPATMENT OF ELECTICAL AND COMPUTE ENGINEEING ECE 2110: CICUIT THEOY LABOATOY Experiment #10: Passive Filter Design EQUIPMENT Lab Equipment Equipment Description

More information

Electric Circuit Fall 2017 Lab10. LABORATORY 10 RLC Circuits. Guide. Figure 1: Voltage and current in an AC circuit.

Electric Circuit Fall 2017 Lab10. LABORATORY 10 RLC Circuits. Guide. Figure 1: Voltage and current in an AC circuit. LABORATORY 10 RLC Circuits Guide Introduction RLC circuit When an AC signal is input to a RLC circuit, voltage across each element varies as a function of time. The voltage will oscillate with a frequency

More information

PHASES IN A SERIES LRC CIRCUIT

PHASES IN A SERIES LRC CIRCUIT PHASES IN A SERIES LRC CIRCUIT Introduction: In this lab, we will use a computer interface to analyze a series circuit consisting of an inductor (L), a resistor (R), a capacitor (C), and an AC power supply.

More information

The Series RLC Circuit and Resonance

The Series RLC Circuit and Resonance Purpose Theory The Series RLC Circuit and Resonance a. To study the behavior of a series RLC circuit in an AC current. b. To measure the values of the L and C using the impedance method. c. To study the

More information

BME 3512 Bioelectronics Laboratory Six - Active Filters

BME 3512 Bioelectronics Laboratory Six - Active Filters BME 5 Bioelectronics Laboratory Six - Active Filters Learning Objectives: Understand the basic principles of active filters. Describe the differences between active and passive filters. Laboratory Equipment:

More information

LAB 8: Activity P52: LRC Circuit

LAB 8: Activity P52: LRC Circuit LAB 8: Activity P52: LRC Circuit Equipment: Voltage Sensor 1 Multimeter 1 Patch Cords 2 AC/DC Electronics Lab (100 μf capacitor; 10 Ω resistor; Inductor Coil; Iron core; 5 inch wire lead) The purpose of

More information

Resonant Frequency of the LRC Circuit (Power Output, Voltage Sensor)

Resonant Frequency of the LRC Circuit (Power Output, Voltage Sensor) 72 Resonant Frequency of the LRC Circuit (Power Output, Voltage Sensor) Equipment List Qty Items Part Numbers 1 PASCO 750 Interface 1 Voltage Sensor CI-6503 1 AC/DC Electronics Laboratory EM-8656 2 Banana

More information

EE2210 Laboratory Project 1 Fall 2013 Function Generator and Oscilloscope

EE2210 Laboratory Project 1 Fall 2013 Function Generator and Oscilloscope EE2210 Laboratory Project 1 Fall 2013 Function Generator and Oscilloscope For students to become more familiar with oscilloscopes and function generators. Pre laboratory Work Read the TDS 210 Oscilloscope

More information

Low_Pass_Filter_1st_Order -- Overview

Low_Pass_Filter_1st_Order -- Overview Low_Pass_Filter_1st_Order -- Overview 1 st Order Low Pass Filter Objectives: After performing this lab exercise, learner will be able to: Understand and comprehend working of opamp Comprehend basics of

More information

Experiment 1 Alternating Current with Coil and Ohmic Resistors

Experiment 1 Alternating Current with Coil and Ohmic Resistors Experiment Alternating Current with Coil and Ohmic esistors - Objects of the experiment - Determining the total impedance and the phase shift in a series connection of a coil and a resistor. - Determining

More information

DC and AC Circuits. Objective. Theory. 1. Direct Current (DC) R-C Circuit

DC and AC Circuits. Objective. Theory. 1. Direct Current (DC) R-C Circuit [International Campus Lab] Objective Determine the behavior of resistors, capacitors, and inductors in DC and AC circuits. Theory ----------------------------- Reference -------------------------- Young

More information

PHYSICS 221 LAB #6: CAPACITORS AND AC CIRCUITS

PHYSICS 221 LAB #6: CAPACITORS AND AC CIRCUITS Name: Partners: PHYSICS 221 LAB #6: CAPACITORS AND AC CIRCUITS The electricity produced for use in homes and industry is made by rotating coils of wire in a magnetic field, which results in alternating

More information

EE 230 Lab Lab nf C 2. A. Low-Q low-pass active filters. (a) 10 k! Figure 1. (a) First-order low-pass. (b) Second-order low-pass.

EE 230 Lab Lab nf C 2. A. Low-Q low-pass active filters. (a) 10 k! Figure 1. (a) First-order low-pass. (b) Second-order low-pass. Second-order filter circuits This time, we measure frequency response plots for second-order filters. We start by examining a simple 2nd-order low-pass filter. The we look at the various arrangements of

More information

EXPERIMENT 4: RC, RL and RD CIRCUITs

EXPERIMENT 4: RC, RL and RD CIRCUITs EXPERIMENT 4: RC, RL and RD CIRCUITs Equipment List An assortment of resistor, one each of (330, 1k,1.5k, 10k,100k,1000k) Function Generator Oscilloscope 0.F Ceramic Capacitor 100H Inductor LED and 1N4001

More information

EXPERIMENT 4: RC, RL and RD CIRCUITs

EXPERIMENT 4: RC, RL and RD CIRCUITs EXPERIMENT 4: RC, RL and RD CIRCUITs Equipment List Resistor, one each of o 330 o 1k o 1.5k o 10k o 100k o 1000k 0.F Ceramic Capacitor 4700H Inductor LED and 1N4004 Diode. Introduction We have studied

More information

The RLC Series Circuit with an AC Source

The RLC Series Circuit with an AC Source The R Series ircuit with an A Source Introduction Ohm s law and R circuit labs use a steady current. However, this lab uses a different power supply, which is alternating current (A). The previous electronics

More information

ME 365 EXPERIMENT 7 SIGNAL CONDITIONING AND LOADING

ME 365 EXPERIMENT 7 SIGNAL CONDITIONING AND LOADING ME 365 EXPERIMENT 7 SIGNAL CONDITIONING AND LOADING Objectives: To familiarize the student with the concepts of signal conditioning. At the end of the lab, the student should be able to: Understand the

More information

Lab 1: Basic RL and RC DC Circuits

Lab 1: Basic RL and RC DC Circuits Name- Surname: ID: Department: Lab 1: Basic RL and RC DC Circuits Objective In this exercise, the DC steady state response of simple RL and RC circuits is examined. The transient behavior of RC circuits

More information

Chapter 3, Sections Electrical Filters

Chapter 3, Sections Electrical Filters Chapter 3, Sections 3.2.4-3.2.5 Electrical Filters Signals DC and AC Components - Many signals can be constructed as sums of AC and DC components: 2.5 2 1.5 2 1.5 1.5 1 2 3 4 1.5 -.5-1 1 2 3 4 = + 2.5

More information

Lab 9 Frequency Domain

Lab 9 Frequency Domain Lab 9 Frequency Domain 1 Components Required Resistors Capacitors Function Generator Multimeter Oscilloscope 2 Filter Design Filters are electric components that allow applying different operations to

More information

RLC Frequency Response

RLC Frequency Response 1. Introduction RLC Frequency Response The student will analyze the frequency response of an RLC circuit excited by a sinusoid. Amplitude and phase shift of circuit components will be analyzed at different

More information

ME 365 EXPERIMENT 1 FAMILIARIZATION WITH COMMONLY USED INSTRUMENTATION

ME 365 EXPERIMENT 1 FAMILIARIZATION WITH COMMONLY USED INSTRUMENTATION Objectives: ME 365 EXPERIMENT 1 FAMILIARIZATION WITH COMMONLY USED INSTRUMENTATION The primary goal of this laboratory is to study the operation and limitations of several commonly used pieces of instrumentation:

More information

Lab #2: Electrical Measurements II AC Circuits and Capacitors, Inductors, Oscillators and Filters

Lab #2: Electrical Measurements II AC Circuits and Capacitors, Inductors, Oscillators and Filters Lab #2: Electrical Measurements II AC Circuits and Capacitors, Inductors, Oscillators and Filters Goal: In circuits with a time-varying voltage, the relationship between current and voltage is more complicated

More information

AC Circuits. "Look for knowledge not in books but in things themselves." W. Gilbert ( )

AC Circuits. Look for knowledge not in books but in things themselves. W. Gilbert ( ) AC Circuits "Look for knowledge not in books but in things themselves." W. Gilbert (1540-1603) OBJECTIVES To study some circuit elements and a simple AC circuit. THEORY All useful circuits use varying

More information

EXPERIMENT 14 Variable-frequency networks

EXPERIMENT 14 Variable-frequency networks EXPEIMENT 14 Variable-frequency networks The objective of this experiment is to: Investigate networks excited with variable-frequency sinusoidal signals I. Introduction The ac steady-state behavior of

More information

ECE 2006 University of Minnesota Duluth Lab 11. AC Circuits

ECE 2006 University of Minnesota Duluth Lab 11. AC Circuits 1. Objective AC Circuits In this lab, the student will study sinusoidal voltages and currents in order to understand frequency, period, effective value, instantaneous power and average power. Also, the

More information

Experiment 9: AC circuits

Experiment 9: AC circuits Experiment 9: AC circuits Nate Saffold nas2173@columbia.edu Office Hour: Mondays, 5:30PM-6:30PM @ Pupin 1216 INTRO TO EXPERIMENTAL PHYS-LAB 1493/1494/2699 Introduction Last week (RC circuit): This week:

More information

ET 304A Laboratory Tutorial-Circuitmaker For Transient and Frequency Analysis

ET 304A Laboratory Tutorial-Circuitmaker For Transient and Frequency Analysis ET 304A Laboratory Tutorial-Circuitmaker For Transient and Frequency Analysis All circuit simulation packages that use the Pspice engine allow users to do complex analysis that were once impossible to

More information

Chapter 30 Inductance, Electromagnetic. Copyright 2009 Pearson Education, Inc.

Chapter 30 Inductance, Electromagnetic. Copyright 2009 Pearson Education, Inc. Chapter 30 Inductance, Electromagnetic Oscillations, and AC Circuits 30-7 AC Circuits with AC Source Resistors, capacitors, and inductors have different phase relationships between current and voltage

More information

EXPERIMENT 8: LRC CIRCUITS

EXPERIMENT 8: LRC CIRCUITS EXPERIMENT 8: LRC CIRCUITS Equipment List S 1 BK Precision 4011 or 4011A 5 MHz Function Generator OS BK 2120B Dual Channel Oscilloscope V 1 BK 388B Multimeter L 1 Leeds & Northrup #1532 100 mh Inductor

More information

Lab E5: Filters and Complex Impedance

Lab E5: Filters and Complex Impedance E5.1 Lab E5: Filters and Complex Impedance Note: It is strongly recommended that you complete lab E4: Capacitors and the RC Circuit before performing this experiment. Introduction Ohm s law, a well known

More information

Department of Electrical & Computer Engineering Technology. EET 3086C Circuit Analysis Laboratory Experiments. Masood Ejaz

Department of Electrical & Computer Engineering Technology. EET 3086C Circuit Analysis Laboratory Experiments. Masood Ejaz Department of Electrical & Computer Engineering Technology EET 3086C Circuit Analysis Laboratory Experiments Masood Ejaz Experiment # 1 DC Measurements of a Resistive Circuit and Proof of Thevenin Theorem

More information

EE 241 Experiment #7: NETWORK THEOREMS, LINEARITY, AND THE RESPONSE OF 1 ST ORDER RC CIRCUITS 1

EE 241 Experiment #7: NETWORK THEOREMS, LINEARITY, AND THE RESPONSE OF 1 ST ORDER RC CIRCUITS 1 EE 241 Experiment #7: NETWORK THEOREMS, LINEARITY, AND THE RESPONSE OF 1 ST ORDER RC CIRCUITS 1 PURPOSE: To verify the validity of Thevenin and maximum power transfer theorems. To demonstrate the linear

More information

Mechatronics. Analog and Digital Electronics: Studio Exercises 1 & 2

Mechatronics. Analog and Digital Electronics: Studio Exercises 1 & 2 Mechatronics Analog and Digital Electronics: Studio Exercises 1 & 2 There is an electronics revolution taking place in the industrialized world. Electronics pervades all activities. Perhaps the most important

More information

Series and Parallel Resonance

Series and Parallel Resonance School of Engineering Department of Electrical and Computer Engineering 33:4 Principles of Electrical Engineering II aboratory Experiment 1 Series and Parallel esonance 1 Introduction Objectives To introduce

More information

Chapter 31. Alternating Current. PowerPoint Lectures for University Physics, 14th Edition Hugh D. Young and Roger A. Freedman Lectures by Jason Harlow

Chapter 31. Alternating Current. PowerPoint Lectures for University Physics, 14th Edition Hugh D. Young and Roger A. Freedman Lectures by Jason Harlow Chapter 31 Alternating Current PowerPoint Lectures for University Physics, 14th Edition Hugh D. Young and Roger A. Freedman Lectures by Jason Harlow Learning Goals for Chapter 31 Looking forward at How

More information

INC 253 Digital and electronics laboratory I

INC 253 Digital and electronics laboratory I INC 253 Digital and electronics laboratory I Laboratory 4 Wave Shaping Diode Circuits Author: ID CoAuthors: 1. ID 2. ID 3. ID Experiment Date: Report received Date: Comments For Instructor Full Marks Pre

More information

Lab #5 Steady State Power Analysis

Lab #5 Steady State Power Analysis Lab #5 Steady State Power Analysis Steady state power analysis refers to the power analysis of circuits that have one or more sinusoid stimuli. This lab covers the concepts of RMS voltage, maximum power

More information

Pre-Lab. Introduction

Pre-Lab. Introduction Pre-Lab Read through this entire lab. Perform all of your calculations (calculated values) prior to making the required circuit measurements. You may need to measure circuit component values to obtain

More information

Advanced Measurements

Advanced Measurements Albaha University Faculty of Engineering Mechanical Engineering Department Lecture 9: Wheatstone Bridge and Filters Ossama Abouelatta o_abouelatta@yahoo.com Mechanical Engineering Department Faculty of

More information

Exercise 1: Series Resonant Circuits

Exercise 1: Series Resonant Circuits Series Resonance AC 2 Fundamentals Exercise 1: Series Resonant Circuits EXERCISE OBJECTIVE When you have completed this exercise, you will be able to compute the resonant frequency, total current, and

More information

Resonance. A resonant circuit (series or parallel) must have an inductive and a capacitive element.

Resonance. A resonant circuit (series or parallel) must have an inductive and a capacitive element. 1. Series Resonant: Resonance A resonant circuit (series or parallel) must have an inductive and a capacitive element. The total impedance of this network is: The circuit will reach its maximum Voltage

More information

( ). (9.3) 9. EXPERIMENT E9: THE RLC CIRCUIT OBJECTIVES

( ). (9.3) 9. EXPERIMENT E9: THE RLC CIRCUIT OBJECTIVES 9. EXPERIMENT E9: THE RLC CIRCUIT OBJECTIVES In this experiment, you will measure the electric current, voltage, reactance, impedance, and understand the resonance phenomenon in an alternating-current

More information

ECE 201 LAB 8 TRANSFORMERS & SINUSOIDAL STEADY STATE ANALYSIS

ECE 201 LAB 8 TRANSFORMERS & SINUSOIDAL STEADY STATE ANALYSIS Version 1.1 1 of 8 ECE 201 LAB 8 TRANSFORMERS & SINUSOIDAL STEADY STATE ANALYSIS BEFORE YOU BEGIN PREREQUISITE LABS Introduction to MATLAB Introduction to Lab Equipment Introduction to Oscilloscope Capacitors,

More information

FREQUENCY RESPONSE AND PASSIVE FILTERS LABORATORY

FREQUENCY RESPONSE AND PASSIVE FILTERS LABORATORY FREQUENCY RESPONSE AND PASSIVE FILTERS LABORATORY In this experiment we will analytically determine and measure the frequency response of networks containing resistors, AC source/sources, and energy storage

More information

A.C. FILTER NETWORKS. Learning Objectives

A.C. FILTER NETWORKS. Learning Objectives C H A P T E 17 Learning Objectives Introduction Applications Different Types of Filters Octaves and Decades of Frequency Decibel System alue of 1 db Low-Pass C Filter Other Types of Low-Pass Filters Low-Pass

More information

EECS40 RLC Lab guide

EECS40 RLC Lab guide EECS40 RLC Lab guide Introduction Second-Order Circuits Second order circuits have both inductor and capacitor components, which produce one or more resonant frequencies, ω0. In general, a differential

More information

Lab 9 - INTRODUCTION TO AC CURRENTS AND VOLTAGES

Lab 9 - INTRODUCTION TO AC CURRENTS AND VOLTAGES 145 Name Date Partners Lab 9 INTRODUCTION TO AC CURRENTS AND VOLTAGES V(volts) t(s) OBJECTIVES To learn the meanings of peak voltage and frequency for AC signals. To observe the behavior of resistors in

More information

Mechatronics. Introduction to Analog and Digital Electronics: Laboratory Exercises 1 & 2

Mechatronics. Introduction to Analog and Digital Electronics: Laboratory Exercises 1 & 2 Mechatronics Introduction to Analog and Digital Electronics: Laboratory Exercises 1 & 2 There is an electronics revolution taking plac thdustrialized world. Electronics pervades all activities. Perhaps

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring Experiment 11: Driven RLC Circuit

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring Experiment 11: Driven RLC Circuit MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.2 Spring 24 Experiment 11: Driven LC Circuit OBJECTIVES 1. To measure the resonance frequency and the quality factor of a driven LC circuit.

More information

Two-Port Networks and Filters

Two-Port Networks and Filters Two-Port Networks and Filters Filters By combining resistors capacitors and inductors in special ways you can design networks that are capable of passing certain frequencies of signals while rejecting

More information

Filters And Waveform Shaping

Filters And Waveform Shaping Physics 3330 Experiment #3 Fall 2001 Purpose Filters And Waveform Shaping The aim of this experiment is to study the frequency filtering properties of passive (R, C, and L) circuits for sine waves, and

More information

AC Magnitude and Phase

AC Magnitude and Phase AC Magnitude and Phase Objectives: oday's experiment provides practical experience with the meaning of magnitude and phase in a linear circuits and the use of phasor algebra to predict the response of

More information

AC reactive circuit calculations

AC reactive circuit calculations AC reactive circuit calculations This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

University of Pittsburgh

University of Pittsburgh University of Pittsburgh Experiment #6 Lab Report Active Filters and Oscillators Submission Date: 7/9/28 Instructors: Dr. Ahmed Dallal Shangqian Gao Submitted By: Nick Haver & Alex Williams Station #2

More information

Lab 2: Linear and Nonlinear Circuit Elements and Networks

Lab 2: Linear and Nonlinear Circuit Elements and Networks OPTI 380B Intermediate Optics Laboratory Lab 2: Linear and Nonlinear Circuit Elements and Networks Objectives: Lean how to use: Function of an oscilloscope probe. Characterization of capacitors and inductors

More information

ωc ωc sin(wt 90o ) (for a capacitance) (4)

ωc ωc sin(wt 90o ) (for a capacitance) (4) Physics'241'Signal'Processing:'Lab'3' Sinusoidal esponse of, L ircuits In the previous lab, we studied the behavior of series combinations of and L circuits with input square and triangular waveforms.

More information

ECE 3155 Experiment I AC Circuits and Bode Plots Rev. lpt jan 2013

ECE 3155 Experiment I AC Circuits and Bode Plots Rev. lpt jan 2013 Signature Name (print, please) Lab section # Lab partner s name (if any) Date(s) lab was performed ECE 3155 Experiment I AC Circuits and Bode Plots Rev. lpt jan 2013 In this lab we will demonstrate basic

More information

PHYS 3152 Methods of Experimental Physics I E2. Diodes and Transistors 1

PHYS 3152 Methods of Experimental Physics I E2. Diodes and Transistors 1 Part I Diodes Purpose PHYS 3152 Methods of Experimental Physics I E2. In this experiment, you will investigate the current-voltage characteristic of a semiconductor diode and examine the applications of

More information

Exercise 1: Series RLC Circuits

Exercise 1: Series RLC Circuits RLC Circuits AC 2 Fundamentals Exercise 1: Series RLC Circuits EXERCISE OBJECTIVE When you have completed this exercise, you will be able to analyze series RLC circuits by using calculations and measurements.

More information

EE301 ELECTRONIC CIRCUITS

EE301 ELECTRONIC CIRCUITS EE30 ELECTONIC CICUITS CHAPTE 5 : FILTES LECTUE : Engr. Muhammad Muizz Electrical Engineering Department Politeknik Kota Kinabalu, Sabah. 5. INTODUCTION Is a device that removes or filters unwanted signal.

More information

ANADOLU UNIVERSITY FACULTY OF ENGINEERING AND ARCHITECTURE DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

ANADOLU UNIVERSITY FACULTY OF ENGINEERING AND ARCHITECTURE DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING ANADOLU UNIVERSITY FACULTY OF ENGINEERING AND ARCHITECTURE DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EEM 206 ELECTRICAL CIRCUITS LABORATORY EXPERIMENT#3 RESONANT CIRCUITS 1 RESONANT CIRCUITS

More information

Pre-Lab. Introduction

Pre-Lab. Introduction EE-3 Pre-Lab ead through this entire lab. Perform all of your calculations (calculated values) prior to making the required circuit measurements. You may need to measure circuit component values to obtain

More information

Precalculations Individual Portion Filter Lab: Building and Testing Electrical Filters

Precalculations Individual Portion Filter Lab: Building and Testing Electrical Filters Name: Date of lab: Section number: M E 345. Lab 6 Precalculations Individual Portion Filter Lab: Building and Testing Electrical Filters Precalculations Score (for instructor or TA use only): / 20 1. (4)

More information

Step Response of RC Circuits

Step Response of RC Circuits EE 233 Laboratory-1 Step Response of RC Circuits 1 Objectives Measure the internal resistance of a signal source (eg an arbitrary waveform generator) Measure the output waveform of simple RC circuits excited

More information

Integrators, differentiators, and simple filters

Integrators, differentiators, and simple filters BEE 233 Laboratory-4 Integrators, differentiators, and simple filters 1. Objectives Analyze and measure characteristics of circuits built with opamps. Design and test circuits with opamps. Plot gain vs.

More information

Chapter 31 Alternating Current

Chapter 31 Alternating Current Chapter 31 Alternating Current In this chapter we will learn how resistors, inductors, and capacitors behave in circuits with sinusoidally vary voltages and currents. We will define the relationship between

More information

PHYS 235: Homework Problems

PHYS 235: Homework Problems PHYS 235: Homework Problems 1. The illustration is a facsimile of an oscilloscope screen like the ones you use in lab. sinusoidal signal from your function generator is the input for Channel 1, and your

More information

ENGINEERING COUNCIL CERTIFICATE LEVEL ENGINEERING SCIENCE C103 TUTORIAL 18 ALTERNATING CURRENT

ENGINEERING COUNCIL CERTIFICATE LEVEL ENGINEERING SCIENCE C103 TUTORIAL 18 ALTERNATING CURRENT ENGINEERING OUNIL ERTIFIATE LEVEL ENGINEERING SIENE 03 TUTORIAL 8 ALTERNATING URRENT On completion of this tutorial you should be able to do the following. Explain alternating current. Explain Root Mean

More information

LAB 4 : FET AMPLIFIERS

LAB 4 : FET AMPLIFIERS LEARNING OUTCOME: LAB 4 : FET AMPLIFIERS In this lab, students design and implement single-stage FET amplifiers and explore the frequency response of the real amplifiers. Breadboard and the Analog Discovery

More information

Lab 9 AC FILTERS AND RESONANCE

Lab 9 AC FILTERS AND RESONANCE 151 Name Date Partners ab 9 A FITES AND ESONANE OBJETIES OEIEW To understand the design of capacitive and inductive filters To understand resonance in circuits driven by A signals In a previous lab, you

More information

Lecture 16 Date: Frequency Response (Contd.)

Lecture 16 Date: Frequency Response (Contd.) Lecture 16 Date: 03.10.2017 Frequency Response (Contd.) Bode Plot (contd.) Bode Plot (contd.) Bode Plot (contd.) not every transfer function has all seven factors. To sketch the Bode plots for a generic

More information

Real Analog - Circuits 1 Chapter 11: Lab Projects

Real Analog - Circuits 1 Chapter 11: Lab Projects Real Analog - Circuits 1 Chapter 11: Lab Projects 11.2.1: Signals with Multiple Frequency Components Overview: In this lab project, we will calculate the magnitude response of an electrical circuit and

More information

Lab 13 AC Circuit Measurements

Lab 13 AC Circuit Measurements Lab 13 AC Circuit Measurements Objectives concepts 1. what is impedance, really? 2. function generator and oscilloscope 3. RMS vs magnitude vs Peak-to-Peak voltage 4. phase between sinusoids skills 1.

More information

Laboratory Exercise 6 THE OSCILLOSCOPE

Laboratory Exercise 6 THE OSCILLOSCOPE Introduction Laboratory Exercise 6 THE OSCILLOSCOPE The aim of this exercise is to introduce you to the oscilloscope (often just called a scope), the most versatile and ubiquitous laboratory measuring

More information

Sirindhorn International Institute of Technology Thammasat University

Sirindhorn International Institute of Technology Thammasat University Sirindhorn International Institute of Technology Thammasat University School of Information, Computer and Communication Technology COURSE : ECS 34 Basic Electrical Engineering Lab INSTRUCTOR : Dr. Prapun

More information

FREQUENCY RESPONSE OF R, L AND C ELEMENTS

FREQUENCY RESPONSE OF R, L AND C ELEMENTS FREQUENCY RESPONSE OF R, L AND C ELEMENTS Marking scheme : Methods & diagrams : 3 Graph plotting : - Tables & analysis : 2 Questions & discussion : 3 Performance : 2 Aim: This experiment will investigate

More information

Uncovering a Hidden RCL Series Circuit

Uncovering a Hidden RCL Series Circuit Purpose Uncovering a Hidden RCL Series Circuit a. To use the equipment and techniques developed in the previous experiment to uncover a hidden series RCL circuit in a box and b. To measure the values of

More information

EXPERIMENT FREQUENCY RESPONSE OF AC CIRCUITS. Structure. 8.1 Introduction Objectives

EXPERIMENT FREQUENCY RESPONSE OF AC CIRCUITS. Structure. 8.1 Introduction Objectives EXPERIMENT 8 FREQUENCY RESPONSE OF AC CIRCUITS Frequency Response of AC Circuits Structure 81 Introduction Objectives 8 Characteristics of a Series-LCR Circuit 83 Frequency Responses of a Resistor, an

More information

Experiment 2 Determining the Capacitive Reactance of a Capacitor in an AC Circuit

Experiment 2 Determining the Capacitive Reactance of a Capacitor in an AC Circuit Experiment 2 Determining the apacitive eactance of a apacitor in an A ircuit - Objects of the experiments: a- Investigating the voltage and the current at a capacitor in an A circuit b- Observing the phase

More information

10: AMPLIFIERS. Circuit Connections in the Laboratory. Op-Amp. I. Introduction

10: AMPLIFIERS. Circuit Connections in the Laboratory. Op-Amp. I. Introduction 10: AMPLIFIERS Circuit Connections in the Laboratory From now on you will construct electrical circuits and test them. The usual way of constructing circuits would be to solder each electrical connection

More information