Signals, Instruments, and Systems W7. Embedded Systems General Concepts and

Size: px
Start display at page:

Download "Signals, Instruments, and Systems W7. Embedded Systems General Concepts and"

Transcription

1 Signals, Instruments, and Systems W7 Introduction to Hardware in Embedded Systems General Concepts and the e-puck Example

2 Outline General concepts: autonomy, perception, p action, computation, communication Examples of embedded systems The e-puck miniature robot General architecture t Perception (Sensors) Action (Actuators) Computation (Microcontroller) Communication (Transceivers)

3 General Concepts for Embedded Systems

4 What is an Embedded System? From Wikipedia: An embedded system is a special-purpose p p computer system designed to perform one or a few dedicated functions often with real-time computing constraints. It is usually embedded as part of a complete device including hardware and mechanical parts. In contrast, a general-purpose computer, such as a personal computer, can do many different tasks depending on programming.

5 What is Challenging in Designing Embedded Systems? Computation is subject to physical and resource constraints such as timing, deadlines, memory restrictions, and power consumption requirements. The traditional abstraction of separating software from the hardware is more difficult. Hardware and software are integrally intertwined. But: hardware components are becoming more and more flexible, cheap, small, and standardized. The design complexity is shifting to software! Your role as Environmental Engineers: get enough background to contribute to the software side with your domain knowledge and collaborate with electrical and computer engineers.

6 Autonomy Different levels/degrees of autonomy Energetic level Sensory, motor, and computational level Decisional level Needed degree of autonomy depends on task/environment in which the unit has to operate Environmental unpredictability is crucial: robot manipulator vs. mobile robot vs. sensor node

7 Autonomy The Impact of Controllable Mobility Task Complexity Human-Guided Robotics State of the Art in Mobile Robotics Distributed ib t Autonomous Robotics? Autonomous Robotics Autonomy Research Industry

8 Perception-to-Action Loop sensors actuators Per rception Computation Action Environment Note: real-time aspect emphasized!

9 Perception - Sensors Propioceptive ( body ) vs. exteroceptive ( environment ) Ex. proprioceptive: motor speed/robot arm joint angle, battery voltage Ex. exteroceptive: distance measurement, light intensity, sound amplitude Passive ( measure ambient energy ) vs. active ( emit energy in the environment and measure the environmental reaction ) Ex. passive: temperature probes, microphones, cameras Ex. active: laser rangfinder, IR proximity sensors, ultrasound sonars [Adapted from Introduction to Autonomous Mobile Robots, Siegwart R. and Nourbakhsh I. R.]

10 4a 4a - Perception - Sensors 10 Classification of Typical Sensors [From Introduction to Autonomous Mobile Robots, Siegwart R. and Nourbakhsh I. R.]

11 4a 4a - Perception - Sensors Classification of Typical Sensors 11 [From Introduction to Autonomous Mobile Robots, Siegwart R. and Nourbakhsh I. R.]

12 4a 4a - Perception - Sensors 12 General Sensor Performance Range Upper limit Dynamic range ratio between lower and upper limits, usually in decibels (db for power and amplitude) e.g. voltage measurement from 1 mv to 20 V Note: similar to the acoustic amplitude (see lecture on signal processing) e.g. power measurement from 1 mw to 20 W P = U I = 1 U 2 R Note: 20 instead of 10 because square of voltage is equal to power!! [Adapted from Introduction to Autonomous Mobile Robots, Siegwart R. and Nourbakhsh I. R.]

13 4a 4a - Perception - Sensors 13 General Sensor Performance Resolution minimum difference between two values usually: lower limit of dynamic range = resolution for digital sensors it is usually the A/D resolution. Linearity e.g. 5V / 255 (8 bit) variation of output signal as function of the input signal linearity is less important when signal is treated with a computer x f ( x) y f (y) α x + β y f ( α x + β y ) = α f ( x ) + β f ( y )? [From Introduction to Autonomous Mobile Robots, Siegwart R. and Nourbakhsh I. R.]

14 4a 4a - Perception - Sensors 14 General Sensor Performance Bandwidth or Frequency the speed with which a sensor can provide a stream of readings usually there is an upper limit it depending di on the sensor and the sampling rate lower limit is also possible, e.g. acceleration sensor frequency response (see signal processing lecture): phase (delay) of the signal and amplitude might be ifl influenced [Adapted from Introduction to Autonomous Mobile Robots, Siegwart R. and Nourbakhsh I. R.]

15 4a 4a - Perception - Sensors 15 In Situ Sensor Performance Characteristics that are especially relevant for real world environments Sensitivity ratio of output change to input change however, in real world environment, the sensor has very often high sensitivity to other environmental changes, e.g. illumination Cross-sensitivity (and cross-talk) sensitivity to other environmental parameters influence of other active sensors Error / Accuracy difference between the sensor s output and the true value error m = measured value v = true value [Adapted from Introduction to Autonomous Mobile Robots, Siegwart R. and Nourbakhsh I. R.]

16 4a 4a - Perception - Sensors 16 In Situ Sensor Performance Characteristics that are especially relevant for real world environments Systematic ti error -> >deterministic i ti errors caused by factors that can (in theory) be modeled -> prediction e.g. calibration of a laser sensor or of the distortion cause by the optic of a camera Random error -> non-deterministic no deterministic i i prediction i possible however, they can be described probabilistically e.g. gaussian noise on a distance sensor, black level noise of camera Precision (different from accuracy!) reproducibility of sensor results σ = standard dev of the sensor noise [From Introduction to Autonomous Mobile Robots, Siegwart R. and Nourbakhsh I. R.]

17 Action - Actuators For different purposes: locomotion, control a part of the body y( (e.g., arm), heating, sound producing, etc. Examples of electrical-to-mechanical to actuators: DC motors, stepper motors, servos, loudspeakers, etc.

18 Computation Usually microcontroller-based; memory internal and potentially external to the microcontroller Discretization (analog-to-digital for values, continuous-to-discreteto for time) and continuization (digital-to-analog for values, discrete-to-continuous to continuous for time) Different types of control architectures: e.g., reactive ( reflex-based based ) vs. deliberative ( planning )

19 Microprocessors vs. Microcontrollers Microprocessors These chips contain a processing core, and occasionally a few integrated peripherals. In a broader sense, microprocessors are simply CPUs found in desktops. Microcontrollers These chips are all-in-one computer chips. They contain a processing core, memory, and integrated peripherals (e.g., ADC, motor control PWM generator, bus controller). In a broader sense, a microcontroller is a CPU that is used in an embedded system. stem

20 Communication Different physical channels: wired (e.g., RS232, USB) and wireless (e.g., radio, infrared, ultrasound, sound) Internal or external to the device: buses connecting different components (wired communication); external (node to base-station, node-to-node in a network) Asymmetric (one way) or symmetric (bidirectrional) link Direct (explicit) or indirect (implicit): direct implies dedicated hardware and software components for intentional, targeted information sharing; indirect, implies anonymous, broadcasting forms which are temporary (e.g., visual signs) or persist, perhaps with some volatility, in the environment (e.g., chemical signs such as pheromones)

21 Overview of Main Wireless Communication i Standards d Available for e-puck

22 Examples of Embedded Systems

23 Consumer Market Devices Digital Watch Weather station Digital camera Digital video camera

24 Niche Market Scientific Equipment Commercially Available e-puck Mica-Z Sensorscope station Handheld Airborne Mapping System

25 The e-puck miniature robot

26 Sl Selected tdand re-elaborated lb tdslides from: Microinformatique Introduction ti to the e-puck robot Francesco Mondada Robotics Systems Laboratory IMT - STI - EPFL

27 The e-puck Mobile Robot Main features Cylindrical, Ø 70mm dspic processor Two stepper motors Ring of LEDs Many sensors: Camera Sound IR proximity 3D accelerometer Li-ion accumulator Bluetooth wireless communication Open hardware (and software)

28 The e-puck Open Hardware License The specifications of the e-puck mobile robot are "open source hardware". You can redistribute them and/or modify them under the terms of the e-puck Robot Open Source Hardware License as published by EPFL. You should have received a copy of the EPFL e-puck Robot Open Source Hardware License along with these specifications; if not, write to the Ecole Polytechnique Fédérale de Lausanne (EPFL), Industrial Relations Office, Station 10, 1015 Lausanne, Switzerland. These specifications are distributed in the hope that they will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. For more details, see the EPFL e-puck Robot Open Source Hardware License.

29 Mechatronic Hardware Overview

30 Computation and memory Communication Actuators Sensors e-puck Block Schema

31 e-puck Overview IR receiver (remote control) Accelerometer Programming and debug connector ON-OFF microphones Wheels with stepper motor Speaker Reset Mode selector RS232 Ring of LEDs IR proximity i sensors CMOS camera Li-Ion accumulator

32 e-puck Mechanical Structure

33 e-puck Mechanical Structure

34 e-puck Mechanical Structure

35 e-puck Mechanical Structure

36 e-puck Mechanical Structure

37 e-puck Mechanical Structure

38 e-puck Mechanical Structure

39 e-puck Electronics (typical routing report produced by the EPFL PCB workshop)

40 e-puck kelectronics: Sample Schematics

41 e-puck Electronics: Placement of Components bottom top

42 e-puck Electronics: Layout (4 Layers PCB) mask top bottom mask inside

43 e-puck Electronics: e-jumper

44 On-Board Computational Capabilities

45 PIC/dsPIC Family from Microcontroller on the e-puck

46 DSP and Specialized Variants dspic is a family of chips combining microcontroller and Digital Signal Processor (DSP) structure and features For each dspic family member there are three variants: General purpose (codec interface) Motor control and power conversion (Pulse Width Modulation generator and encoder reading) Sensor processor (minimal variant)

47 dspic Family Variants e-puck e puck microcontroller

48 dspic Family Variants

49 dspic Architecture

50 Microcontroller core dspic Architecture

51 Memory and memory addressing dspic Architecture

52 Peripheral device control dspic Architecture

53 Peripheral Device Control ADC: Analog-to-Digital Converter SPI: Serial lperipheral linterface I 2 C: Inter-Integrated Circuit UART: Universal Asynchronous Receiver Transmitter CAN: Controller Area Network DCI: Data Converter Interface

54 16 channels, 12 bits Analog-to-Digital Converter (ADC)

55 Pinout dspic Architecture

56 Conclusion

57 Take Home Messages 1. Embedded system: specific purpose, equipped for interfacing discrete/digital and continuous/analog world, microcontroller-based design, often real-time constraints 2. Main modules of an embedded system: perception, action, computation, communication 3. e-puck use dspic as computational unit (programmable in C), has a reach sensory set, actuation capabilities, and bidirectional wireless and wired links 4. The hardware of an embedded device such an e-puck consists of a customized mechanical chassis and off-theshelf components (e.g., dspic, sensors, other logic chips, connectors, motors) assembled on one or several printed circuit boards (PCBs).

58 Additional Literature Week 7 Manuals and technical documentation MPLAB C30 C Compiler User s Guide dspic datasheet dspic30f Programmer s Reference Manual e-puck website:

Signals, Instruments, and Systems W6. Introduction to Embedded. Sensing, Communicating

Signals, Instruments, and Systems W6. Introduction to Embedded. Sensing, Communicating Signals, Instruments, and Systems W6 Introduction to Embedded Systems Computing, Sensing, Communicating Outline Embedded system terminology and key concepts Examples of embedded systems The Mica-z as example

More information

COS Lecture 7 Autonomous Robot Navigation

COS Lecture 7 Autonomous Robot Navigation COS 495 - Lecture 7 Autonomous Robot Navigation Instructor: Chris Clark Semester: Fall 2011 1 Figures courtesy of Siegwart & Nourbakhsh Control Structure Prior Knowledge Operator Commands Localization

More information

Introduction to Embedded and Real-Time Systems W10: Hardware Design Choices and Basic Control Architectures for Mobile Robots

Introduction to Embedded and Real-Time Systems W10: Hardware Design Choices and Basic Control Architectures for Mobile Robots Introduction to Embedded and Real-Time Systems W10: Hardware Design Choices and Basic Control Architectures for Mobile Robots Outline Hardware design choices Hardware resource management Introduction to

More information

Embedded Robotics. Software Development & Education Center

Embedded Robotics. Software Development & Education Center Software Development & Education Center Embedded Robotics Robotics Development with ARM µp INTRODUCTION TO ROBOTICS Types of robots Legged robots Mobile robots Autonomous robots Manual robots Robotic arm

More information

Training Schedule. Robotic System Design using Arduino Platform

Training Schedule. Robotic System Design using Arduino Platform Training Schedule Robotic System Design using Arduino Platform Session - 1 Embedded System Design Basics : Scope : To introduce Embedded Systems hardware design fundamentals to students. Processor Selection

More information

Intelligent Robotics Sensors and Actuators

Intelligent Robotics Sensors and Actuators Intelligent Robotics Sensors and Actuators Luís Paulo Reis (University of Porto) Nuno Lau (University of Aveiro) The Perception Problem Do we need perception? Complexity Uncertainty Dynamic World Detection/Correction

More information

Hardware Platforms and Sensors

Hardware Platforms and Sensors Hardware Platforms and Sensors Tom Spink Including material adapted from Bjoern Franke and Michael O Boyle Hardware Platform A hardware platform describes the physical components that go to make up a particular

More information

Brainstorm. In addition to cameras / Kinect, what other kinds of sensors would be useful?

Brainstorm. In addition to cameras / Kinect, what other kinds of sensors would be useful? Brainstorm In addition to cameras / Kinect, what other kinds of sensors would be useful? How do you evaluate different sensors? Classification of Sensors Proprioceptive sensors measure values internally

More information

Sensing. Autonomous systems. Properties. Classification. Key requirement of autonomous systems. An AS should be connected to the outside world.

Sensing. Autonomous systems. Properties. Classification. Key requirement of autonomous systems. An AS should be connected to the outside world. Sensing Key requirement of autonomous systems. An AS should be connected to the outside world. Autonomous systems Convert a physical value to an electrical value. From temperature, humidity, light, to

More information

Range Sensing strategies

Range Sensing strategies Range Sensing strategies Active range sensors Ultrasound Laser range sensor Slides adopted from Siegwart and Nourbakhsh 4.1.6 Range Sensors (time of flight) (1) Large range distance measurement -> called

More information

PRESENTED BY HUMANOID IIT KANPUR

PRESENTED BY HUMANOID IIT KANPUR SENSORS & ACTUATORS Robotics Club (Science and Technology Council, IITK) PRESENTED BY HUMANOID IIT KANPUR October 11th, 2017 WHAT ARE WE GOING TO LEARN!! COMPARISON between Transducers Sensors And Actuators.

More information

MOBILE ROBOTICS. Sensors An Introduction

MOBILE ROBOTICS. Sensors An Introduction CY 02CFIC CFIDV RO OBOTIC CA 01 MOBILE ROBOTICS Sensors An Introduction Basilio Bona DAUIN Politecnico di Torino Basilio Bona DAUIN Politecnico di Torino 001/1 CY CA 01CFIDV 02CFIC OBOTIC RO An Example

More information

Lab 8: Introduction to the e-puck Robot

Lab 8: Introduction to the e-puck Robot Lab 8: Introduction to the e-puck Robot This laboratory requires the following equipment: C development tools (gcc, make, etc.) C30 programming tools for the e-puck robot The development tree which is

More information

Citrus Circuits Fall Workshop Series. Roborio and Sensors. Paul Ngo and Ellie Hass

Citrus Circuits Fall Workshop Series. Roborio and Sensors. Paul Ngo and Ellie Hass Citrus Circuits Fall Workshop Series Roborio and Sensors Paul Ngo and Ellie Hass Introduction to Sensors Sensor: a device that detects or measures a physical property and records, indicates, or otherwise

More information

Unit level 5 Credit value 15. Introduction. Learning Outcomes

Unit level 5 Credit value 15. Introduction. Learning Outcomes Unit 46: Unit code Embedded Systems A/615/1514 Unit level 5 Credit value 15 Introduction An embedded system is a device or product which contains one or more tiny computers hidden inside it. This hidden

More information

Programming and Interfacing

Programming and Interfacing AtmelAVR Microcontroller Primer: Programming and Interfacing Second Edition f^r**t>*-**n*c contents Preface xv AtmelAVRArchitecture Overview 1 1.1 ATmegal64 Architecture Overview 1 1.1.1 Reduced Instruction

More information

Sensing and Perception

Sensing and Perception Unit D tion Exploring Robotics Spring, 2013 D.1 Why does a robot need sensors? the environment is complex the environment is dynamic enable the robot to learn about current conditions in its environment.

More information

Lab 7: Introduction to Webots and Sensor Modeling

Lab 7: Introduction to Webots and Sensor Modeling Lab 7: Introduction to Webots and Sensor Modeling This laboratory requires the following software: Webots simulator C development tools (gcc, make, etc.) The laboratory duration is approximately two hours.

More information

Sensors and Sensing Motors, Encoders and Motor Control

Sensors and Sensing Motors, Encoders and Motor Control Sensors and Sensing Motors, Encoders and Motor Control Todor Stoyanov Mobile Robotics and Olfaction Lab Center for Applied Autonomous Sensor Systems Örebro University, Sweden todor.stoyanov@oru.se 13.11.2014

More information

Introduction to Embedded and Real-Time Systems W12: An Introduction to Localization Techniques in Embedded Systems

Introduction to Embedded and Real-Time Systems W12: An Introduction to Localization Techniques in Embedded Systems Introduction to Embedded and Real-Time Systems W12: An Introduction to Localization Techniques in Embedded Systems Outline Motivation Terminology and classification Selected positioning systems and techniques

More information

Probabilistic Robotics Course. Robots and Sensors Orazio

Probabilistic Robotics Course. Robots and Sensors Orazio Probabilistic Robotics Course Robots and Sensors Orazio Giorgio Grisetti grisetti@dis.uniroma1.it Dept of Computer Control and Management Engineering Sapienza University of Rome Outline Robot Devices Overview

More information

Development of intelligent systems

Development of intelligent systems Development of intelligent systems (RInS) Robot sensors Danijel Skočaj University of Ljubljana Faculty of Computer and Information Science Academic year: 2017/18 Development of intelligent systems Robotic

More information

Embedded & Robotics Training

Embedded & Robotics Training Embedded & Robotics Training WebTek Labs creates and delivers high-impact solutions, enabling our clients to achieve their business goals and enhance their competitiveness. With over 13+ years of experience,

More information

ADVANCED EMBEDDED MONITORING SYSTEM FOR ELECTROMAGNETIC RADIATION

ADVANCED EMBEDDED MONITORING SYSTEM FOR ELECTROMAGNETIC RADIATION 98 Chapter-5 ADVANCED EMBEDDED MONITORING SYSTEM FOR ELECTROMAGNETIC RADIATION 99 CHAPTER-5 Chapter 5: ADVANCED EMBEDDED MONITORING SYSTEM FOR ELECTROMAGNETIC RADIATION S.No Name of the Sub-Title Page

More information

Design and Control of the Mobile Micro Robot Alice

Design and Control of the Mobile Micro Robot Alice Design and Control of the Mobile Micro Robot Alice G. Caprari and R. Siegwart Autonomous Systems Lab (ASL), Institut d'ingénierie des systèmes (I2S) Swiss Federal Institute of Technology Lausanne (EPFL)

More information

In this lecture, we will look at how different electronic modules communicate with each other. We will consider the following topics:

In this lecture, we will look at how different electronic modules communicate with each other. We will consider the following topics: In this lecture, we will look at how different electronic modules communicate with each other. We will consider the following topics: Links between Digital and Analogue Serial vs Parallel links Flow control

More information

FPGA-Based Autonomous Obstacle Avoidance Robot.

FPGA-Based Autonomous Obstacle Avoidance Robot. People s Democratic Republic of Algeria Ministry of Higher Education and Scientific Research University M Hamed BOUGARA Boumerdes Institute of Electrical and Electronic Engineering Department of Electronics

More information

AUTOPILOT CONTROL SYSTEM - IV

AUTOPILOT CONTROL SYSTEM - IV AUTOPILOT CONTROL SYSTEM - IV CONTROLLER The data from the inertial measurement unit is taken into the controller for processing. The input being analog requires to be passed through an ADC before being

More information

An Example of robots with their sensors

An Example of robots with their sensors ROBOTICA 03CFIOR DAUIN Politecnico di Torino Mobile & Service Robotics Sensors for Robotics 1 An Example of robots with their sensors 3 Another example Omnivision Camera (360 ) Pan-Tilt-Zoom (PTZ) camera

More information

Autonomous Following RObot Critical Design Review

Autonomous Following RObot Critical Design Review Autonomous Following RObot Critical Design Review James Tse (Leader) Wei Dai Travis Frecker Peter Verlangieri Professor John Johnson ECE 189A Fall 2012 Critical Design Review: Project Description A robot

More information

The Cricket Indoor Location System

The Cricket Indoor Location System The Cricket Indoor Location System Hari Balakrishnan Cricket Project MIT Computer Science and Artificial Intelligence Lab http://nms.csail.mit.edu/~hari http://cricket.csail.mit.edu Joint work with Bodhi

More information

TMS320F241 DSP Boards for Power-electronics Applications

TMS320F241 DSP Boards for Power-electronics Applications TMS320F241 DSP Boards for Power-electronics Applications Kittiphan Techakittiroj, Narong Aphiratsakun, Wuttikorn Threevithayanon and Soemoe Nyun Faculty of Engineering, Assumption University Bangkok, Thailand

More information

AN4392 Application note

AN4392 Application note Application note Using the BlueNRG family transceivers under ARIB STD-T66 in the 2400 2483.5 MHz band Introduction BlueNRG family devices are very low power Bluetooth low energy (BLE) devices compliant

More information

A Solar-Powered Wireless Data Acquisition Network

A Solar-Powered Wireless Data Acquisition Network A Solar-Powered Wireless Data Acquisition Network E90: Senior Design Project Proposal Authors: Brian Park Simeon Realov Advisor: Prof. Erik Cheever Abstract We are proposing to design and implement a solar-powered

More information

ECE 477 Digital Systems Senior Design Project Rev 8/09. Homework 5: Theory of Operation and Hardware Design Narrative

ECE 477 Digital Systems Senior Design Project Rev 8/09. Homework 5: Theory of Operation and Hardware Design Narrative ECE 477 Digital Systems Senior Design Project Rev 8/09 Homework 5: Theory of Operation and Hardware Design Narrative Team Code Name: _ATV Group No. 3 Team Member Completing This Homework: Sebastian Hening

More information

The Development and Application of High Compression Ratio Methanol Engine ECU

The Development and Application of High Compression Ratio Methanol Engine ECU National Conference on Information Technology and Computer Science (CITCS 2012) The Development and Application of High Compression Ratio Methanol Engine ECU Hong Bin, 15922184696 hongbinlqyun@163.com

More information

Total Hours Registration through Website or for further details please visit (Refer Upcoming Events Section)

Total Hours Registration through Website or for further details please visit   (Refer Upcoming Events Section) Total Hours 110-150 Registration Q R Code Registration through Website or for further details please visit http://www.rknec.edu/ (Refer Upcoming Events Section) Module 1: Basics of Microprocessor & Microcontroller

More information

3.3V regulator. JA H-bridge. Doc: page 1 of 7

3.3V regulator. JA H-bridge. Doc: page 1 of 7 Cerebot Reference Manual Revision: February 9, 2009 Note: This document applies to REV B-E of the board. www.digilentinc.com 215 E Main Suite D Pullman, WA 99163 (509) 334 6306 Voice and Fax Overview The

More information

An Example of robots with their sensors

An Example of robots with their sensors ROBOTICS 01PEEQW Basilio Bona DAUIN Politecnico di Torino Mobile & Service Robotics Sensors for Robotics 1 An Example of robots with their sensors Basilio Bona ROBOTICS 01PEEQW 3 Another example Omnivision

More information

Systems & Devices Part 1

Systems & Devices Part 1 Systems & Devices Part 1 Alexander Nelson February 5th, 2018 University of Arkansas - Department of Computer Science and Computer Engineering What composes wearable, ubiquitous, or invisible systems? 0

More information

Lecture 1, Introduction and Background

Lecture 1, Introduction and Background EE 338L CMOS Analog Integrated Circuit Design Lecture 1, Introduction and Background With the advances of VLSI (very large scale integration) technology, digital signal processing is proliferating and

More information

DASL 120 Introduction to Microcontrollers

DASL 120 Introduction to Microcontrollers DASL 120 Introduction to Microcontrollers Lecture 2 Introduction to 8-bit Microcontrollers Introduction to 8-bit Microcontrollers Introduction to 8-bit Microcontrollers Introduction to Atmel Atmega328

More information

Developer Techniques Sessions

Developer Techniques Sessions 1 Developer Techniques Sessions Physical Measurements and Signal Processing Control Systems Logging and Networking 2 Abstract This session covers the technologies and configuration of a physical measurement

More information

Wireless Music Dock - WMD Portable Music System with Audio Effect Applications

Wireless Music Dock - WMD Portable Music System with Audio Effect Applications Wireless Music Dock - WMD Portable Music System with Audio Effect Applications Preliminary Design Report EEL 4924 Electrical Engineering Design (Senior Design) 26 January 2011 Members: Jeffrey Post and

More information

Mapping device with wireless communication

Mapping device with wireless communication University of Arkansas, Fayetteville ScholarWorks@UARK Electrical Engineering Undergraduate Honors Theses Electrical Engineering 12-2011 Mapping device with wireless communication Xiangyu Liu University

More information

EXPERIMENT 6: Advanced I/O Programming

EXPERIMENT 6: Advanced I/O Programming EXPERIMENT 6: Advanced I/O Programming Objectives: To familiarize students with DC Motor control and Stepper Motor Interfacing. To utilize MikroC and MPLAB for Input Output Interfacing and motor control.

More information

Sensor Network Platforms and Tools

Sensor Network Platforms and Tools Sensor Network Platforms and Tools 1 AN OVERVIEW OF SENSOR NODES AND THEIR COMPONENTS References 2 Sensor Node Architecture 3 1 Main components of a sensor node 4 A controller Communication device(s) Sensor(s)/actuator(s)

More information

Sensors and Sensing Motors, Encoders and Motor Control

Sensors and Sensing Motors, Encoders and Motor Control Sensors and Sensing Motors, Encoders and Motor Control Todor Stoyanov Mobile Robotics and Olfaction Lab Center for Applied Autonomous Sensor Systems Örebro University, Sweden todor.stoyanov@oru.se 05.11.2015

More information

CMOS MT9D111Camera Module 1/3.2-Inch 2-Megapixel Module Datasheet

CMOS MT9D111Camera Module 1/3.2-Inch 2-Megapixel Module Datasheet CMOS MT9D111Camera Module 1/3.2-Inch 2-Megapixel Module Datasheet Rev 1.0, Mar 2013 Table of Contents 1 Introduction... 2 2 Features... 2 3 Block Diagram... 3 4 Application... 4 5 Pin Definition... 6 6

More information

A Low Power Integrated UWB Transceiver with Solar Energy Harvesting for Wireless Image Sensor Networks

A Low Power Integrated UWB Transceiver with Solar Energy Harvesting for Wireless Image Sensor Networks A Low Power Integrated UWB Transceiver with Solar Energy Harvesting for Wireless Image Sensor Networks Minjoo Yoo / Jaehyuk Choi / Ming hao Wang April. 13 th. 2009 Contents Introduction Circuit Description

More information

Controlling DC Brush Motor using MD10B or MD30B. Version 1.2. Aug Cytron Technologies Sdn. Bhd.

Controlling DC Brush Motor using MD10B or MD30B. Version 1.2. Aug Cytron Technologies Sdn. Bhd. PR10 Controlling DC Brush Motor using MD10B or MD30B Version 1.2 Aug 2008 Cytron Technologies Sdn. Bhd. Information contained in this publication regarding device applications and the like is intended

More information

Tel: Fax: OMESH Networks Inc. 2011

Tel: Fax: OMESH Networks Inc. 2011 Section 1: Purpose OPM15 is a large-scale cognitive wireless networking module, providing great flexibility for a wide range of applications. Powered by the OPM optimized radio design and networking stack,

More information

High-speed and High-precision Motion Controller

High-speed and High-precision Motion Controller High-speed and High-precision Motion Controller - KSMC - Definition High-Speed Axes move fast Execute the controller ( position/velocity loop, current loop ) at high frequency High-Precision High positioning

More information

DMC-8 (SKU#ROB )

DMC-8 (SKU#ROB ) DMC-8 (SKU#ROB-01-007) Selectable serial or parallel interface Use with Microcontroller or PC Controls 2 DC motors For 5 24 Volt Motors 8 Amps per channel Windows software included Fuse protection Dual

More information

Brushed DC Motor Control. Module with CAN (MDL-BDC24)

Brushed DC Motor Control. Module with CAN (MDL-BDC24) Stellaris Brushed DC Motor Control Module with CAN (MDL-BDC24) Ordering Information Product No. MDL-BDC24 RDK-BDC24 Description Stellaris Brushed DC Motor Control Module with CAN (MDL-BDC24) for Single-Unit

More information

Overview of Challenges in the Development of Autonomous Mobile Robots. August 23, 2011

Overview of Challenges in the Development of Autonomous Mobile Robots. August 23, 2011 Overview of Challenges in the Development of Autonomous Mobile Robots August 23, 2011 What is in a Robot? Sensors Effectors and actuators (i.e., mechanical) Used for locomotion and manipulation Controllers

More information

Advanced Distributed Architecture for a Small Biped Robot Control M. Albero, F. Blanes, G. Benet, J.E. Simó, J. Coronel

Advanced Distributed Architecture for a Small Biped Robot Control M. Albero, F. Blanes, G. Benet, J.E. Simó, J. Coronel Advanced Distributed Architecture for a Small Biped Robot Control M. Albero, F. Blanes, G. Benet, J.E. Simó, J. Coronel Departamento de Informática de Sistemas y Computadores. (DISCA) Universidad Politécnica

More information

LDOR: Laser Directed Object Retrieving Robot. Final Report

LDOR: Laser Directed Object Retrieving Robot. Final Report University of Florida Department of Electrical and Computer Engineering EEL 5666 Intelligent Machines Design Laboratory LDOR: Laser Directed Object Retrieving Robot Final Report 4/22/08 Mike Arms TA: Mike

More information

Electronics Design Laboratory Lecture #11. ECEN 2270 Electronics Design Laboratory

Electronics Design Laboratory Lecture #11. ECEN 2270 Electronics Design Laboratory Electronics Design Laboratory Lecture # ECEN 7 Electronics Design Laboratory Project Must rely on fully functional Lab circuits, Lab circuit is optional Can re do wireless or replace it with a different

More information

DNT2400. Low Cost 2.4 GHz FHSS Transceiver Module with I/O

DNT2400. Low Cost 2.4 GHz FHSS Transceiver Module with I/O 2.4 GHz Frequency Hopping Spread Spectrum Transceiver Point-to-point, Point-to-multipoint, Peer-to-peer and Tree-routing Networks Transmitter Power Configurable from 1 to 63 mw RF Data Rate Configurable

More information

Jaguar Motor Controller (Stellaris Brushed DC Motor Control Module with CAN)

Jaguar Motor Controller (Stellaris Brushed DC Motor Control Module with CAN) Jaguar Motor Controller (Stellaris Brushed DC Motor Control Module with CAN) 217-3367 Ordering Information Product Number Description 217-3367 Stellaris Brushed DC Motor Control Module with CAN (217-3367)

More information

AERO2705 Space Engineering 1 Week 7 The University of Sydney

AERO2705 Space Engineering 1 Week 7 The University of Sydney AERO2705 Space Engineering 1 Week 7 The University of Sydney Presenter Mr. Warwick Holmes Executive Director Space Engineering School of Aerospace, Mechanical and Mechatronic Engineering The University

More information

Mechatronics System Design - Sensors

Mechatronics System Design - Sensors Mechatronics System Design - Sensors Aim of this class 1. The functional role of the sensor? 2. Displacement, velocity and visual sensors? 3. An integrated example-smart car with visual and displacement

More information

Group #17 Arian Garcia Javier Morales Tatsiana Smahliuk Christopher Vendette

Group #17 Arian Garcia Javier Morales Tatsiana Smahliuk Christopher Vendette Group #17 Arian Garcia Javier Morales Tatsiana Smahliuk Christopher Vendette Electrical Engineering Electrical Engineering Electrical Engineering Electrical Engineering Contents 1 2 3 4 5 6 7 8 9 Motivation

More information

Based on the ARM and PID Control Free Pendulum Balance System

Based on the ARM and PID Control Free Pendulum Balance System Available online at www.sciencedirect.com Procedia Engineering 29 (2012) 3491 3495 2012 International Workshop on Information and Electronics Engineering (IWIEE) Based on the ARM and PID Control Free Pendulum

More information

Hello, and welcome to this presentation of the STM32 Digital Filter for Sigma-Delta modulators interface. The features of this interface, which

Hello, and welcome to this presentation of the STM32 Digital Filter for Sigma-Delta modulators interface. The features of this interface, which Hello, and welcome to this presentation of the STM32 Digital Filter for Sigma-Delta modulators interface. The features of this interface, which behaves like ADC with external analog part and configurable

More information

Solar Powered Obstacle Avoiding Robot

Solar Powered Obstacle Avoiding Robot Solar Powered Obstacle Avoiding Robot S.S. Subashka Ramesh 1, Tarun Keshri 2, Sakshi Singh 3, Aastha Sharma 4 1 Asst. professor, SRM University, Chennai, Tamil Nadu, India. 2, 3, 4 B.Tech Student, SRM

More information

The Mote Revolution: Low Power Wireless Sensor Network Devices

The Mote Revolution: Low Power Wireless Sensor Network Devices The Mote Revolution: Low Power Wireless Sensor Network Devices University of California, Berkeley Joseph Polastre Robert Szewczyk Cory Sharp David Culler The Mote Revolution: Low Power Wireless Sensor

More information

ULS24 Frequently Asked Questions

ULS24 Frequently Asked Questions List of Questions 1 1. What type of lens and filters are recommended for ULS24, where can we source these components?... 3 2. Are filters needed for fluorescence and chemiluminescence imaging, what types

More information

Analog front-end electronics in beam instrumentation

Analog front-end electronics in beam instrumentation Analog front-end electronics in beam instrumentation Basic instrumentation structure Silicon state of art Sampling state of art Instrumentation trend Comments and example on BPM Future Beam Position Instrumentation

More information

Lecture Introduction

Lecture Introduction Lecture 1 6.012 Introduction 1. Overview of 6.012 Outline 2. Key conclusions of 6.012 Reading Assignment: Howe and Sodini, Chapter 1 6.012 Electronic Devices and Circuits-Fall 200 Lecture 1 1 Overview

More information

1 Lab + Hwk 4: Introduction to the e-puck Robot

1 Lab + Hwk 4: Introduction to the e-puck Robot 1 Lab + Hwk 4: Introduction to the e-puck Robot This laboratory requires the following: (The development tools are already installed on the DISAL virtual machine (Ubuntu Linux) in GR B0 01): C development

More information

dspic30f Quadrature Encoder Interface Module

dspic30f Quadrature Encoder Interface Module DS Digital Signal Controller dspic30f Quadrature Encoder Interface Module 2005 Microchip Technology Incorporated. All Rights Reserved. dspic30f Quadrature Encoder Interface Module 1 Welcome to the dspic30f

More information

TLE9879 EvalKit V1.2 Users Manual

TLE9879 EvalKit V1.2 Users Manual TLE9879 EvalKit V1.2 Users Manual Contents Abbreviations... 3 1 Concept... 4 2 Interconnects... 5 3 Test Points... 6 4 Jumper Settings... 7 5 Communication Interfaces... 8 5.1 LIN (via Banana jack and

More information

Wireless Infrared Data Communications Using the IRM3XXX Family of IrDA Compatible Infrared Transceivers. Appnote 68

Wireless Infrared Data Communications Using the IRM3XXX Family of IrDA Compatible Infrared Transceivers. Appnote 68 Wireless Infrared Data Communications Using the IRMXXX Family of IrDA Compatible Infrared Transceivers Appnote 68 Introduction Data interchange, computer to computer and computer to peripherals, requires

More information

DAV Institute of Engineering & Technology Department of ECE. Course Outcomes

DAV Institute of Engineering & Technology Department of ECE. Course Outcomes DAV Institute of Engineering & Technology Department of ECE Course Outcomes Upon successful completion of this course, the student will intend to apply the various outcome as:: BTEC-301, Analog Devices

More information

Mobile Target Tracking Using Radio Sensor Network

Mobile Target Tracking Using Radio Sensor Network Mobile Target Tracking Using Radio Sensor Network Nic Auth Grant Hovey Advisor: Dr. Suruz Miah Department of Electrical and Computer Engineering Bradley University 1501 W. Bradley Avenue Peoria, IL, 61625,

More information

Master Op-Doc/Test Plan

Master Op-Doc/Test Plan Power Supply Master Op-Doc/Test Plan Define Engineering Specs Establish battery life Establish battery technology Establish battery size Establish number of batteries Establish weight of batteries Establish

More information

Electronic Module of Hydraulic Damper Test Bench using ARM Microcontroller Interfacing in LabVIEW

Electronic Module of Hydraulic Damper Test Bench using ARM Microcontroller Interfacing in LabVIEW International Journal of Scientific & Engineering Research Volume 4, Issue 1, January-2013 1 Electronic Module of Hydraulic Damper Test Bench using ARM Microcontroller Interfacing in LabVIEW Hare Ram Jha,

More information

Introduction to the Arduino Kit

Introduction to the Arduino Kit 1 Introduction to the Arduino Kit Introduction Arduino is an open source microcontroller platform used for sensing both digital and analog input signals and for sending digital and analog output signals

More information

Signal Characteristics and Conditioning

Signal Characteristics and Conditioning Signal Characteristics and Conditioning Starting from the sensors, and working up into the system:. What characterizes the sensor signal types. Accuracy and Precision with respect to these signals 3. General

More information

Introduction to the ME2110 Kit. Controller Box Electro Mechanical Actuators & Sensors Pneumatics

Introduction to the ME2110 Kit. Controller Box Electro Mechanical Actuators & Sensors Pneumatics Introduction to the ME2110 Kit Controller Box Electro Mechanical Actuators & Sensors Pneumatics Features of the Controller Box BASIC Stamp II-SX microcontroller Interfaces with various external devices

More information

Planning in autonomous mobile robotics

Planning in autonomous mobile robotics Sistemi Intelligenti Corso di Laurea in Informatica, A.A. 2017-2018 Università degli Studi di Milano Planning in autonomous mobile robotics Nicola Basilico Dipartimento di Informatica Via Comelico 39/41-20135

More information

Critical Design Review: M.A.D. Dog. Nicholas Maddy Timothy Dayley Kevin Liou

Critical Design Review: M.A.D. Dog. Nicholas Maddy Timothy Dayley Kevin Liou Critical Design Review: M.A.D. Dog Nicholas Maddy Timothy Dayley Kevin Liou Project Description M.A.D. Dog is an autonomous robot with the following functionalities: - Map and patrol an office environment.

More information

Distributed Robotics From Science to Systems

Distributed Robotics From Science to Systems Distributed Robotics From Science to Systems Nikolaus Correll Distributed Robotics Laboratory, CSAIL, MIT August 8, 2008 Distributed Robotic Systems DRS 1 sensor 1 actuator... 1 device Applications Giant,

More information

Proseminar Roboter und Aktivmedien. Outline of today s lecture. Acknowledgments. Educational robots achievements and challenging

Proseminar Roboter und Aktivmedien. Outline of today s lecture. Acknowledgments. Educational robots achievements and challenging Proseminar Roboter und Aktivmedien Educational robots achievements and challenging Lecturer Lecturer Houxiang Houxiang Zhang Zhang TAMS, TAMS, Department Department of of Informatics Informatics University

More information

EEL5666C IMDL Spring 2006 Student: Andrew Joseph. *Alarm-o-bot*

EEL5666C IMDL Spring 2006 Student: Andrew Joseph. *Alarm-o-bot* EEL5666C IMDL Spring 2006 Student: Andrew Joseph *Alarm-o-bot* TAs: Adam Barnett, Sara Keen Instructor: A.A. Arroyo Final Report April 25, 2006 Table of Contents Abstract 3 Executive Summary 3 Introduction

More information

Designing an Embedded System for Autonomous Building Map Exploration Robot

Designing an Embedded System for Autonomous Building Map Exploration Robot Designing an Embedded System for Autonomous Building Map Exploration Robot V. Ramya Assist. Prof, Dept of CSE Annamalai University Annamalai Nagar T. Akilan Dept. of CSE Annamalai University Annamalai

More information

Datasheet. Octadrive DSP-CN * Applies to Part Number: *This unit has a CobraNet interface installed

Datasheet. Octadrive DSP-CN * Applies to Part Number: *This unit has a CobraNet interface installed OCTADRIVE DSP-CN Datasheet Applies to Part Number: 391030 Octadrive DSP-CN * *This unit has a CobraNet interface installed User Notice: No part of this document including the software described in it may

More information

The Information contained herein is subject to change without notice. Revisions may be issued regarding changes and/or additions.

The Information contained herein is subject to change without notice. Revisions may be issued regarding changes and/or additions. BBB Rover Cape TM Gumstix, Inc. shall have no liability of any kind, express or implied, arising out of the use of the Information in this document, including direct, indirect, special or consequential

More information

Embedded & Robotics Training

Embedded & Robotics Training Embedded & Robotics Training WebTek Labs creates and delivers high-impact solutions, enabling our clients to achieve their business goals and enhance their competitiveness. With over 13+ years of experience,

More information

L T P CLASS WORK : EXAM : 100 TOTAL : 150 DURATION OF EXAM : 3 HRS

L T P CLASS WORK : EXAM : 100 TOTAL : 150 DURATION OF EXAM : 3 HRS EE-401-E DATA COMMUNICATION L T P CLASS WORK : 50 3 1 0 EXAM : 100 TOTAL : 150 UNIT 1 DIGITAL COMMUNICATION : Introduction, digital communication, Shannon limit for information capacity, digital radio,

More information

Interactive Simulation: UCF EIN5255. VR Software. Audio Output. Page 4-1

Interactive Simulation: UCF EIN5255. VR Software. Audio Output. Page 4-1 VR Software Class 4 Dr. Nabil Rami http://www.simulationfirst.com/ein5255/ Audio Output Can be divided into two elements: Audio Generation Audio Presentation Page 4-1 Audio Generation A variety of audio

More information

Job Sheet 2 Servo Control

Job Sheet 2 Servo Control Job Sheet 2 Servo Control Electrical actuators are replacing hydraulic actuators in many industrial applications. Electric servomotors and linear actuators can perform many of the same physical displacement

More information

Cortex-M3 based Prepaid System with Electricity Theft Control

Cortex-M3 based Prepaid System with Electricity Theft Control Research Inventy: International Journal of Engineering And Science Vol.6, Issue 4 (April 2016), PP -139-146 Issn (e): 2278-4721, Issn (p):2319-6483, www.researchinventy.com Cortex-M3 based Prepaid System

More information

An Embedded Approach for Motor Control Boards Design in Mobile Robotics Applications

An Embedded Approach for Motor Control Boards Design in Mobile Robotics Applications An Embedded Approach for Motor Control Boards Design in Mobile Robotics Applications CLAUDIA MASSACCI, ANDREA USAI, PAOLO DI GIAMBERARDINO Department of Computer and System Sciences Antonio Ruberti University

More information

AN4378 Application note

AN4378 Application note Application note Using the BlueNRG family transceivers under FCC title 47 part 15 in the 2400 2483.5 MHz band Introduction BlueNRG family devices are very low power Bluetooth low energy (BLE) devices compliant

More information

Project Name Here CSEE 4840 Project Design Document. Thomas Chau Ben Sack Peter Tsonev

Project Name Here CSEE 4840 Project Design Document. Thomas Chau Ben Sack Peter Tsonev Project Name Here CSEE 4840 Project Design Document Thomas Chau tc2165@columbia.edu Ben Sack bs2535@columbia.edu Peter Tsonev pvt2101@columbia.edu Table of contents: Introduction Page 3 Block Diagram Page

More information

Interfacing Sensors & Modules to Microcontrollers

Interfacing Sensors & Modules to Microcontrollers Interfacing Sensors & Modules to Microcontrollers Presentation Topics I. Microprocessors & Microcontroller II. III. Hardware/software Tools for Interfacing Type of Sensors/Modules IV. Level Inputs (Digital

More information

EEE 187: Robotics. Summary 11: Sensors used in Robotics

EEE 187: Robotics. Summary 11: Sensors used in Robotics 1 EEE 187: Robotics Summary 11: Sensors used in Robotics Fig. 1. Sensors are needed to obtain internal quantities such as joint angle and external information such as location in maze Sensors are used

More information