dspic30f Quadrature Encoder Interface Module

Size: px
Start display at page:

Download "dspic30f Quadrature Encoder Interface Module"

Transcription

1 DS Digital Signal Controller dspic30f Quadrature Encoder Interface Module 2005 Microchip Technology Incorporated. All Rights Reserved. dspic30f Quadrature Encoder Interface Module 1 Welcome to the dspic30f Quadrature Encoder Interface Module web seminar Microchip Technology Inc. Page 1

2 Session Agenda What is a Quadrature Encoder? General Features Overview Programmable digital noise filters Quadrature Decoder The QEI as a Timer/Counter 2005 Microchip Technology Incorporated. All Rights Reserved. dspic30f Quadrature Encoder Interface Module 2 These are the main topics we will address during this seminar. First of all, we will see the purpose of the QEI module is. Then we will go through all the main functional blocks, the digital noise filters, the decoder, and the position counter. Finally we will see that this peripheral, if not used as an encoder, can behave as an up/down counter/timer Microchip Technology Inc. Page 2

3 What is a Quadrature Encoder? light source slotted wheel sensing device logic 2005 Microchip Technology Incorporated. All Rights Reserved. dspic30f Quadrature Encoder Interface Module 3 A Quadrature Encoder (or incremental encoder, or optical encoder) is used to detect the position and speed of rotors, enabling closed loop control in many motor control applications like switched reluctance and induction motors. Typically, an encoder includes a slotted wheel attached to the motor shaft, a light source, a light sensing device and some logic. During the rotation of the shaft, the light passes through the slots and hits the sensing element, generating electric signals. The three digital outputs are called Phase A, Phabe B and Index. With some decoding performed by the dspic quadrature encoder interface, these signals can tell us the speed and position of the rotor Microchip Technology Inc. Page 3

4 What is a Quadrature Encoder? Phase A leads Phase B Phase B leads Phase A 2005 Microchip Technology Incorporated. All Rights Reserved. dspic30f Quadrature Encoder Interface Module 4 An example of the encoder output waveform is illustrated here. In the upper plot we see the Phase A and Phase B signals coming in on the QEA and QEB pins respectively. In this case, Phase A leads Phase B: the shaft is spinning forward. If we reverse the rotor rotation, like in the lower part of the figure, Phase B will lead Phase A: so by detecting which rising edge comes first, we are able to detect the direction of rotation. The encoder outputs can only have four different states as indicated in the figure: 01, 00, 10, 11. Note that if we reverse the direction the sequence is reversed as well. The index occurs only once per revolution and is used to establish an absolute position. The quadrature decoder, which is part of the interface circuitry, will read these signals and converts them into a numeric count of the position pulses. The count will increment when the shaft is rotating in one direction and will decrement when the rotation is reversed Microchip Technology Inc. Page 4

5 dspic QEI Features QEI Features QEI decodes signals and accumulates count Logically swap A and B inputs Programmable noise filters on inputs x2 and x4 counting modes 16-bit Position count register Reset on index pulse (if enabled) Reset on rollover/underflow Count error status bit 2005 Microchip Technology Incorporated. All Rights Reserved. dspic30f Quadrature Encoder Interface Module 5 The QEI will perform all the operations needed to effectively use the information coming from the encoder. Since these signals are heavily affected by noise, a digital filter is available on each input. The filtered phase edges are counted by a dedicated 16 bit up/down counter, also referred to as the Position Counter. To establish a reference point for position and speed measurements, the counter can be reset either by the index signal or by a counter period match. The hardware can also perform some error checking on on the accumulated count Microchip Technology Inc. Page 5

6 Block Diagram Clock Divider Tcy INDEX Digital Filter Logic QEB QEA Digital Filter Logic Digital Filter Logic Prescaler and Sync. Logic Tcy 0 1 Timer Mode Timer Mode Quadrature Decoder Logic DIR Clock Reset 16-Bit Up/Down Counter Comparator UPDN TQCS Max. Count Register 2005 Microchip Technology Incorporated. All Rights Reserved. dspic30f Quadrature Encoder Interface Module 6 This block diagram depicts the internal architecture of the QEI modules. We can see the input pins and the associated digital filters. There is also an up/down input pin that is mainly used when the unit operates as a counter. The quadratrute decoder logic is responsible for analysing which edge comes first and the counter accumulates the edge count and is compared with the internal Max Count Register Microchip Technology Inc. Page 6

7 Digital Filters Multiple clock options to digital filter Tcy, 2Tcy, 4Tcy, 8Tcy, 16Tcy,, 256Tcy Signal must be stable for 3 clock cycles Adjust clock divide bits to change noise filtering characteristics Use of digital filter generates latency 2005 Microchip Technology Incorporated. All Rights Reserved. dspic30f Quadrature Encoder Interface Module 7 The digital filters are responsible for rejecting noise from the three inputs. The instruction cycle clock can be divided down by 2, 4, 16, 32, 64, 128, 256 before being used in the filter. The lower the clock frequency the lower frequencies are rejected by the filter. The prescaled clock is used to sample the input signal: if and only if three consecutive samples have the same value the input is considered stable and the value is output from the filter. One of the effects of this sampling is an added latency, because there is a propagation delay of the input signal through the filter Microchip Technology Inc. Page 7

8 Digital Filters T CY QEA/B Filter 2005 Microchip Technology Incorporated. All Rights Reserved. dspic30f Quadrature Encoder Interface Module 8 Here we can see that the input signal at the QEA or QEB pin is sampled using the selected clock, in this case the instruction cycle period Tcy. If at least three samples having the same value are detected the output is updated, otherwise the input signal changes are disregarded. Glitches and spikes can be efficiently filtered out by the digital filters Microchip Technology Inc. Page 8

9 Quadrature Decoder Four basic modes x 2 mode with Index Pulse reset X 2 mode with reset by match X 4 mode Index Pulse reset X 4 mode with reset by match 2005 Microchip Technology Incorporated. All Rights Reserved. dspic30f Quadrature Encoder Interface Module 9 As we have already seen, the quadrature decoder must determine the direction of rotation looking at the two incoming phase signals, and generate the clock that will be used by the position counter. We can select between two modes: in the first one (x2) the decoder only generates a clock impulse at the rising and falling edges of Phase A signal; in the other mode (x4), the clock pulses are generate at each edge of phase A and Phase B. The position counter can be reset either by the index pulse coming from the encoder or by the matching of the current position counter value with the number in the Maximum Count Register Microchip Technology Inc. Page 9

10 Timing Diagram PHASE A PHASE B COUNT UPDN 2005 Microchip Technology Incorporated. All Rights Reserved. dspic30f Quadrature Encoder Interface Module 10 This is an example of how the decoder works. We are using the x4 mode, where the clock pulse is at each edge of both phases. In the first part of the timing diagram Phase A leads Phase B, so that the counter is counting up. Then, in the second half, the rotation of the rotor is reversed, Phase B now leads Phase A and the counter is counting down. This is why an up/down counter is required in this application. The count direction can be determined by reading the UPDN bit in the QEI control register, but the UPDN pin can also be used to indicate the count direction status. With the x4 mode we can get a very high angular resolution, but we also get a relatively high output clock frequency. With the x2 mode, the resolution is twice as fine, but the frequncy is lower. The maximum allowed quadrature frequency is one-third of the instruction cycle frequency Fcy Microchip Technology Inc. Page 10

11 Position Counter Up/down counter Counts pulses generated by the decoder Count is accumulated in POSCNT register POSCNT can be accessed, both for read and write Its value can be compared to MAXCNT register 2005 Microchip Technology Incorporated. All Rights Reserved. dspic30f Quadrature Encoder Interface Module 11 The position counter can be used either for position or speed measurement. To measure motor position, we must know the relationship between the displacement and the number of phase pulses we get from the encoder. This relation can be known in advance, or can be measured during initialization by accumulating the total count for the maximum allowed displacement. We can set a constant value in the Maximum Count register, which is typically the number of pulse edges generated by one encoder revolution. As soon as we have a match between the Position Count and the Maximum Count, an interrupt is generated. In the Interrupt Service Routine, the user software can increment or decrerment a software counter containing the most significant bits of the position count. For speed measurement application, the time interval between two index pulses or count match events gives a measure of the angular velocity Microchip Technology Inc. Page 11

12 QEI as a 16 bit Timer/Counter 2005 Microchip Technology Incorporated. All Rights Reserved. dspic30f Quadrature Encoder Interface Module 12 If the quadrature decoder functionality is not needed, the QEI peripheral module can be configured as an additional 16 bit counter/timer. In this mode, the Position Counter register has the same functionality as the Timer registers in general-purpose timers, while the Maximum Count register serves as a period register. An additional feature compared to the generalpurpose timers is that the QEI counter is able to both increment and decrement its count, thus providing up-down counter functionality. The timer clock can be either internal or external; in the latter case the input pin is the QEA pin and the input clock, after digital filtering, will be synchronized with the instruction cycle. As in the general-purpose timers, gated time accumulation is also possible. The counting direction can be selected either with the UPDN bit in register QEICON, or with the QEB pin. An interrupt is generated when the value in the Position Counter register maches the value in the Maximum Count register Microchip Technology Inc. Page 12

13 Key Support Documents Device Selection Reference Document # General Purpose and Sensor Family Data Sheet DS70083 Motor Control and Power Conv. Data Sheet DS70082 dspic30f Family Overview DS70043 Base Design Reference Document # dspic30f Family Reference Manual DS70046 dspic30f Programmer s Reference Manual DS70030 MPLAB MPLAB C30 C Compiler User User s Guide DS51284 MPLAB ASM30, LINK30 & Utilities User DS51317 dspic Language Tools Libraries DS Microchip Technology Incorporated. All Rights Reserved. dspic30f Quadrature Encoder Interface Module 13 For more information, here are references to some important documents that contain a lot of information about the dspic30f family of devices. The Family Reference Manual contains detailed information about the architecture and peripherals, whereas the Programmer s Reference Manual contains a thorough description of the instruction set Microchip Technology Inc. Page 13

14 Key Support Documents Device Specific Reference Document # dspic30f2010 Data Sheet DS70118 dspic30f3010/3011 Data Sheet DS70141 dspic30f4011/4012 Data Sheet DS70135 dspic30f6010 Data Sheet DS70119 Microchip Web Site: Microchip Technology Incorporated. All Rights Reserved. dspic30f Quadrature Encoder Interface Module 14 For device-specific information such as pinout diagrams, packaging and electrical characteristics, the device datasheets listed here are the best source of information Microchip Technology Inc. Page 14

15 Related Material Apps Notes on Motor Control AN901 Using the dspic30f for Sensorless BLDC Control AN908 Using the dspic30f for Vector Control of an ACIM AN957 Sensored BLDC Motor Control Using dspic30f Microchip Technology Incorporated. All Rights Reserved. dspic30f Quadrature Encoder Interface Module 15 We also have some application notes on motor control, in which the peripheral is used. All these documents can be obtained from the Microchip web site, by clicking on the dspic Digital Signal Controllers or Technical Documentation link. This wraps up the seminar on dspic30f QEI. Thank you for your interest in the dspic30f Family of Digital Signal Controllers Microchip Technology Inc. Page 15

Section 16. Quadrature Encoder Interface (QEI)

Section 16. Quadrature Encoder Interface (QEI) M Section 16. Quadrature Encoder Interface (QEI) HIGHLIGHTS 16 Quadrature Encoder Interface (QEI) This section of the manual contains the following major topics: 16.1 Module Introduction... 16-2 16.2 Control

More information

Hello, and welcome to this presentation of the FlexTimer or FTM module for Kinetis K series MCUs. In this session, you ll learn about the FTM, its

Hello, and welcome to this presentation of the FlexTimer or FTM module for Kinetis K series MCUs. In this session, you ll learn about the FTM, its Hello, and welcome to this presentation of the FlexTimer or FTM module for Kinetis K series MCUs. In this session, you ll learn about the FTM, its main features and the application benefits of leveraging

More information

LV-Link 3.0 Software Interface for LabVIEW

LV-Link 3.0 Software Interface for LabVIEW LV-Link 3.0 Software Interface for LabVIEW LV-Link Software Interface for LabVIEW LV-Link is a library of VIs (Virtual Instruments) that enable LabVIEW programmers to access the data acquisition features

More information

EE 308 Spring S12 SUBSYSTEMS: PULSE WIDTH MODULATION, A/D CONVERTER, AND SYNCHRONOUS SERIAN INTERFACE

EE 308 Spring S12 SUBSYSTEMS: PULSE WIDTH MODULATION, A/D CONVERTER, AND SYNCHRONOUS SERIAN INTERFACE 9S12 SUBSYSTEMS: PULSE WIDTH MODULATION, A/D CONVERTER, AND SYNCHRONOUS SERIAN INTERFACE In this sequence of three labs you will learn to use the 9S12 S hardware sybsystem. WEEK 1 PULSE WIDTH MODULATION

More information

Course Introduction. Content 20 pages 3 questions. Learning Time 30 minutes

Course Introduction. Content 20 pages 3 questions. Learning Time 30 minutes Purpose The intent of this course is to provide you with information about the main features of the S08 Timer/PWM (TPM) interface module and how to configure and use it in common applications. Objectives

More information

EE 308 Lab Spring 2009

EE 308 Lab Spring 2009 9S12 Subsystems: Pulse Width Modulation, A/D Converter, and Synchronous Serial Interface In this sequence of three labs you will learn to use three of the MC9S12's hardware subsystems. WEEK 1 Pulse Width

More information

Modeling, Simulation and Implementation of Speed Control of DC Motor Using PIC 16F877A

Modeling, Simulation and Implementation of Speed Control of DC Motor Using PIC 16F877A Modeling, Simulation and Implementation of Speed Control of DC Motor Using PIC 16F877A Payal P.Raval 1, Prof.C.R.mehta 2 1 PG Student, Electrical Engg. Department, Nirma University, SG Highway, Ahmedabad,

More information

Motor Control using NXP s LPC2900

Motor Control using NXP s LPC2900 Motor Control using NXP s LPC2900 Agenda LPC2900 Overview and Development tools Control of BLDC Motors using the LPC2900 CPU Load of BLDCM and PMSM Enhancing performance LPC2900 Demo BLDC motor 2 LPC2900

More information

Lab 5: Inverted Pendulum PID Control

Lab 5: Inverted Pendulum PID Control Lab 5: Inverted Pendulum PID Control In this lab we will be learning about PID (Proportional Integral Derivative) control and using it to keep an inverted pendulum system upright. We chose an inverted

More information

Application Note: Pulse and Direction for the Position and Velocity Commands

Application Note: Pulse and Direction for the Position and Velocity Commands d i g i t a l Motion Controller Pulse & Direction Incremental Encoder & Hall Application Note: Pulse and Direction for the Position and Velocity Commands Rev. 1.0 April 2009 2 Introduction Pulse and direction

More information

Shaft encoders are digital transducers that are used for measuring angular displacements and angular velocities.

Shaft encoders are digital transducers that are used for measuring angular displacements and angular velocities. Shaft Encoders: Shaft encoders are digital transducers that are used for measuring angular displacements and angular velocities. Encoder Types: Shaft encoders can be classified into two categories depending

More information

nc. Function Set Configuration The 32LQD is the main function of the set. It can be used either alone, with one of the supporting functions, or with b

nc. Function Set Configuration The 32LQD is the main function of the set. It can be used either alone, with one of the supporting functions, or with b nc. Rev. 0, 5/2003 32-bit Linear Quadrature Decoder TPU Function Set (32LQD) By Milan Brejl, Ph.D. Functional Overview 32-bit Linear Quadrature Decoder (32LQD) TPU Function Set is useful for decoding position,

More information

Freescale Semiconductor, I

Freescale Semiconductor, I Application Note Rev. 0, 5/2003 16-bit Quadrature Decoder TPU Function Set (16QD) By Milan Brejl, Ph.D. Functional Overview The 16-bit Quadrature Decoder (16QD) TPU Function Set is useful for decoding

More information

Unit-6 PROGRAMMABLE INTERRUPT CONTROLLERS 8259A-PROGRAMMABLE INTERRUPT CONTROLLER (PIC) INTRODUCTION

Unit-6 PROGRAMMABLE INTERRUPT CONTROLLERS 8259A-PROGRAMMABLE INTERRUPT CONTROLLER (PIC) INTRODUCTION M i c r o p r o c e s s o r s a n d M i c r o c o n t r o l l e r s P a g e 1 PROGRAMMABLE INTERRUPT CONTROLLERS 8259A-PROGRAMMABLE INTERRUPT CONTROLLER (PIC) INTRODUCTION Microcomputer system design requires

More information

Timing System. Timing & PWM System. Timing System components. Usage of Timing System

Timing System. Timing & PWM System. Timing System components. Usage of Timing System Timing & PWM System Timing System Valvano s chapter 6 TIM Block User Guide, Chapter 15 PWM Block User Guide, Chapter 12 1 2 Timing System components Usage of Timing System 3 Counting mechanisms Input time

More information

3-Phase Switched Reluctance Motor Control with Encoder Using DSP56F80x. 1. Introduction. Contents. Freescale Semiconductor, I

3-Phase Switched Reluctance Motor Control with Encoder Using DSP56F80x. 1. Introduction. Contents. Freescale Semiconductor, I nc. Order by AN1937/D (Motorola Order Number) Rev. 0, 9/02 3-Phase Switched Reluctance Motor Control with Encoder Using DSP56F80x Design of a Motor Control Application Based on the Motorola Software Development

More information

Single Chip Velocity Measurement System for Incremental Optical Encoders

Single Chip Velocity Measurement System for Incremental Optical Encoders Single Chip Velocity Measurement System for Incremental Optical Encoders Pamela Bhatti, Blake Hannaford* Department of Electrical Engineering University of Washington, Seattle, WA 98195-2500 * corresponding

More information

MICROCONTROLLERS Stepper motor control with Sequential Logic Circuits

MICROCONTROLLERS Stepper motor control with Sequential Logic Circuits PH-315 MICROCONTROLLERS Stepper motor control with Sequential Logic Circuits Portland State University Summary Four sequential digital waveforms are used to control a stepper motor. The main objective

More information

TRWinProg 101by Chris Bowman October 10

TRWinProg 101by Chris Bowman October 10 TRWinProg 101by Chris Bowman October 10 TRWinProg is a Windows based program for serial programming of encoders. The program allows viewing of setup data stored within the encoder and allowing the user

More information

AC Induction Motor (ACIM) Control using a Digital Signal Controller (DSC)

AC Induction Motor (ACIM) Control using a Digital Signal Controller (DSC) Research Journal of Applied Sciences, Engineering and Technology 4(19): 3740-3745, 2012 ISSN: 2040-7467 Maxwell Scientific Organization, 2012 Submitted: March 07, 2012 Accepted: March 30, 2012 Published:

More information

Chapter 6 PROGRAMMING THE TIMERS

Chapter 6 PROGRAMMING THE TIMERS Chapter 6 PROGRAMMING THE TIMERS Force Outputs on Outcompare Input Captures Programmabl e Prescaling Prescaling Internal clock inputs Timer-counter Device Free Running Outcompares Lesson 2 Free Running

More information

Freescale Semiconductor, I SECTION 11 TIME PROCESSOR UNIT

Freescale Semiconductor, I SECTION 11 TIME PROCESSOR UNIT nc. SECTION 11 TIME PROCESSOR UNIT The time processor unit (TPU) is an intelligent, semi-autonomous microcontroller designed for timing control. Operating simultaneously with the CPU32, the TPU schedules

More information

Grundlagen Microcontroller Counter/Timer. Günther Gridling Bettina Weiss

Grundlagen Microcontroller Counter/Timer. Günther Gridling Bettina Weiss Grundlagen Microcontroller Counter/Timer Günther Gridling Bettina Weiss 1 Counter/Timer Lecture Overview Counter Timer Prescaler Input Capture Output Compare PWM 2 important feature of microcontroller

More information

Product Family: 05, 06, 105, 205, 405, WinPLC, Number: AN-MISC-021 Terminator IO Subject: High speed input/output device

Product Family: 05, 06, 105, 205, 405, WinPLC, Number: AN-MISC-021 Terminator IO Subject: High speed input/output device APPLICATION NOTE THIS INFORMATION PROVIDED BY AUTOMATIONDIRECT.COM TECHNICAL SUPPORT These documents are provided by our technical support department to assist others. We do not guarantee that the data

More information

Design and build a prototype digital motor controller with the following features:

Design and build a prototype digital motor controller with the following features: Nov 3, 26 Project Digital Motor Controller Tom Kovacsi Andrew Rossbach Arnold Stadlin Start: Nov 7, 26 Project Scope Design and build a prototype digital motor controller with the following features:.

More information

Fixed-function (FF) implementation for PSoC 3 and PSoC 5 devices

Fixed-function (FF) implementation for PSoC 3 and PSoC 5 devices 2.40 Features 8- or 16-bit resolution Multiple pulse width output modes Configurable trigger Configurable capture Configurable hardware/software enable Configurable dead band Multiple configurable kill

More information

Dimensions: Specifications:

Dimensions: Specifications: Rover 5 Rover 5 is a new breed of tracked robot chassis designed specifically for students and hobbyist. Unlike conventional tracked chassis s the clearance can be adjusted by rotating the gearboxes in

More information

Low Cost Motor Control Family

Low Cost Motor Control Family Low Cost Motor Control Family 2011 Microchip Technology Incorporated. All Rights Reserved. Comparator with blanking and filtering Slide 1 Welcome to the Low Cost Motor Control Family web seminar. My Name

More information

FPGA Implementation of a Digital Tachometer with Input Filtering

FPGA Implementation of a Digital Tachometer with Input Filtering FPGA Implementation of a Digital Tachometer with Input Filtering Daniel Mic, Stefan Oniga Electrical Department, North University of Baia Mare Dr. Victor Babeş Street 62 a, 430083 Baia Mare, Romania danmic@ubm.ro,

More information

For reference only Refer to the latest documents for details

For reference only Refer to the latest documents for details STM32F3 Technical Training For reference only Refer to the latest documents for details General Purpose Timers (TIM2/3/4/5 - TIM12/13/14 - TIM15/16/17 - TIM6/7/18) TIM2/5 TIM3/4/19 TIM12 TIM15 TIM13/14

More information

Microprocessor & Interfacing Lecture Programmable Interval Timer

Microprocessor & Interfacing Lecture Programmable Interval Timer Microprocessor & Interfacing Lecture 30 8254 Programmable Interval Timer P A R U L B A N S A L A S S T P R O F E S S O R E C S D E P A R T M E N T D R O N A C H A R Y A C O L L E G E O F E N G I N E E

More information

CprE 288 Introduction to Embedded Systems (Output Compare and PWM) Instructors: Dr. Phillip Jones

CprE 288 Introduction to Embedded Systems (Output Compare and PWM) Instructors: Dr. Phillip Jones CprE 288 Introduction to Embedded Systems (Output Compare and PWM) Instructors: Dr. Phillip Jones 1 Announcements HW8: Due Sunday 10/29 (midnight) Exam 2: In class Thursday 11/9 This object detection lab

More information

DM74ALS169B Synchronous Four-Bit Up/Down Counters

DM74ALS169B Synchronous Four-Bit Up/Down Counters Synchronous Four-Bit Up/Down Counters General Description These synchronous presettable counters feature an internal carry look ahead for cascading in high speed counting applications. The DM74ALS169B

More information

VORAGO Timer (TIM) subsystem application note

VORAGO Timer (TIM) subsystem application note AN1202 VORAGO Timer (TIM) subsystem application note Feb 24, 2017, Version 1.2 VA10800/VA10820 Abstract This application note reviews the Timer (TIM) subsystem on the VA108xx family of MCUs and provides

More information

The Allen-Bradley Servo Interface Module (Cat. No SF1) when used with the Micro Controller (Cat. No UC1) can control single axis

The Allen-Bradley Servo Interface Module (Cat. No SF1) when used with the Micro Controller (Cat. No UC1) can control single axis Table of Contents The Allen-Bradley Servo Interface Module (Cat. No. 1771-SF1) when used with the Micro Controller (Cat. No. 1771-UC1) can control single axis positioning systems such as found in machine

More information

PSoC Academy: How to Create a PSoC BLE Android App Lesson 9: BLE Robot Schematic 1

PSoC Academy: How to Create a PSoC BLE Android App Lesson 9: BLE Robot Schematic 1 1 All right, now we re ready to walk through the schematic. I ll show you the quadrature encoders that drive the H-Bridge, the PWMs, et cetera all the parts on the schematic. Then I ll show you the configuration

More information

Hello, and welcome to this presentation of the STM32 Infrared Timer. Features of this interface allowing the generation of various IR remote control

Hello, and welcome to this presentation of the STM32 Infrared Timer. Features of this interface allowing the generation of various IR remote control Hello, and welcome to this presentation of the STM32 Infrared Timer. Features of this interface allowing the generation of various IR remote control protocols will be presented. 1 The Infrared Timer peripheral

More information

A software solution for mechanical change measurement through virtual instrumentation

A software solution for mechanical change measurement through virtual instrumentation A software solution for mechanical change measurement through virtual instrumentation NICOLAE PATRASCOIU ARON POANTA ADRIAN TOMUS BOGDAN SOCHIRCA Automatics, Applied Informatics and Computers Engineering

More information

CHAPTER-5 DESIGN OF DIRECT TORQUE CONTROLLED INDUCTION MOTOR DRIVE

CHAPTER-5 DESIGN OF DIRECT TORQUE CONTROLLED INDUCTION MOTOR DRIVE 113 CHAPTER-5 DESIGN OF DIRECT TORQUE CONTROLLED INDUCTION MOTOR DRIVE 5.1 INTRODUCTION This chapter describes hardware design and implementation of direct torque controlled induction motor drive with

More information

Introduction to Stepper Motors

Introduction to Stepper Motors Introduction to tepper Motors Part 2: tepper Motor Control 27 Microchip Technology Incorporated. ll Rights Reserved. Webeminar Title lide My name is Marc McComb, I am a Technical Training Engineer here

More information

Data Sheet. AEDT-9340 Series High Temperature 115 C 1250/2500 CPR 6-Channel Commutation Encoder. Description. Features.

Data Sheet. AEDT-9340 Series High Temperature 115 C 1250/2500 CPR 6-Channel Commutation Encoder. Description. Features. AEDT-9340 Series High Temperature 115 C 1250/2500 CPR 6-Channel Commutation Encoder Data Sheet Description The AEDT-9340 optical encoder series are high temperature six channel optical incremental encoder

More information

A Practical Primer On Motor Drives (Part 13): Motor Drive Control Architectures And Algorithms

A Practical Primer On Motor Drives (Part 13): Motor Drive Control Architectures And Algorithms ISSUE: February 2017 A Practical Primer On Motor Drives (Part 13): Motor Drive Control Architectures And Algorithms by Ken Johnson, Teledyne LeCroy, Chestnut Ridge, N.Y. Part 12 began the explanation of

More information

MicroToys Guide: Motors A. Danowitz, A. Adibi December A rotary shaft encoder is an electromechanical device that can be used to

MicroToys Guide: Motors A. Danowitz, A. Adibi December A rotary shaft encoder is an electromechanical device that can be used to Introduction A rotary shaft encoder is an electromechanical device that can be used to determine angular position of a shaft. Encoders have numerous applications, since angular position can be used to

More information

6.111 Lecture # 19. Controlling Position. Some General Features of Servos: Servomechanisms are of this form:

6.111 Lecture # 19. Controlling Position. Some General Features of Servos: Servomechanisms are of this form: 6.111 Lecture # 19 Controlling Position Servomechanisms are of this form: Some General Features of Servos: They are feedback circuits Natural frequencies are 'zeros' of 1+G(s)H(s) System is unstable if

More information

Application Note Using MagAlpha Devices to Replace Optical Encoders

Application Note Using MagAlpha Devices to Replace Optical Encoders Application Note Using MagAlpha Devices to Replace Optical Encoders Introduction The standard way to measure the angular position or speed of a rotating shaft is to use an optical encoder. Optical encoders

More information

Using the HCS08 TPM Module In Motor Control Applications

Using the HCS08 TPM Module In Motor Control Applications Pavel Grasblum Using the HCS08 TPM Module In Motor Control Applications Designers can choose from a wide range of microcontrollers to provide digital control for variable speed drives. Microcontrollers

More information

Design of a Simulink-Based Control Workstation for Mobile Wheeled Vehicles with Variable-Velocity Differential Motor Drives

Design of a Simulink-Based Control Workstation for Mobile Wheeled Vehicles with Variable-Velocity Differential Motor Drives Design of a Simulink-Based Control Workstation for Mobile Wheeled Vehicles with Variable-Velocity Differential Motor Drives Kevin Block, Timothy De Pasion, Benjamin Roos, Alexander Schmidt Gary Dempsey

More information

LM4: The timer unit of the MC9S12DP256B/C

LM4: The timer unit of the MC9S12DP256B/C Objectives - To explore the Enhanced Capture Timer unit (ECT) of the MC9S12DP256B/C - To program a real-time clock signal with a fixed period and display it using the onboard LEDs (flashing light) - To

More information

ISSN Vol.05,Issue.01, January-2017, Pages:

ISSN Vol.05,Issue.01, January-2017, Pages: WWW.IJITECH.ORG ISSN 2321-8665 Vol.05,Issue.01, January-2017, Pages:0028-0032 Digital Control Strategy for Four Quadrant Operation of Three Phase BLDC Motor with Load Variations MD. HAFEEZUDDIN 1, KUMARASWAMY

More information

Data Sheet. AEDS-9240 Series 360/720 CPR Commutation Encoder Module. Features. Description. Applications

Data Sheet. AEDS-9240 Series 360/720 CPR Commutation Encoder Module. Features. Description. Applications AEDS-9240 Series 360/720 CPR Commutation Encoder Module Data Sheet Description The AEDS-9240 optical encoder is a six channel optical incremental encoder module. When used with a codewheel, this encoder

More information

Data Sheet. AEDB-9340 Series 1250/2500 CPR Commutation Encoder Modules with Codewheel. Features. Description. Applications

Data Sheet. AEDB-9340 Series 1250/2500 CPR Commutation Encoder Modules with Codewheel. Features. Description. Applications AEDB-9340 Series 1250/2500 CPR Commutation Encoder Modules with Codewheel Data Sheet Description The AEDB-9340 optical encoder series are six-channel optical incremental encoder modules with codewheel.

More information

Application Note, V1.0, Oct 2006 AP08019 XC866. Sensorless Brushless DC Motor Control Using Infineon 8-bit XC866 Microcontroller.

Application Note, V1.0, Oct 2006 AP08019 XC866. Sensorless Brushless DC Motor Control Using Infineon 8-bit XC866 Microcontroller. Application Note, V1.0, Oct 2006 AP08019 XC866 Using Infineon 8-bit XC866 Microcontroller Microcontrollers Edition 2006-10-20 Published by Infineon Technologies AG 81726 München, Germany Infineon Technologies

More information

νµθωερτψυιοπασδφγηϕκλζξχϖβνµθωερτ ψυιοπασδφγηϕκλζξχϖβνµθωερτψυιοπα σδφγηϕκλζξχϖβνµθωερτψυιοπασδφγηϕκ χϖβνµθωερτψυιοπασδφγηϕκλζξχϖβνµθ

νµθωερτψυιοπασδφγηϕκλζξχϖβνµθωερτ ψυιοπασδφγηϕκλζξχϖβνµθωερτψυιοπα σδφγηϕκλζξχϖβνµθωερτψυιοπασδφγηϕκ χϖβνµθωερτψυιοπασδφγηϕκλζξχϖβνµθ θωερτψυιοπασδφγηϕκλζξχϖβνµθωερτψ υιοπασδφγηϕκλζξχϖβνµθωερτψυιοπασδ φγηϕκλζξχϖβνµθωερτψυιοπασδφγηϕκλζ ξχϖβνµθωερτψυιοπασδφγηϕκλζξχϖβνµ EE 331 Design Project Final Report θωερτψυιοπασδφγηϕκλζξχϖβνµθωερτψ

More information

Distributed by: www.jameco.com 1-800-831-4242 The content and copyrights of the attached material are the property of its owner. HCTL-2001-A00, HCTL-2017-A00 / PLC, HCTL-2021-A00 / PLC Quadrature Decoder/Counter

More information

Graphical Control Panel User Manual

Graphical Control Panel User Manual Graphical Control Panel User Manual DS-MPE-DAQ0804 PCIe Minicard Data Acquisition Module For Universal Driver Version 7.0.0 and later Revision A.0 March 2015 Revision Date Comment A.0 3/18/2015 Initial

More information

Lab 8. Stepper Motor Controller

Lab 8. Stepper Motor Controller Lab 8. Stepper Motor Controller Overview of this Session In this laboratory, you will learn: To continue to use an oscilloscope How to use a Step Motor driver chip. Introduction This lab is focused around

More information

VisSim Training. 9. Encoders

VisSim Training. 9. Encoders VisSim Training 9. Encoders 1 Topics: Encoder Operation Absolute & Incremental Encoders Encoder Wiring Connections; 4 & 5 Wire 4 Wire Encoder Video 5 Wire Encoder Example (Requires F28069M board + 5 wire

More information

A software solution for displacement and angular speed measurement through virtual instrumentation

A software solution for displacement and angular speed measurement through virtual instrumentation software solution for displacement and angular speed measurement through virtual instrumentation NICOLE PTRSCOIU RON PONT DRIN TOMUS OGDN SOCHIRC utomatics, pplied Informatics and Computers Engineering

More information

Counter/Timers in the Mega8

Counter/Timers in the Mega8 Counter/Timers in the Mega8 The mega8 incorporates three counter/timer devices. These can: Be used to count the number of events that have occurred (either external or internal) Act as a clock Trigger

More information

STM32 PMSM FOC SDK v3.2. 蒋建国 MCU Application Great China

STM32 PMSM FOC SDK v3.2. 蒋建国 MCU Application Great China STM32 PMSM FOC SDK v3.2 蒋建国 MCU Application Great China Agenda 2 1 st day Morning Overview Key message Basics Feature Performance Hardware support Tools STM32 MC Workbench SDK components Architectural

More information

PIC Functionality. General I/O Dedicated Interrupt Change State Interrupt Input Capture Output Compare PWM ADC RS232

PIC Functionality. General I/O Dedicated Interrupt Change State Interrupt Input Capture Output Compare PWM ADC RS232 PIC Functionality General I/O Dedicated Interrupt Change State Interrupt Input Capture Output Compare PWM ADC RS232 General I/O Logic Output light LEDs Trigger solenoids Transfer data Logic Input Monitor

More information

Multifunction counter board, optically isolated, encoder, incremental counter, timer/counter, SSI, PWM,...

Multifunction counter board, optically isolated, encoder, incremental counter, timer/counter, SSI, PWM,... Multifunction counter board, optically isolated, encoder, incremental counter, timer/counter, SSI, PWM,... Available functions: incremental counter, SSI synchronous serial interface, counter/timer, pulse

More information

RAPID CONTROL PROTOTYPING FOR ELECTRIC DRIVES

RAPID CONTROL PROTOTYPING FOR ELECTRIC DRIVES RAPID CONTROL PROTOTYPING FOR ELECTRIC DRIVES Lukáš Pohl Doctoral Degree Programme (2), FEEC BUT E-mail: xpohll01@stud.feec.vutbr.cz Supervised by: Petr Blaha E-mail: blahap@feec.vutbr.cz Abstract: This

More information

2.017 DESIGN OF ELECTROMECHANICAL ROBOTIC SYSTEMS Fall 2009 Lab 4: Motor Control. October 5, 2009 Dr. Harrison H. Chin

2.017 DESIGN OF ELECTROMECHANICAL ROBOTIC SYSTEMS Fall 2009 Lab 4: Motor Control. October 5, 2009 Dr. Harrison H. Chin 2.017 DESIGN OF ELECTROMECHANICAL ROBOTIC SYSTEMS Fall 2009 Lab 4: Motor Control October 5, 2009 Dr. Harrison H. Chin Formal Labs 1. Microcontrollers Introduction to microcontrollers Arduino microcontroller

More information

USB4. Encoder Data Acquisition USB Device Page 1 of 8. Description. Features

USB4. Encoder Data Acquisition USB Device Page 1 of 8. Description. Features USB4 Page 1 of 8 The USB4 is a data acquisition device designed to record data from 4 incremental encoders, 8 digital inputs and 4 analog input channels. In addition, the USB4 provides 8 digital outputs

More information

Design of double loop-locked system for brush-less DC motor based on DSP

Design of double loop-locked system for brush-less DC motor based on DSP International Conference on Advanced Electronic Science and Technology (AEST 2016) Design of double loop-locked system for brush-less DC motor based on DSP Yunhong Zheng 1, a 2, Ziqiang Hua and Li Ma 3

More information

Fixed-function (FF) implementation for PSoC 3 and PSoC 5LP devices

Fixed-function (FF) implementation for PSoC 3 and PSoC 5LP devices 3.30 Features 8- or 16-bit resolution Multiple pulse width output modes Configurable trigger Configurable capture Configurable hardware/software enable Configurable dead band Multiple configurable kill

More information

Microcontroller Based Electric Expansion Valve Controller for Air Conditioning System

Microcontroller Based Electric Expansion Valve Controller for Air Conditioning System Microcontroller Based Electric Expansion Valve Controller for Air Conditioning System Thae Su Aye, and Zaw Myo Lwin Abstract In the air conditioning system, the electric expansion valve (EEV) is one of

More information

A COMPARISON STUDY OF THE COMMUTATION METHODS FOR THE THREE-PHASE PERMANENT MAGNET BRUSHLESS DC MOTOR

A COMPARISON STUDY OF THE COMMUTATION METHODS FOR THE THREE-PHASE PERMANENT MAGNET BRUSHLESS DC MOTOR A COMPARISON STUDY OF THE COMMUTATION METHODS FOR THE THREE-PHASE PERMANENT MAGNET BRUSHLESS DC MOTOR Shiyoung Lee, Ph.D. Pennsylvania State University Berks Campus Room 120 Luerssen Building, Tulpehocken

More information

Section 1. Fundamentals of DDS Technology

Section 1. Fundamentals of DDS Technology Section 1. Fundamentals of DDS Technology Overview Direct digital synthesis (DDS) is a technique for using digital data processing blocks as a means to generate a frequency- and phase-tunable output signal

More information

MicroToys Guide: Motors N. Pinckney April 2005

MicroToys Guide: Motors N. Pinckney April 2005 Introduction Three types of motors are applicable to small projects: DC brushed motors, stepper motors, and servo motors. DC brushed motors simply rotate in a direction dependent on the flow of current.

More information

Brushless 5 click. PID: MIKROE 3032 Weight: 25 g

Brushless 5 click. PID: MIKROE 3032 Weight: 25 g Brushless 5 click PID: MIKROE 3032 Weight: 25 g Brushless 5 click is a 3 phase sensorless BLDC motor controller, with a soft-switching feature for reduced motor noise and EMI, and precise BEMF motor sensing,

More information

Gurley Model HR2A High-resolution Interpolator. High resolution - Industrial ruggedness

Gurley Model HR2A High-resolution Interpolator. High resolution - Industrial ruggedness Gurley Model High-resolution Interpolator Application: Selected linear and rotary incremental encoders Output: Compatible with virtually all counter circuits, dedicated encoder interface cards and PLCs

More information

Lab 9. Speed Control of a D.C. motor. Sensing Motor Speed (Tachometer Frequency Method)

Lab 9. Speed Control of a D.C. motor. Sensing Motor Speed (Tachometer Frequency Method) Lab 9. Speed Control of a D.C. motor Sensing Motor Speed (Tachometer Frequency Method) Motor Speed Control Project 1. Generate PWM waveform 2. Amplify the waveform to drive the motor 3. Measure motor speed

More information

Jaguar Motor Controller (Stellaris Brushed DC Motor Control Module with CAN)

Jaguar Motor Controller (Stellaris Brushed DC Motor Control Module with CAN) Jaguar Motor Controller (Stellaris Brushed DC Motor Control Module with CAN) 217-3367 Ordering Information Product Number Description 217-3367 Stellaris Brushed DC Motor Control Module with CAN (217-3367)

More information

Introduction to BLDC Motor Control Using Freescale MCU. Tom Wang Segment Biz. Dev. Manager Avnet Electronics Marketing Asia

Introduction to BLDC Motor Control Using Freescale MCU. Tom Wang Segment Biz. Dev. Manager Avnet Electronics Marketing Asia Introduction to BLDC Motor Control Using Freescale MCU Tom Wang Segment Biz. Dev. Manager Avnet Electronics Marketing Asia Agenda Introduction to Brushless DC Motors Motor Electrical and Mechanical Model

More information

ams AG austriamicrosystems AG is now The technical content of this austriamicrosystems application note is still valid. Contact information:

ams AG austriamicrosystems AG is now The technical content of this austriamicrosystems application note is still valid. Contact information: austriamicrosystems AG is now The technical content of this austriamicrosystems application note is still valid. Contact information: Headquarters: Tobelbaderstrasse 30 8141 Unterpremstaetten, Austria

More information

Stepping motor controlling apparatus

Stepping motor controlling apparatus Stepping motor controlling apparatus Ngoc Quy, Le*, and Jae Wook, Jeon** School of Information and Computer Engineering, SungKyunKwan University, 300 Chunchundong, Jangangu, Suwon, Gyeonggi 440746, Korea

More information

HOMANN DESIGNS. DigiSpeed. Instruction manual. Version 1.0. Copyright 2004 Homann Designs.

HOMANN DESIGNS. DigiSpeed. Instruction manual. Version 1.0. Copyright 2004 Homann Designs. HOMANN DESIGNS DigiSpeed Instruction manual Version 1.0 Copyright 2004 Homann Designs http://www.homanndesigns.com Table of Contents Introduction...3 Features...3 DigiSpeed Operation Description...5 Overview...5

More information

EE 314 Spring 2003 Microprocessor Systems

EE 314 Spring 2003 Microprocessor Systems EE 314 Spring 2003 Microprocessor Systems Laboratory Project #9 Closed Loop Control Overview and Introduction This project will bring together several pieces of software and draw on knowledge gained in

More information

Job Sheet 2 Servo Control

Job Sheet 2 Servo Control Job Sheet 2 Servo Control Electrical actuators are replacing hydraulic actuators in many industrial applications. Electric servomotors and linear actuators can perform many of the same physical displacement

More information

Topics Introduction to Microprocessors

Topics Introduction to Microprocessors Topics 2244 Introduction to Microprocessors Chapter 8253 Programmable Interval Timer/Counter Suree Pumrin,, Ph.D. Interfacing with 886/888 Programming Mode 2244 Introduction to Microprocessors 2 8253/54

More information

DC motor control using arduino

DC motor control using arduino DC motor control using arduino 1) Introduction: First we need to differentiate between DC motor and DC generator and where we can use it in this experiment. What is the main different between the DC-motor,

More information

Chapter 7: The motors of the robot

Chapter 7: The motors of the robot Chapter 7: The motors of the robot Learn about different types of motors Learn to control different kinds of motors using open-loop and closedloop control Learn to use motors in robot building 7.1 Introduction

More information

Motor control using FPGA

Motor control using FPGA Motor control using FPGA MOTIVATION In the previous chapter you learnt ways to interface external world signals with an FPGA. The next chapter discusses digital design and control implementation of different

More information

A Two Freedom Degree Manipulator Control for a Wooden Rotulator based on PIC Microcontrollers

A Two Freedom Degree Manipulator Control for a Wooden Rotulator based on PIC Microcontrollers , October 25-27, 2017, San Francisco, USA A Two Freedom Degree Manipulator Control for a Wooden Rotulator based on PIC Microcontrollers Salvador Ramirez, Angel Carreon, Jaime Cerda, and Pedro Argumedo

More information

Houngninou 2. Abstract

Houngninou 2. Abstract Houngninou 2 Abstract The project consists of designing and building a system that monitors the phase of two pulses A and B. Three colored LEDs are used to identify the phase comparison. When the rising

More information

SPEED CONTROL OF INDUCTION MOTOR WITHOUT SPEED SENSOR AT LOW SPEED OPERATIONS

SPEED CONTROL OF INDUCTION MOTOR WITHOUT SPEED SENSOR AT LOW SPEED OPERATIONS SPEED CONTROL OF INDUCTION MOTOR WITHOUT SPEED SENSOR AT LOW SPEED OPERATIONS Akshay Prasad Dubey and Saravana Kumar R. School of Electrical Engineering, VIT University, Vellore, Tamil Nadu, India E-Mail:

More information

For more information on these functions and others please refer to the PRONET-E User s Manual.

For more information on these functions and others please refer to the PRONET-E User s Manual. PRONET-E Quick Start Guide PRONET-E Quick Start Guide BASIC FUNCTIONS This guide will familiarize the user with the basic functions of the PRONET-E Servo Drive and assist with start up. The descriptions

More information

"Get Your Motor Running" with the MC68HC708MP16 By David Wilson Freescale Field Applications Engineer Milwaukee, Wisconsin

Get Your Motor Running with the MC68HC708MP16 By David Wilson Freescale Field Applications Engineer Milwaukee, Wisconsin Order this document by /D "Get Your Motor Running" with the MC68HC708MP16 By David Wilson Freescale Field Applications Engineer Milwaukee, Wisconsin Introduction The quality of life we enjoy today can

More information

EEL 4744C: Microprocessor Applications Lecture 8 Timer Dr. Tao Li

EEL 4744C: Microprocessor Applications Lecture 8 Timer Dr. Tao Li EEL 4744C: Microprocessor Applications Lecture 8 Timer Reading Assignment Software and Hardware Engineering (new version): Chapter 14 SHE (old version): Chapter 10 HC12 Data Sheet: Chapters 12, 13, 11,

More information

Hello, and welcome to this presentation of the STM32L4 comparators. It covers the main features of the ultra-lowpower comparators and some

Hello, and welcome to this presentation of the STM32L4 comparators. It covers the main features of the ultra-lowpower comparators and some Hello, and welcome to this presentation of the STM32L4 comparators. It covers the main features of the ultra-lowpower comparators and some application examples. 1 The two comparators inside STM32 microcontroller

More information

PART 2 - ACTUATORS. 6.0 Stepper Motors. 6.1 Principle of Operation

PART 2 - ACTUATORS. 6.0 Stepper Motors. 6.1 Principle of Operation 6.1 Principle of Operation PART 2 - ACTUATORS 6.0 The actuator is the device that mechanically drives a dynamic system - Stepper motors are a popular type of actuators - Unlike continuous-drive actuators,

More information

Reading Assignment. Timer. Introduction. Timer Overview. Programming HC12 Timer. An Overview of HC12 Timer. EEL 4744C: Microprocessor Applications

Reading Assignment. Timer. Introduction. Timer Overview. Programming HC12 Timer. An Overview of HC12 Timer. EEL 4744C: Microprocessor Applications Reading Assignment EEL 4744C: Microprocessor Applications Lecture 8 Timer Software and Hardware Engineering (new version): Chapter 4 SHE (old version): Chapter 0 HC Data Sheet: Chapters,,, 0 Introduction

More information

Section 25. Device Configuration

Section 25. Device Configuration Section 25. Device Configuration HIGHLIGHTS This section of the manual contains the following major topics: 25.1 Introduction... 25-2 25.2 Device Configuration Registers... 25-2 25.3 Configuration Bit

More information

Analog Inputs and Outputs

Analog Inputs and Outputs Analog Inputs and Outputs PLCs must also work with continuous or analog signals. Typical analog signals are 0-10 VDC or 4-20 ma. Analog signals are used to represent changing values such as speed, temperature,

More information

Swinburne Research Bank

Swinburne Research Bank Swinburne Research Bank http://researchbank.swinburne.edu.au Tashakori, A., & Ektesabi, M. (2013). A simple fault tolerant control system for Hall Effect sensors failure of BLDC motor. Originally published

More information

Actuator Components 2

Actuator Components 2 Actuator Components 2 Term project midterm review Bearings Seals Sensors 1 Actuator Components Term Project Midterm Review Details of term project are contained in first lecture of the term Should be using

More information

Absolute encoders - SSI

Absolute encoders - SSI with through hollow shaft Features Encoder multiturn / SSI Optical sensing method Resolution: singleturn 14 bit, multiturn 12 bit Compact design Cost-efficient mounting High reliability by self-diagnostics

More information

EXAMINATION PAPER EMBEDDED SYSTEMS 6EJ005 UNIVERSITY OF DERBY. School of Computing and Technology DATE: SUMMER 2003 TIME ALLOWED: 2 HOURS

EXAMINATION PAPER EMBEDDED SYSTEMS 6EJ005 UNIVERSITY OF DERBY. School of Computing and Technology DATE: SUMMER 2003 TIME ALLOWED: 2 HOURS BSc/BSc (HONS) MUSIC TECHNOLOGY AND AUDIO SYSTEM DESIGN BSc/BSc (HONS) LIVE PERFORMANCE TECHNOLOGY BSc/BSc (HONS) ELECTRICAL AND ELECTRONIC ENGINEERING DATE: SUMMER 2003 TIME ALLOWED: 2 HOURS Instructions

More information