Introduction to Embedded and Real-Time Systems W10: Hardware Design Choices and Basic Control Architectures for Mobile Robots

Size: px
Start display at page:

Download "Introduction to Embedded and Real-Time Systems W10: Hardware Design Choices and Basic Control Architectures for Mobile Robots"

Transcription

1 Introduction to Embedded and Real-Time Systems W10: Hardware Design Choices and Basic Control Architectures for Mobile Robots

2 Outline Hardware design choices Hardware resource management Introduction to control architectures for mobility Examples of different reactive control architectures The obstacle avoidance example

3 Hardware Design Choices

4 Rationale Depending on the application, the appropriate components must be chosen. On of the key design choices is that of the microcontroller (focus of the next slides) Energy is one of the key bottleneck for autonomous operation of embedded systems and component choice as well as poweraware algorithms must be implemented for fulfilling a given mission in an energy-efficient way

5 Application Examples The following applications have fundamentally different requirements: Wireless sensor networks (e.g., environmental monitoring) Acceleration monitoring (e.g., detection of laptop failing) Sound source localization (e.g., robotic attention) Vision-based monitoring (e.g., surveillance)

6 e-puck Capabilities

7 Wireless Sensor Networks Ex. environmental monitoring, see sensorscope.epfl.ch Requirements: - Very low sampling frequency: sub Hz to a few tens of Hz - Ultra low power consumption: 25mW - Energy: solar panel combined with rechargeable battery - Low bandwidth radio link

8 Acceleration monitoring Example application: detection of laptop failing, see Requirements: - Low sampling frequency (1 khz) - Typical A/D conversion - Low power consumption not crucial - Embedded in a device (e.g. laptop)

9 Sound Source Localization Example application: acoustic attention in robots, see -> robot -> sound sensor and lecture notes week 7 Requirements: - Localization based on times of arrival - Medium sampling frequency (30-50 khz) - Typical A/D conversion - Medium to low power consumption - Sharing of on-board robot resources typically used for other parallel functionalities

10 Surveillance using Computer Vision Requirements: - Very large data flow (tens of Mbit/s) - Corresponding signal processing needed - Corresponding memory needs for image storing - Power consumption depends on application and deployment peculiarities

11 Some Hints and Techniques for Hardware Resource Management

12 Wireless Sensor Networks Technical solutions: - Sampling of the continous-time analog sensors using the integrated A/D converter - Typically parallel, low-frequency sampling for environmental variables

13 Wireless Sensor Networks Technical solutions: - Exploit typical assembly functions to place the microcontroller in an idle status and wake up when needed - Dedicated hardware design can be done to do the same with further modules/chips of the system

14 Source: ISI & DARPA PAC/C Program Sensor Node Energy Roadmap Average Power (mw) 10,000 1, Deployed (5W) PAC/C Baseline (.5W) (50 mw) (1mW) Rehosting to Low Power COTS (10x) -System-On-Chip -Adv Power Management Algorithms (50x)

15 Source: ISI & DARPA PAC/C Program Communication/Computation Technology Projection Communication Computation 1999 (Bluetooth Technology) (150nJ/bit) 1.5mW* 2004 (5nJ/bit) 50uW ~ 190 MOPS (5pJ/OP) Assume: 10kbit/sec. Radio, 10 m range. Large cost of communications relative to computation continues

16 Acceleration monitoring Requirements: - Typical A/D conversion: sampling of the continous time analog accelerometer (3 axes) using the integrated A/D converter - Low power consumption not crucial - Embedded in a device (e.g. laptop)

17 Acceleration monitoring - Sampling frequency typically a function of the application and of the accelerometer characteristics

18 Sound Source Localization Requirements: - Medium sampling frequency - E.g.: robot dimension 7.5 cm microphone max inter-distance 5.5 cm speed of sound in air 340 m/s travel time micro-to-micro 0 (orthogonal) to 160 µs (aligned) 6 khz min to max possible on the device - 2 micros: 100 KHz max e.g. 44 khz 23 µs 8 mm resolution but possible aliasing on a plane (dual localization) - 3 micros: 100 khz max e.g. 28 khz 36 µs 12 mm but no aliasing on a plane (unique localization)

19 Sound Source Localization Requirements: - Sharing of on-board robot resources typically used for other parallel functionalities low battery detection poweron led low battery indicator extension connectors 3.3V regul. to all devices 2x stepper motors programming/ debug connector body light RS232 connector dspic 30F MHz 8x IR prox. ON - OFF IR remote control bluetooth radio link RESET running mode selector 10Mhz clock 2.5V 1.8V regul. 8x Red Leds CMOS color camera 3D accelerometer battery protection LiION Battery 3.6V 1.4Ah audio codec 3x micro speaker

20 Surveillance using Computer Vision Requirements: - Very large data flow (tens of Mbit/s) Processing: - Pixels H x V x RGB x fps x 480 x 3 x 30 = 27Mbytes/second - The dspic can execute max 15MIPS (millions of instructions/second) Memory - One image RBG (8,8,8 bits) of 640x480 use 922kbytes - Our dspic has 8kbytes of RAM (Random Access Memory), for variables - Full image acquisition impossible e-puck microcontroller

21 Surveillance using Computer Vision - Possible workaround on e-puck (see also lecture notes week 8): downsampling - 8 fps grayscale, 4 fps color - Image of 1800 pixels (42x42, 80x20)

22 Control Architectures for Mobile Robots

23 Perception-to-Action Loop sensors Reactive (e.g., nonlinear transform, single loop) Reactive + memory (e.g. filter, state variable, multi-loops) Deliberative (e.g. planning, multi-loops) actuators Perception Computation Action Environment

24 Reactive Architectures: Proximal vs. Distal in Theory Proximal: close to sensor and actuators very simple linear/nonlinear operators on crude data high flexibility in shaping the behavior Difficult to engineer in a human-guided way; machine-learning usually perform better

25 Reactive Architectures: Proximal vs. Distal in Theory Distal architectures Farer from sensor and actuators More elaborated data processing (e.g., filtering) Less flexibility in shaping the behavior Easier to engineer in a human-guided way the basic block (handcoding); more difficult to compose the blocks in the right way (e.g., sequence, parallel, )

26 Reactive Architectures: Proximal vs. Distal in Practice A whole blend! Four classical examples of reactive control architecture for solving the same problem: obstacle avoidance. Two proximal: Braitenberg and Artificial Neural Network Two distal: Subsumption and Motor Schema, both behavior-based

27 Ex. 1: Braitenberg s Vehicles light sensors symmetry axis motors a 2b 3a 3b Work on the difference (gradient) between sensors Originally omni-directional sensors but work even better with directional sensors + excitation, - inibition; linear controller (out = signed coefficient * in) Symmetry axis along main axis of the vehicle (----) Originally: light sensors; works perfectly also with proximity sensors (3c?) See also Lab+hwk 3

28 Ex. 2: Artificial Neural Network N i f(x i ) O i output neuron N with sigmoid transfer function f(x) O = w i ij 2 f ( x) = 1 x I j 1+ e synaptic m weight input x i = f j= 1 ( x i w ij I ) j + I 0 S 1 S 2 S 3 S 4 S 5 S 8 S 7 S 6 M 1 M 2 inhibitory conn. excitatory conn.

29 Ex. 3: Rule-Based Rule 1: if (proximity sensors on the left active) then turn right Rule 2: if (proximity sensors on the right active) then turn left Rule 3: if (no proximity sensors active) then move forwards

30 Subsumption Architecture Rodney Brooks 1986, MIT Precursors: Braitenberg (1984), Walter (1953) Behavioral modules (basic behaviors) represented by Augmented Finite State machines (AFSM) Response encoding: predominantly discrete (rule based) Behavioral coordination method: competitive (priority-based arbitration via inhibition and suppression)

31 Subsumption Architecture Sense Model Plan Act Modify the World Create Maps Discover Avoid Collisions Move Around Classical paradigm (serial); emphasis on deliberative control Subsumption (parallel); emphasis on reactive control

32 Subsumption Architecture: AFSM Reset Suppressor Input lines I R Behavioral Module S Output lines Inhibitor Inhibitor: block the transmission Suppressor: block the transmission and replace the signal with the suppressing message

33 Ex. 4: Behavior-Based with Subsumption sensors Obstacle avoidance Wander 1 actuators 2 S (1 suppresses and replaces 2)

34 Evaluation of Subsumption + Support for parallelism: each behavioral layer can run independently and asynchronously (including different loop time) + HW retargetability: can compile down directly to programmable-array logic circuitry - Hardwiring mean less run time flexibility - Coordination mechanisms restrictive ( black or white ) - Limited support for modularity (upper layers design cannot be independent from lower layers).

35 Motor Schemas Ronald Arkin 1987, Georgia Tech Precursors: Arbib (1981), Khatib (1985) Parametrized behavioral libraries (schemas) Response encoding: continuous using potential field analog Behavioral coordination method: cooperative via vector summation and normalization

36 Motor Schemas sensors S 1 PS 1 MS 1 PS 2 S 2 vector Σ actuators S 3 PSS 2 PSS 1 PS 3 MS 2 PS: Perceptual Schema PSS: Perceptual Subschema MS: Motor Schema S: sensor

37 Ex. 5: Behavior-Based with Motor Schemas Detect-obstacles Avoid-obstacle sensors Detect-Goal Move-to-Goal Σ actuators

38 Visualization of Vector Field for Ex. 5 Avoid-obstacle V magnitude = 0 S d G S R for for for S = obstacle s sphere of influence R = radius of the obstacle G = gain D = distance robot to obstacle s center V direction = radially along a line between robot and obst. center, directed away from the obstacle R d < d > d S R S Obstacle Obstacle

39 Visualization of Vector Field for Ex. 5 Move-to-goal Output = vector = (r,φ) (magnitude, direction) V magnitude = fixed gain value Goal V direction = towards perceived goal

40 Visualization of Vector field for Ex. 5 Avoid-obstacle + move-to-goal Linear superposition (vectorial weighted sum) O O G

41 Ex. 5: Issue with Motor Schemas Detect-obstacles Avoid-obstacle sensors Detect-Goal Move-to-Goal Σ actuators Generate-direction Noise For avoiding to get stuck in local minima of the vector field (typical problem of vector field approaches)

42 Evaluation of Motor Schemas + Support for parallelism: motor schemas are naturally parallelizable + Run time flexibility: schemas = software agents -> reconfigurable on the flight - Robustness -> well-known problems of potential field approach -> extra introduction of noise (not clear method for exploiting that generated by sensors, ) - Slow and computationally expensive sometimes - No HW retargetability: do not provide HW compilers; do not take into account the system as a whole

43 Evaluation of both Architectures in Practice In pratice (my expertise) you tend to mix both and even more The way to combine basic behavior (collaborative and/or competitive) depends on how you developed the basic behaviors (or motor schemas), reaction time required, on-board computational capabilities, Pierre Arnaud s work (thesis and book EPFL, 2000, see references at the end); Masoud Asadpour s work (thesis EPFL, 2006, see reference at the end) went in this direction for different reasons

44 Conclusion

45 Take Home Messages Hardware design choices are at the basis of embedded systems (typical building blocks can be modules or off-the-shelf components) Good understanding of these resources is key for software-controlled resource management Perception-to-action loop is key in robotics, different complexity and level of control architectures A given behavior can be obtained with different control architectures Control architectures are characterized by more or less parameters which are often not so easy to tune

46 Additional Literature Week 10 Books Braitenberg V., Vehicles: Experiments in Synthetic Psychology, MIT Press, Siegwart R. and Nourbakhsh I. R., Introduction to Autonomous Mobile Robots, MIT Press, Arkin R. C., Behavior-Based Robotics. MIT Press, Everett, H. R., Sensors for Mobile Robots, Theory and Application, A. K. Peters, Ltd., 1995 Arnaud P., Des moutons et des robots, Presses Polytechniques et Universitaires Romandes, PhD Theses Asadpour M., Behavior Design in Microrobots: Hierarchical Reinforcement Learning under Resource Constraints, EPFL PhD Thesis Nr. 3682, Lausanne, Switzerland, November 2006.

Signals, Instruments, and Systems W7. Embedded Systems General Concepts and

Signals, Instruments, and Systems W7. Embedded Systems General Concepts and Signals, Instruments, and Systems W7 Introduction to Hardware in Embedded Systems General Concepts and the e-puck Example Outline General concepts: autonomy, perception, p action, computation, communication

More information

Behaviour-Based Control. IAR Lecture 5 Barbara Webb

Behaviour-Based Control. IAR Lecture 5 Barbara Webb Behaviour-Based Control IAR Lecture 5 Barbara Webb Traditional sense-plan-act approach suggests a vertical (serial) task decomposition Sensors Actuators perception modelling planning task execution motor

More information

Swarm Intelligence W7: Application of Machine- Learning Techniques to Automatic Control Design and Optimization

Swarm Intelligence W7: Application of Machine- Learning Techniques to Automatic Control Design and Optimization Swarm Intelligence W7: Application of Machine- Learning Techniques to Automatic Control Design and Optimization Learning to avoid obstacles Outline Problem encoding using GA and ANN Floreano and Mondada

More information

Lab 7: Introduction to Webots and Sensor Modeling

Lab 7: Introduction to Webots and Sensor Modeling Lab 7: Introduction to Webots and Sensor Modeling This laboratory requires the following software: Webots simulator C development tools (gcc, make, etc.) The laboratory duration is approximately two hours.

More information

Robot Architectures. Prof. Yanco , Fall 2011

Robot Architectures. Prof. Yanco , Fall 2011 Robot Architectures Prof. Holly Yanco 91.451 Fall 2011 Architectures, Slide 1 Three Types of Robot Architectures From Murphy 2000 Architectures, Slide 2 Hierarchical Organization is Horizontal From Murphy

More information

Robot Architectures. Prof. Holly Yanco Spring 2014

Robot Architectures. Prof. Holly Yanco Spring 2014 Robot Architectures Prof. Holly Yanco 91.450 Spring 2014 Three Types of Robot Architectures From Murphy 2000 Hierarchical Organization is Horizontal From Murphy 2000 Horizontal Behaviors: Accomplish Steps

More information

AI Application Processing Requirements

AI Application Processing Requirements AI Application Processing Requirements 1 Low Medium High Sensor analysis Activity Recognition (motion sensors) Stress Analysis or Attention Analysis Audio & sound Speech Recognition Object detection Computer

More information

Control Arbitration. Oct 12, 2005 RSS II Una-May O Reilly

Control Arbitration. Oct 12, 2005 RSS II Una-May O Reilly Control Arbitration Oct 12, 2005 RSS II Una-May O Reilly Agenda I. Subsumption Architecture as an example of a behavior-based architecture. Focus in terms of how control is arbitrated II. Arbiters and

More information

Introduction to Embedded and Real-Time Systems W12: An Introduction to Localization Techniques in Embedded Systems

Introduction to Embedded and Real-Time Systems W12: An Introduction to Localization Techniques in Embedded Systems Introduction to Embedded and Real-Time Systems W12: An Introduction to Localization Techniques in Embedded Systems Outline Motivation Terminology and classification Selected positioning systems and techniques

More information

Dipartimento di Elettronica Informazione e Bioingegneria Robotics

Dipartimento di Elettronica Informazione e Bioingegneria Robotics Dipartimento di Elettronica Informazione e Bioingegneria Robotics Behavioral robotics @ 2014 Behaviorism behave is what organisms do Behaviorism is built on this assumption, and its goal is to promote

More information

Hybrid architectures. IAR Lecture 6 Barbara Webb

Hybrid architectures. IAR Lecture 6 Barbara Webb Hybrid architectures IAR Lecture 6 Barbara Webb Behaviour Based: Conclusions But arbitrary and difficult to design emergent behaviour for a given task. Architectures do not impose strong constraints Options?

More information

COS Lecture 1 Autonomous Robot Navigation

COS Lecture 1 Autonomous Robot Navigation COS 495 - Lecture 1 Autonomous Robot Navigation Instructor: Chris Clark Semester: Fall 2011 1 Figures courtesy of Siegwart & Nourbakhsh Introduction Education B.Sc.Eng Engineering Phyics, Queen s University

More information

5a. Reactive Agents. COMP3411: Artificial Intelligence. Outline. History of Reactive Agents. Reactive Agents. History of Reactive Agents

5a. Reactive Agents. COMP3411: Artificial Intelligence. Outline. History of Reactive Agents. Reactive Agents. History of Reactive Agents COMP3411 15s1 Reactive Agents 1 COMP3411: Artificial Intelligence 5a. Reactive Agents Outline History of Reactive Agents Chemotaxis Behavior-Based Robotics COMP3411 15s1 Reactive Agents 2 Reactive Agents

More information

Robo-Erectus Jr-2013 KidSize Team Description Paper.

Robo-Erectus Jr-2013 KidSize Team Description Paper. Robo-Erectus Jr-2013 KidSize Team Description Paper. Buck Sin Ng, Carlos A. Acosta Calderon and Changjiu Zhou. Advanced Robotics and Intelligent Control Centre, Singapore Polytechnic, 500 Dover Road, 139651,

More information

APPLICATION OF FUZZY BEHAVIOR COORDINATION AND Q LEARNING IN ROBOT NAVIGATION

APPLICATION OF FUZZY BEHAVIOR COORDINATION AND Q LEARNING IN ROBOT NAVIGATION APPLICATION OF FUZZY BEHAVIOR COORDINATION AND Q LEARNING IN ROBOT NAVIGATION Handy Wicaksono 1, Prihastono 2, Khairul Anam 3, Rusdhianto Effendi 4, Indra Adji Sulistijono 5, Son Kuswadi 6, Achmad Jazidie

More information

MULTI-LAYERED HYBRID ARCHITECTURE TO SOLVE COMPLEX TASKS OF AN AUTONOMOUS MOBILE ROBOT

MULTI-LAYERED HYBRID ARCHITECTURE TO SOLVE COMPLEX TASKS OF AN AUTONOMOUS MOBILE ROBOT MULTI-LAYERED HYBRID ARCHITECTURE TO SOLVE COMPLEX TASKS OF AN AUTONOMOUS MOBILE ROBOT F. TIECHE, C. FACCHINETTI and H. HUGLI Institute of Microtechnology, University of Neuchâtel, Rue de Tivoli 28, CH-2003

More information

Lab 8: Introduction to the e-puck Robot

Lab 8: Introduction to the e-puck Robot Lab 8: Introduction to the e-puck Robot This laboratory requires the following equipment: C development tools (gcc, make, etc.) C30 programming tools for the e-puck robot The development tree which is

More information

GPS System Design and Control Modeling. Chua Shyan Jin, Ronald. Assoc. Prof Gerard Leng. Aeronautical Engineering Group, NUS

GPS System Design and Control Modeling. Chua Shyan Jin, Ronald. Assoc. Prof Gerard Leng. Aeronautical Engineering Group, NUS GPS System Design and Control Modeling Chua Shyan Jin, Ronald Assoc. Prof Gerard Leng Aeronautical Engineering Group, NUS Abstract A GPS system for the autonomous navigation and surveillance of an airship

More information

Institute of Computer Technology

Institute of Computer Technology 1 Faculty of Informatics Faculty of Mechanical and Industrial Engineering Faculty of Electrical Engineering and Information Technology 8 Institute of Fundamentals and Theory of Electrical Engineering Institute

More information

Embedded System Hardware

Embedded System Hardware 12 Embedded System Hardware Jian-Jia Chen (Slides are based on Peter Marwedel) Informatik 12 TU Dortmund Germany 2015 11 11 These slides use Microsoft clip arts. Microsoft copyright restrictions apply.

More information

1 Lab + Hwk 4: Introduction to the e-puck Robot

1 Lab + Hwk 4: Introduction to the e-puck Robot 1 Lab + Hwk 4: Introduction to the e-puck Robot This laboratory requires the following: (The development tools are already installed on the DISAL virtual machine (Ubuntu Linux) in GR B0 01): C development

More information

Gregory Bock, Brittany Dhall, Ryan Hendrickson, & Jared Lamkin Project Advisors: Dr. Jing Wang & Dr. In Soo Ahn Department of Electrical and Computer

Gregory Bock, Brittany Dhall, Ryan Hendrickson, & Jared Lamkin Project Advisors: Dr. Jing Wang & Dr. In Soo Ahn Department of Electrical and Computer Gregory Bock, Brittany Dhall, Ryan Hendrickson, & Jared Lamkin Project Advisors: Dr. Jing Wang & Dr. In Soo Ahn Department of Electrical and Computer Engineering March 1 st, 2016 Outline 2 I. Introduction

More information

A Robust Neural Robot Navigation Using a Combination of Deliberative and Reactive Control Architectures

A Robust Neural Robot Navigation Using a Combination of Deliberative and Reactive Control Architectures A Robust Neural Robot Navigation Using a Combination of Deliberative and Reactive Control Architectures D.M. Rojas Castro, A. Revel and M. Ménard * Laboratory of Informatics, Image and Interaction (L3I)

More information

Embedded Robotics. Software Development & Education Center

Embedded Robotics. Software Development & Education Center Software Development & Education Center Embedded Robotics Robotics Development with ARM µp INTRODUCTION TO ROBOTICS Types of robots Legged robots Mobile robots Autonomous robots Manual robots Robotic arm

More information

Subsumption Architecture in Swarm Robotics. Cuong Nguyen Viet 16/11/2015

Subsumption Architecture in Swarm Robotics. Cuong Nguyen Viet 16/11/2015 Subsumption Architecture in Swarm Robotics Cuong Nguyen Viet 16/11/2015 1 Table of content Motivation Subsumption Architecture Background Architecture decomposition Implementation Swarm robotics Swarm

More information

Last Time: Acting Humanly: The Full Turing Test

Last Time: Acting Humanly: The Full Turing Test Last Time: Acting Humanly: The Full Turing Test Alan Turing's 1950 article Computing Machinery and Intelligence discussed conditions for considering a machine to be intelligent Can machines think? Can

More information

AN AUTONOMOUS SIMULATION BASED SYSTEM FOR ROBOTIC SERVICES IN PARTIALLY KNOWN ENVIRONMENTS

AN AUTONOMOUS SIMULATION BASED SYSTEM FOR ROBOTIC SERVICES IN PARTIALLY KNOWN ENVIRONMENTS AN AUTONOMOUS SIMULATION BASED SYSTEM FOR ROBOTIC SERVICES IN PARTIALLY KNOWN ENVIRONMENTS Eva Cipi, PhD in Computer Engineering University of Vlora, Albania Abstract This paper is focused on presenting

More information

CORC 3303 Exploring Robotics. Why Teams?

CORC 3303 Exploring Robotics. Why Teams? Exploring Robotics Lecture F Robot Teams Topics: 1) Teamwork and Its Challenges 2) Coordination, Communication and Control 3) RoboCup Why Teams? It takes two (or more) Such as cooperative transportation:

More information

Supporting the Design of Self- Organizing Ambient Intelligent Systems Through Agent-Based Simulation

Supporting the Design of Self- Organizing Ambient Intelligent Systems Through Agent-Based Simulation Supporting the Design of Self- Organizing Ambient Intelligent Systems Through Agent-Based Simulation Stefania Bandini, Andrea Bonomi, Giuseppe Vizzari Complex Systems and Artificial Intelligence research

More information

Artificial Neural Networks. Artificial Intelligence Santa Clara, 2016

Artificial Neural Networks. Artificial Intelligence Santa Clara, 2016 Artificial Neural Networks Artificial Intelligence Santa Clara, 2016 Simulate the functioning of the brain Can simulate actual neurons: Computational neuroscience Can introduce simplified neurons: Neural

More information

10mW CMOS Retina and Classifier for Handheld, 1000Images/s Optical Character Recognition System

10mW CMOS Retina and Classifier for Handheld, 1000Images/s Optical Character Recognition System TP 12.1 10mW CMOS Retina and Classifier for Handheld, 1000Images/s Optical Character Recognition System Peter Masa, Pascal Heim, Edo Franzi, Xavier Arreguit, Friedrich Heitger, Pierre Francois Ruedi, Pascal

More information

COS Lecture 7 Autonomous Robot Navigation

COS Lecture 7 Autonomous Robot Navigation COS 495 - Lecture 7 Autonomous Robot Navigation Instructor: Chris Clark Semester: Fall 2011 1 Figures courtesy of Siegwart & Nourbakhsh Control Structure Prior Knowledge Operator Commands Localization

More information

Signals, Instruments, and Systems W10 An Introduction to Localization and Power Management in Embedded Systems

Signals, Instruments, and Systems W10 An Introduction to Localization and Power Management in Embedded Systems Signals, Instruments, and Systems W10 An Introduction to Localization and Power Management in Embedded Systems 1 Localization Outline Motivation Technique overview A fundamental technique: odometry Power

More information

Robocup Electrical Team 2006 Description Paper

Robocup Electrical Team 2006 Description Paper Robocup Electrical Team 2006 Description Paper Name: Strive2006 (Shanghai University, P.R.China) Address: Box.3#,No.149,Yanchang load,shanghai, 200072 Email: wanmic@163.com Homepage: robot.ccshu.org Abstract:

More information

and : Principles of Autonomy and Decision Making. Prof Brian Williams, Prof Emilio Frazzoli and Sertac Karaman September, 8 th, 2010

and : Principles of Autonomy and Decision Making. Prof Brian Williams, Prof Emilio Frazzoli and Sertac Karaman September, 8 th, 2010 16.410 and 16.412: Principles of Autonomy and Decision Making Prof Brian Williams, Prof Emilio Frazzoli and Sertac Karaman September, 8 th, 2010 1 1 Assignments Homework: Class signup, return at end of

More information

Multi robot Team Formation for Distributed Area Coverage. Raj Dasgupta Computer Science Department University of Nebraska, Omaha

Multi robot Team Formation for Distributed Area Coverage. Raj Dasgupta Computer Science Department University of Nebraska, Omaha Multi robot Team Formation for Distributed Area Coverage Raj Dasgupta Computer Science Department University of Nebraska, Omaha C MANTIC Lab Collaborative Multi AgeNt/Multi robot Technologies for Intelligent

More information

COSC343: Artificial Intelligence

COSC343: Artificial Intelligence COSC343: Artificial Intelligence Lecture 2: Starting from scratch: robotics and embodied AI Alistair Knott Dept. of Computer Science, University of Otago Alistair Knott (Otago) COSC343 Lecture 2 1 / 29

More information

Semi-Autonomous Parking for Enhanced Safety and Efficiency

Semi-Autonomous Parking for Enhanced Safety and Efficiency Technical Report 105 Semi-Autonomous Parking for Enhanced Safety and Efficiency Sriram Vishwanath WNCG June 2017 Data-Supported Transportation Operations & Planning Center (D-STOP) A Tier 1 USDOT University

More information

NCCT IEEE PROJECTS ADVANCED ROBOTICS SOLUTIONS. Latest Projects, in various Domains. Promise for the Best Projects

NCCT IEEE PROJECTS ADVANCED ROBOTICS SOLUTIONS. Latest Projects, in various Domains. Promise for the Best Projects NCCT Promise for the Best Projects IEEE PROJECTS in various Domains Latest Projects, 2009-2010 ADVANCED ROBOTICS SOLUTIONS EMBEDDED SYSTEM PROJECTS Microcontrollers VLSI DSP Matlab Robotics ADVANCED ROBOTICS

More information

Evolved Neurodynamics for Robot Control

Evolved Neurodynamics for Robot Control Evolved Neurodynamics for Robot Control Frank Pasemann, Martin Hülse, Keyan Zahedi Fraunhofer Institute for Autonomous Intelligent Systems (AiS) Schloss Birlinghoven, D-53754 Sankt Augustin, Germany Abstract

More information

! The architecture of the robot control system! Also maybe some aspects of its body/motors/sensors

! The architecture of the robot control system! Also maybe some aspects of its body/motors/sensors Towards the more concrete end of the Alife spectrum is robotics. Alife -- because it is the attempt to synthesise -- at some level -- 'lifelike behaviour. AI is often associated with a particular style

More information

Behaviour Patterns Evolution on Individual and Group Level. Stanislav Slušný, Roman Neruda, Petra Vidnerová. CIMMACS 07, December 14, Tenerife

Behaviour Patterns Evolution on Individual and Group Level. Stanislav Slušný, Roman Neruda, Petra Vidnerová. CIMMACS 07, December 14, Tenerife Behaviour Patterns Evolution on Individual and Group Level Stanislav Slušný, Roman Neruda, Petra Vidnerová Department of Theoretical Computer Science Institute of Computer Science Academy of Science of

More information

Deepak Kumar Computer Science Bryn Mawr College

Deepak Kumar Computer Science Bryn Mawr College Deepak Kumar Computer Science Bryn Mawr College Founded in 1885 1300 Undergraduate women and 300 Graduate students 695 miles from here New Computer Science program (since 2001) 2 Interest in CS has sharply

More information

* Intelli Robotic Wheel Chair for Specialty Operations & Physically Challenged

* Intelli Robotic Wheel Chair for Specialty Operations & Physically Challenged ADVANCED ROBOTICS SOLUTIONS * Intelli Mobile Robot for Multi Specialty Operations * Advanced Robotic Pick and Place Arm and Hand System * Automatic Color Sensing Robot using PC * AI Based Image Capturing

More information

Wireless Sensor Networks (aka, Active RFID)

Wireless Sensor Networks (aka, Active RFID) Politecnico di Milano Advanced Network Technologies Laboratory Wireless Sensor Networks (aka, Active RFID) Hardware and Hardware Abstractions Design Challenges/Guidelines/Opportunities 1 Let s start From

More information

TMS320F241 DSP Boards for Power-electronics Applications

TMS320F241 DSP Boards for Power-electronics Applications TMS320F241 DSP Boards for Power-electronics Applications Kittiphan Techakittiroj, Narong Aphiratsakun, Wuttikorn Threevithayanon and Soemoe Nyun Faculty of Engineering, Assumption University Bangkok, Thailand

More information

CSCI 445 Laurent Itti. Group Robotics. Introduction to Robotics L. Itti & M. J. Mataric 1

CSCI 445 Laurent Itti. Group Robotics. Introduction to Robotics L. Itti & M. J. Mataric 1 Introduction to Robotics CSCI 445 Laurent Itti Group Robotics Introduction to Robotics L. Itti & M. J. Mataric 1 Today s Lecture Outline Defining group behavior Why group behavior is useful Why group behavior

More information

Embedded & Robotics Training

Embedded & Robotics Training Embedded & Robotics Training WebTek Labs creates and delivers high-impact solutions, enabling our clients to achieve their business goals and enhance their competitiveness. With over 13+ years of experience,

More information

APPLICATION OF FUZZY BEHAVIOR COORDINATION AND Q LEARNING IN ROBOT NAVIGATION

APPLICATION OF FUZZY BEHAVIOR COORDINATION AND Q LEARNING IN ROBOT NAVIGATION APPLICATION OF FUZZY BEHAVIOR COORDINATION AND Q LEARNING IN ROBOT NAVIGATION Handy Wicaksono 1,2, Prihastono 1,3, Khairul Anam 4, Rusdhianto Effendi 2, Indra Adji Sulistijono 5, Son Kuswadi 5, Achmad

More information

MEMS Accelerometer sensor controlled robot with wireless video camera mounted on it

MEMS Accelerometer sensor controlled robot with wireless video camera mounted on it MEMS Accelerometer sensor controlled robot with wireless video camera mounted on it The main aim of this project is video coverage at required places with the help of digital camera and high power LED.

More information

Mathematical Problems in Networked Embedded Systems

Mathematical Problems in Networked Embedded Systems Mathematical Problems in Networked Embedded Systems Miklós Maróti Institute for Software Integrated Systems Vanderbilt University Outline Acoustic ranging TDMA in globally asynchronous locally synchronous

More information

Analog to Digital Conversion

Analog to Digital Conversion Analog to Digital Conversion 02534567998 6 4 2 3 4 5 6 ANALOG to DIGITAL CONVERSION Analog variation (Continuous, smooth variation) Digitized Variation (Discrete set of points) N2 N1 Digitization applied

More information

Low Power Microphone Acquisition and Processing for Always-on Applications Based on Microcontrollers

Low Power Microphone Acquisition and Processing for Always-on Applications Based on Microcontrollers Low Power Microphone Acquisition and Processing for Always-on Applications Based on Microcontrollers Architecture I: standalone µc Microphone Microcontroller User Output Microcontroller used to implement

More information

DTMF Controlled Robot

DTMF Controlled Robot DTMF Controlled Robot Devesh Waingankar 1, Aaditya Agarwal 2, Yash Murudkar 3, Himanshu Jain 4, Sonali Pakhmode 5 ¹Information Technology-University of Mumbai, India Abstract- Wireless-controlled robots

More information

YODA: The Young Observant Discovery Agent

YODA: The Young Observant Discovery Agent YODA: The Young Observant Discovery Agent Wei-Min Shen, Jafar Adibi, Bonghan Cho, Gal Kaminka, Jihie Kim, Behnam Salemi, Sheila Tejada Information Sciences Institute University of Southern California Email:

More information

Building Perceptive Robots with INTEL Euclid Development kit

Building Perceptive Robots with INTEL Euclid Development kit Building Perceptive Robots with INTEL Euclid Development kit Amit Moran Perceptual Computing Systems Innovation 2 2 3 A modern robot should Perform a task Find its way in our world and move safely Understand

More information

Intelligent Robotics Sensors and Actuators

Intelligent Robotics Sensors and Actuators Intelligent Robotics Sensors and Actuators Luís Paulo Reis (University of Porto) Nuno Lau (University of Aveiro) The Perception Problem Do we need perception? Complexity Uncertainty Dynamic World Detection/Correction

More information

ADVANCED EMBEDDED MONITORING SYSTEM FOR ELECTROMAGNETIC RADIATION

ADVANCED EMBEDDED MONITORING SYSTEM FOR ELECTROMAGNETIC RADIATION 98 Chapter-5 ADVANCED EMBEDDED MONITORING SYSTEM FOR ELECTROMAGNETIC RADIATION 99 CHAPTER-5 Chapter 5: ADVANCED EMBEDDED MONITORING SYSTEM FOR ELECTROMAGNETIC RADIATION S.No Name of the Sub-Title Page

More information

Field Testing of Wireless Interactive Sensor Nodes

Field Testing of Wireless Interactive Sensor Nodes Field Testing of Wireless Interactive Sensor Nodes Judith Mitrani, Jan Goethals, Steven Glaser University of California, Berkeley Introduction/Purpose This report describes the University of California

More information

CEEN Bot Lab Design A SENIOR THESIS PROPOSAL

CEEN Bot Lab Design A SENIOR THESIS PROPOSAL CEEN Bot Lab Design by Deborah Duran (EENG) Kenneth Townsend (EENG) A SENIOR THESIS PROPOSAL Presented to the Faculty of The Computer and Electronics Engineering Department In Partial Fulfillment of Requirements

More information

Proseminar Roboter und Aktivmedien. Outline of today s lecture. Acknowledgments. Educational robots achievements and challenging

Proseminar Roboter und Aktivmedien. Outline of today s lecture. Acknowledgments. Educational robots achievements and challenging Proseminar Roboter und Aktivmedien Educational robots achievements and challenging Lecturer Lecturer Houxiang Houxiang Zhang Zhang TAMS, TAMS, Department Department of of Informatics Informatics University

More information

A User Friendly Software Framework for Mobile Robot Control

A User Friendly Software Framework for Mobile Robot Control A User Friendly Software Framework for Mobile Robot Control Jesse Riddle, Ryan Hughes, Nathaniel Biefeld, and Suranga Hettiarachchi Computer Science Department, Indiana University Southeast New Albany,

More information

Emergent Behavior Robot

Emergent Behavior Robot Emergent Behavior Robot Functional Description and Complete System Block Diagram By: Andrew Elliott & Nick Hanauer Project Advisor: Joel Schipper December 6, 2009 Introduction The objective of this project

More information

Active Stereo Vision. COMP 4102A Winter 2014 Gerhard Roth Version 1

Active Stereo Vision. COMP 4102A Winter 2014 Gerhard Roth Version 1 Active Stereo Vision COMP 4102A Winter 2014 Gerhard Roth Version 1 Why active sensors? Project our own texture using light (usually laser) This simplifies correspondence problem (much easier) Pluses Can

More information

EE631 Cooperating Autonomous Mobile Robots. Lecture 1: Introduction. Prof. Yi Guo ECE Department

EE631 Cooperating Autonomous Mobile Robots. Lecture 1: Introduction. Prof. Yi Guo ECE Department EE631 Cooperating Autonomous Mobile Robots Lecture 1: Introduction Prof. Yi Guo ECE Department Plan Overview of Syllabus Introduction to Robotics Applications of Mobile Robots Ways of Operation Single

More information

VLSI System Testing. Outline

VLSI System Testing. Outline ECE 538 VLSI System Testing Krish Chakrabarty System-on-Chip (SOC) Testing ECE 538 Krish Chakrabarty 1 Outline Motivation for modular testing of SOCs Wrapper design IEEE 1500 Standard Optimization Test

More information

Advanced Robotics Introduction

Advanced Robotics Introduction Advanced Robotics Introduction Institute for Software Technology 1 Agenda Motivation Some Definitions and Thought about Autonomous Robots History Challenges Application Examples 2 Bridge the Gap Mobile

More information

RB-Ais-01. Aisoy1 Programmable Interactive Robotic Companion. Renewed and funny dialogs

RB-Ais-01. Aisoy1 Programmable Interactive Robotic Companion. Renewed and funny dialogs RB-Ais-01 Aisoy1 Programmable Interactive Robotic Companion Renewed and funny dialogs Aisoy1 II s behavior has evolved to a more proactive interaction. It has refined its sense of humor and tries to express

More information

CDS 110 L10.2: Motion Control Systems. Motion Control Systems

CDS 110 L10.2: Motion Control Systems. Motion Control Systems CDS, Lecture.2 4 Dec 2 R. M. Murray, Caltech CDS CDS L.2: Motion Control Systems Richard M. Murray 4 December 22 Announcements Final exam available at 3 pm (during break); due 5 pm, Friday, 3 Dec 2 Outline:

More information

A Modular Architecture for an Interactive Real-Time Simulation and Training Environment for Satellite On-Orbit Servicing

A Modular Architecture for an Interactive Real-Time Simulation and Training Environment for Satellite On-Orbit Servicing A Modular Architecture for an Interactive Real-Time Simulation and Training Environment for Satellite On-Orbit Servicing Robin Wolff German Aerospace Center (DLR), Germany Slide 1 Outline! Motivation!

More information

Learning Reactive Neurocontrollers using Simulated Annealing for Mobile Robots

Learning Reactive Neurocontrollers using Simulated Annealing for Mobile Robots Learning Reactive Neurocontrollers using Simulated Annealing for Mobile Robots Philippe Lucidarme, Alain Liégeois LIRMM, University Montpellier II, France, lucidarm@lirmm.fr Abstract This paper presents

More information

Advanced Robotics Introduction

Advanced Robotics Introduction Advanced Robotics Introduction Institute for Software Technology 1 Motivation Agenda Some Definitions and Thought about Autonomous Robots History Challenges Application Examples 2 http://youtu.be/rvnvnhim9kg

More information

The Cricket Indoor Location System

The Cricket Indoor Location System The Cricket Indoor Location System Hari Balakrishnan Cricket Project MIT Computer Science and Artificial Intelligence Lab http://nms.csail.mit.edu/~hari http://cricket.csail.mit.edu Joint work with Bodhi

More information

Electronics Design Laboratory Lecture #11. ECEN 2270 Electronics Design Laboratory

Electronics Design Laboratory Lecture #11. ECEN 2270 Electronics Design Laboratory Electronics Design Laboratory Lecture # ECEN 7 Electronics Design Laboratory Project Must rely on fully functional Lab circuits, Lab circuit is optional Can re do wireless or replace it with a different

More information

A Comparison of Particle Swarm Optimization and Gradient Descent in Training Wavelet Neural Network to Predict DGPS Corrections

A Comparison of Particle Swarm Optimization and Gradient Descent in Training Wavelet Neural Network to Predict DGPS Corrections Proceedings of the World Congress on Engineering and Computer Science 00 Vol I WCECS 00, October 0-, 00, San Francisco, USA A Comparison of Particle Swarm Optimization and Gradient Descent in Training

More information

Multi-Robot Cooperative System For Object Detection

Multi-Robot Cooperative System For Object Detection Multi-Robot Cooperative System For Object Detection Duaa Abdel-Fattah Mehiar AL-Khawarizmi international collage Duaa.mehiar@kawarizmi.com Abstract- The present study proposes a multi-agent system based

More information

The Mote Revolution: Low Power Wireless Sensor Network Devices

The Mote Revolution: Low Power Wireless Sensor Network Devices The Mote Revolution: Low Power Wireless Sensor Network Devices University of California, Berkeley Joseph Polastre Robert Szewczyk Cory Sharp David Culler The Mote Revolution: Low Power Wireless Sensor

More information

Team Description Paper: HuroEvolution Humanoid Robot for Robocup 2010 Humanoid League

Team Description Paper: HuroEvolution Humanoid Robot for Robocup 2010 Humanoid League Team Description Paper: HuroEvolution Humanoid Robot for Robocup 2010 Humanoid League Chung-Hsien Kuo 1, Hung-Chyun Chou 1, Jui-Chou Chung 1, Po-Chung Chia 2, Shou-Wei Chi 1, Yu-De Lien 1 1 Department

More information

Embodiment from Engineer s Point of View

Embodiment from Engineer s Point of View New Trends in CS Embodiment from Engineer s Point of View Andrej Lúčny Department of Applied Informatics FMFI UK Bratislava lucny@fmph.uniba.sk www.microstep-mis.com/~andy 1 Cognitivism Cognitivism is

More information

Pathbreaking robots for pathbreaking research. Introducing. KINOVA Gen3 Ultra lightweight robot. kinovarobotics.com 1

Pathbreaking robots for pathbreaking research. Introducing. KINOVA Gen3 Ultra lightweight robot. kinovarobotics.com 1 Pathbreaking robots for pathbreaking research Introducing Gen3 Ultra lightweight robot kinovarobotics.com 1 Opening a world of possibilities in research Since the launch of Kinova s first assistive robotic

More information

PRESENTED BY HUMANOID IIT KANPUR

PRESENTED BY HUMANOID IIT KANPUR SENSORS & ACTUATORS Robotics Club (Science and Technology Council, IITK) PRESENTED BY HUMANOID IIT KANPUR October 11th, 2017 WHAT ARE WE GOING TO LEARN!! COMPARISON between Transducers Sensors And Actuators.

More information

Collective Robotics. Marcin Pilat

Collective Robotics. Marcin Pilat Collective Robotics Marcin Pilat Introduction Painting a room Complex behaviors: Perceptions, deductions, motivations, choices Robotics: Past: single robot Future: multiple, simple robots working in teams

More information

Intelligent Driving Agents

Intelligent Driving Agents Intelligent Driving Agents The agent approach to tactical driving in autonomous vehicles and traffic simulation Presentation Master s thesis Patrick Ehlert January 29 th, 2001 Imagine. Sensors Actuators

More information

UNISEC Europe CSID An Advanced Efficient Electrical Interface Standard for CubeSats

UNISEC Europe CSID An Advanced Efficient Electrical Interface Standard for CubeSats UNISEC Europe CSID An Advanced Efficient Electrical Interface Standard for CubeSats 4 th IAA Conference on University Satellite Missions and CubeSat Workshop Oliver Ruf 1 Motivation for a Standardization

More information

Online Monitoring for Automotive Sub-systems Using

Online Monitoring for Automotive Sub-systems Using Online Monitoring for Automotive Sub-systems Using 1149.4 C. Jeffrey, A. Lechner & A. Richardson Centre for Microsystems Engineering, Lancaster University, Lancaster, LA1 4YR, UK 1 Abstract This paper

More information

COMPACT FUZZY Q LEARNING FOR AUTONOMOUS MOBILE ROBOT NAVIGATION

COMPACT FUZZY Q LEARNING FOR AUTONOMOUS MOBILE ROBOT NAVIGATION COMPACT FUZZY Q LEARNING FOR AUTONOMOUS MOBILE ROBOT NAVIGATION Handy Wicaksono, Khairul Anam 2, Prihastono 3, Indra Adjie Sulistijono 4, Son Kuswadi 5 Department of Electrical Engineering, Petra Christian

More information

Part Number SuperPix TM image sensor is one of SuperPix TM 2 Mega Digital image sensor series products. These series sensors have the same maximum ima

Part Number SuperPix TM image sensor is one of SuperPix TM 2 Mega Digital image sensor series products. These series sensors have the same maximum ima Specification Version Commercial 1.7 2012.03.26 SuperPix Micro Technology Co., Ltd Part Number SuperPix TM image sensor is one of SuperPix TM 2 Mega Digital image sensor series products. These series sensors

More information

A Foveated Visual Tracking Chip

A Foveated Visual Tracking Chip TP 2.1: A Foveated Visual Tracking Chip Ralph Etienne-Cummings¹, ², Jan Van der Spiegel¹, ³, Paul Mueller¹, Mao-zhu Zhang¹ ¹Corticon Inc., Philadelphia, PA ²Department of Electrical Engineering, Southern

More information

In this lecture, we will look at how different electronic modules communicate with each other. We will consider the following topics:

In this lecture, we will look at how different electronic modules communicate with each other. We will consider the following topics: In this lecture, we will look at how different electronic modules communicate with each other. We will consider the following topics: Links between Digital and Analogue Serial vs Parallel links Flow control

More information

Sensor Network Platforms and Tools

Sensor Network Platforms and Tools Sensor Network Platforms and Tools 1 AN OVERVIEW OF SENSOR NODES AND THEIR COMPONENTS References 2 Sensor Node Architecture 3 1 Main components of a sensor node 4 A controller Communication device(s) Sensor(s)/actuator(s)

More information

Systolic modular VLSI Architecture for Multi-Model Neural Network Implementation +

Systolic modular VLSI Architecture for Multi-Model Neural Network Implementation + Systolic modular VLSI Architecture for Multi-Model Neural Network Implementation + J.M. Moreno *, J. Madrenas, J. Cabestany Departament d'enginyeria Electrònica Universitat Politècnica de Catalunya Barcelona,

More information

Multi-Robot Coordination. Chapter 11

Multi-Robot Coordination. Chapter 11 Multi-Robot Coordination Chapter 11 Objectives To understand some of the problems being studied with multiple robots To understand the challenges involved with coordinating robots To investigate a simple

More information

Hardware Platforms and Sensors

Hardware Platforms and Sensors Hardware Platforms and Sensors Tom Spink Including material adapted from Bjoern Franke and Michael O Boyle Hardware Platform A hardware platform describes the physical components that go to make up a particular

More information

High-speed and High-precision Motion Controller

High-speed and High-precision Motion Controller High-speed and High-precision Motion Controller - KSMC - Definition High-Speed Axes move fast Execute the controller ( position/velocity loop, current loop ) at high frequency High-Precision High positioning

More information

Wireless Vibration Exploration

Wireless Vibration Exploration Wireless Vibration Exploration By Jean Louis Rouvet M.C.E. Commercialise Mécaptélec ABSTRACT : For in-situ experiment, what kind of wireless transmission may be used successfully to transmit wireless wise

More information

BLUE BRAIN - The name of the world s first virtual brain. That means a machine that can function as human brain.

BLUE BRAIN - The name of the world s first virtual brain. That means a machine that can function as human brain. CONTENTS 1~ INTRODUCTION 2~ WHAT IS BLUE BRAIN 3~ WHAT IS VIRTUAL BRAIN 4~ FUNCTION OF NATURAL BRAIN 5~ BRAIN SIMULATION 6~ CURRENT RESEARCH WORK 7~ ADVANTAGES 8~ DISADVANTAGE 9~ HARDWARE AND SOFTWARE

More information

MEASUREMENT of physical conditions in buildings

MEASUREMENT of physical conditions in buildings INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2012, VOL. 58, NO. 2, PP. 117 122 Manuscript received August 29, 2011; revised May, 2012. DOI: 10.2478/v10177-012-0016-4 Digital Vibration Sensor Constructed

More information

A Lego-Based Soccer-Playing Robot Competition For Teaching Design

A Lego-Based Soccer-Playing Robot Competition For Teaching Design Session 2620 A Lego-Based Soccer-Playing Robot Competition For Teaching Design Ronald A. Lessard Norwich University Abstract Course Objectives in the ME382 Instrumentation Laboratory at Norwich University

More information

Radio Frequency Integrated Circuits Prof. Cameron Charles

Radio Frequency Integrated Circuits Prof. Cameron Charles Radio Frequency Integrated Circuits Prof. Cameron Charles Overview Introduction to RFICs Utah RFIC Lab Research Projects Low-power radios for Wireless Sensing Ultra-Wideband radios for Bio-telemetry Cameron

More information

Proposers Day Workshop

Proposers Day Workshop Proposers Day Workshop Monday, January 23, 2017 @srcjump, #JUMPpdw Cognitive Computing Vertical Research Center Mandy Pant Academic Research Director Intel Corporation Center Motivation Today s deep learning

More information