Multi robot Team Formation for Distributed Area Coverage. Raj Dasgupta Computer Science Department University of Nebraska, Omaha

Size: px
Start display at page:

Download "Multi robot Team Formation for Distributed Area Coverage. Raj Dasgupta Computer Science Department University of Nebraska, Omaha"

Transcription

1 Multi robot Team Formation for Distributed Area Coverage Raj Dasgupta Computer Science Department University of Nebraska, Omaha

2 C MANTIC Lab Collaborative Multi AgeNt/Multi robot Technologies for Intelligent Coordination Lab Main research areas: Autonomous, adaptive, multi agent/multi robot systems Biology inspired emergent computing and swarming Game theory and computational economics

3 Projects COMSTAR Multi UAV system for ATR (Automatic Target Recognition) with an STTR partner Sponsor: U.S. DoD NavAir Period: MASSES Multi robot system for lunar and Martian surface exploration and mapping Sponsor: NASA Nebraska EPSCoR Period: , COMRADES Multi robot system for automated landmine detection (Focus: multirobot coordination) Sponsor: Office of Naval Research Period: August

4 COMSTAR Project Objective: Locate and track mobile and stationary targets within a given area of interest (AOI) using mobile mini robots, (possibly aerially) Target locations not known a priori Use image identification algorithms on board the robots for automatic target recognition(atr) Each mini robot has camera, GPS, distance sensor, wireless radio comm., micro processor Constraints: 1) Robots should not be remote controlled from ground control station by humans, 2) AOI is significantly larger than robot comm range 3) Limited memory, comms, computation capability on board single robot

5 Our Proposed Solution Multi robot coordination for cooperative target identification Using mini robots Java Demo

6 Different Phases in Coordination Process Deployment Search and Discovery Multi robot Task Allocation Mobile Target Tracking Task Execution

7 Different Phases in Coordination Process Deployment Search and Discovery: Multi robot Coverage Multi robot Task Allocation Mobile Target Tracking Task Execution

8 Robot Simulator Webots Accurate models for environments, robots Physics engine Simulations in real or accelerated time Compatible with robot hardware like e puck, Khepera, etc.

9 The Challenges Mini robots are small $700 Good: They are not very expensive. Cost of fielding a team of ~50 mini robots is the same as the cost of one large robot Robust: System can continue to work even when a few robots are lost Bad: Very limited capabilities (little memory, slower processor, noisy sensors) Lesson: Keep things(computation) simple for each robot Come up with clever ways to make the team perform complex tasks $35,000 $70,000

10 Mini Robot: E puck Memory: 128KB RAM, 8 KB flash CPU capable of 14 MIPS Sensors: Forward looking IR distance sensors Emitter/receiver pair (bluetooth enabled) for communication over limited range Camera: Color VGA, 640 X 480 resolution GPS*: gives location in 2 d coordinates and heading in radians

11 Multi robot Coverage: Model R: set of robots Each robot has a coverage tool attached to it a rt : action (movement) by robot r during time step t f: a rt X l rt c rt, unit coverage function transforms action a rt performed at location l t r to a region c t r Environment size: D 2 O

12 Definition: Multi robot Distributed Area Coverage Problem Difficult to solve with limited capability mini robots

13 Definition: Approximate Multi robot Distributed Area Coverage Problem

14 Our First Solution Robots move and plan individually But each robot coordinates its action with other robots to achieve the maximum coverage and minimum overlap criteria

15 Existing Approaches Vector Force Field Approach (Parker, Sukhatme) Pair of robots exert repulsive forces on each other when they come within a certain distance of each other Can be used to address maximum coverage criterion, locally Coverage with ant robots (Wagner, Koenig) Ant robots deposit pheromone (node count) at each location or cell on a grid environment Higher node count (pheromone)means that the cell was visited many times Can be used to address minimum overlap criterion, locally

16 Some Issues Ant robot node counting techniques used a central location to store the state space (pheromone information) But we want to make our system fully distributed: Partial (node count) pheromone maps are stored locally Tradeoff: Robots have to move closer to each other so that exchange their coverage information with each other to achieve the minimum overlap criterion But then they would not be able to disperse away from each other to achieve the maximum coverage criterion

17 Our Approach Coverage radius Coverage Map Communication Radius Robot maintains two maps Communication map contains locations of all other robots within communication radius of r Coverage map contains the fused node count from all robots for all locations within coverage radius of r Communication Map

18 Coverage Map Extends over all locations within coverage radius from current location of robot The region stored in the map of a robot changes as the robot moves (have to discard old, possibly useful information) Merge maps from multiple robots that are within coverage radius Record information as a node count Node counting Binary: each location stored as a bit, fused with OR Incremental: each location stored as an integer, fused with ADD Transient: each location stored as a pheromone value with timestamps (real, int), fused with ADD + DECAY Consider gradient of pheromone (trails)

19 Scenario 1 of 3 r Robot r has no other robots within its communication range Action: Do a random walk

20 Scenario 2 of 3 r Robot r has some robots within its communication range, but no other robots within its coverage radius Action (Disperse) vector force field approach For each action available to r except its last action Calculate the sum of the Manhattan distances from all other robots in comm. map Select the action that maximizes this sum of Manhattan distances

21 Scenario 3 of 3 r Robot r has some robots within its communication range and some robots within its coverage radius Action For each action available to r except its last action Calculate the # robots within coverage map with which» Distance decreases» Distance increases Information gain (# robots that get into coverage radius by this action) Select the action that maximizes the weighted sum of the above three parameters Video demo with 6 e puck robots

22 Coverage: Various Strategies

23 Redundancy: Varying Number of Robots

24 Redundancy: Varying Coverage Map Radius

25 Coverage with Localization Error

26 Redundancy with Localization Error

27 Coverage: Various Robot Failure Probabilities

28 Comparing with Fiducial robot dispersion (right) L. Ludwig and M. Gini, Robotic Swarm Dispersion Using Wireless Intensity Signals, Proc. 8th Intl. Symposium on Distributed Autonomous Robotic Systems(DARS 06), Minneapolis, MN, 2006.

29 Publications on this topic K, Cheng and P. Dasgupta, "Dynamic Area Coverage using Faulty Multiagent Swarms," Proc. IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT 2007), Fremont, CA, 2007, pp P. Dasgupta and K. Cheng, Distributed Coverage of Unknown Environments using Multi robot Swarms with Memory and Communication Constraints, UNO Technical Report no. cst , 2009.

30 Problem: Moving Across Small Spaces

31 Robot Team Formation for Area Coverage Reynolds flocking model separation, cohesion, alignment Provides a model for controlling groups of robots What we also want to do Dynamic team formation adapt shape and size of team with environment (e.g., obstacles, narrow passages) Robots should be able to change teams depending on operational constraints

32 Agent Theory Models how humans behave Rational behavior I will do something only if I gain something from doing it My gain is called my utility Multi agent systems mainly deals with interaction and coordination issues between agents, formal framework given by game theory Can be used to answer interesting questions for multirobot team formation: When should one robot leave a team? Should it move alone or join another team? Which team should it pick?

33 Two Layered Approach Utility Model Utility Model Controller Utility Model What do we gain from this? More human like (rational) behavior from robots Multiple behavior levels, helps abstraction More autonomy Controller Controller Robot 1 Robot 2

34 Utility Model for Multi Robot, Teambased Distributed Area Coverage Robot redundancy (d r ) how much redundant coverage is a robot doing in its team? 0 not redundant 1 redundant Team redundancy (D t ) how much redundant coverage is a team doing? Ratio between number of robots doing redundant coverage and total number of robots in the team Team utility: U t = 1 D t

35 Utility Model (contd.) Robot utility u r,t = 2: best possible value, happens when no robot in a team is doing redundant coverage, and team size is < T max 1 < u r,t < 2: Admissible utility, happens when some robots (but not robot r) are doing redundant coverage in the team containing r 0 < u r,t < 1: Inadmissible utility, happens when robot r is doing redundant coverage in its team

36 Robot Controller for Coverage with Team Formation Maximum utility in formation Move in formation Obstacle Another team within comm. range Move alone Failure Join another team Success Not maximum utility in formation Failure Success Try new formation in same team Move in changed direction to avoid obstacle Obstacle avoided Demos 1,2 of flocking with utility based model

37 Robot Controller for Coverage with Team Formation Braitenberg controller Maximum utility in formation Move in formation Obstacle Controller for leader referenced flocking Another team within comm. range Move alone Failure Join another team Success Not maximum utility in formation Failure Success Try new formation in same team Move in changed direction to avoid obstacle Obstacle avoided Demos 1,2 of flocking with utility based model

38 Publications on this topic K. Cheng and P. Dasgupta, "Coalition game based distributed coverage of unknown environments using robot swarms," International Conference on Autonomous Agents and Multi Agent Systems (AAMAS'08), Estoril, Portugal, 2008, pp P. Dasgupta, K. Cheng, and L. Fan, Flocking based Distributed Terrain Coverage with Mobile Mini robots, Proc. Swarm Intelligence Symposium, Nashville, TN, 2009, pp

39 Towards a richer framework: coalition formation in robot teams Can we use coalition formation (branch of game theory that deals with how human beings form teams) to answer more questions More structured team formation techniques Stability of team formation Utility (theory) lies at the core of it I will form a team with A if I can gain more by that than forming a team with B, unless B gives me some more incentive Concepts like Shapley value, least core, etc. are computationally very expensive to compute (approximations exist) Not distributed Recent ( ) richer computational representations of coalition formation (MC Net, MACG, etc.) are centralized, coalition formation under uncertainty (2007) A new representation for coalition games in distributed form?

40 Other Research Areas Distributed Multi robot Coverage Ke Cheng (Ph.D.), Yi Wang (MS) Multi Robot Task Allocation Taylor Whipple (BS), Randal Olson (MS) Mobile object tracking/pursuit Evasion Games Li Fan (MS) Game Theoretic Information Aggregation Janyl Jumadinova (Ph.D.)

41 Thank You QUESTIONS

Distributed Area Coverage Using Robot Flocks

Distributed Area Coverage Using Robot Flocks Distributed Area Coverage Using Robot Flocks Ke Cheng, Prithviraj Dasgupta and Yi Wang Computer Science Department University of Nebraska, Omaha, NE, USA E-mail: {kcheng,ywang,pdasgupta}@mail.unomaha.edu

More information

Sector-Search with Rendezvous: Overcoming Communication Limitations in Multirobot Systems

Sector-Search with Rendezvous: Overcoming Communication Limitations in Multirobot Systems Paper ID #7127 Sector-Search with Rendezvous: Overcoming Communication Limitations in Multirobot Systems Dr. Briana Lowe Wellman, University of the District of Columbia Dr. Briana Lowe Wellman is an assistant

More information

Decentralized Approaches for Robot Fleet Control

Decentralized Approaches for Robot Fleet Control Workshop on AERIAL ROBOTICS - Onera Toulouse 2-3 October 2014 Decentralized Approaches for Robot Fleet Control INSA Lyon CITI-Inria Lab. - Dynamid team Olivier.Simonin@insa-lyon.fr Outline I. Decentralized

More information

CS594, Section 30682:

CS594, Section 30682: CS594, Section 30682: Distributed Intelligence in Autonomous Robotics Spring 2003 Tuesday/Thursday 11:10 12:25 http://www.cs.utk.edu/~parker/courses/cs594-spring03 Instructor: Dr. Lynne E. Parker ½ TA:

More information

CSCI 445 Laurent Itti. Group Robotics. Introduction to Robotics L. Itti & M. J. Mataric 1

CSCI 445 Laurent Itti. Group Robotics. Introduction to Robotics L. Itti & M. J. Mataric 1 Introduction to Robotics CSCI 445 Laurent Itti Group Robotics Introduction to Robotics L. Itti & M. J. Mataric 1 Today s Lecture Outline Defining group behavior Why group behavior is useful Why group behavior

More information

CS 599: Distributed Intelligence in Robotics

CS 599: Distributed Intelligence in Robotics CS 599: Distributed Intelligence in Robotics Winter 2016 www.cpp.edu/~ftang/courses/cs599-di/ Dr. Daisy Tang All lecture notes are adapted from Dr. Lynne Parker s lecture notes on Distributed Intelligence

More information

Multi-Agent Planning

Multi-Agent Planning 25 PRICAI 2000 Workshop on Teams with Adjustable Autonomy PRICAI 2000 Workshop on Teams with Adjustable Autonomy Position Paper Designing an architecture for adjustably autonomous robot teams David Kortenkamp

More information

In cooperative robotics, the group of robots have the same goals, and thus it is

In cooperative robotics, the group of robots have the same goals, and thus it is Brian Bairstow 16.412 Problem Set #1 Part A: Cooperative Robotics In cooperative robotics, the group of robots have the same goals, and thus it is most efficient if they work together to achieve those

More information

1) Complexity, Emergence & CA (sb) 2) Fractals and L-systems (sb) 3) Multi-agent systems (vg) 4) Swarm intelligence (vg) 5) Artificial evolution (vg)

1) Complexity, Emergence & CA (sb) 2) Fractals and L-systems (sb) 3) Multi-agent systems (vg) 4) Swarm intelligence (vg) 5) Artificial evolution (vg) 1) Complexity, Emergence & CA (sb) 2) Fractals and L-systems (sb) 3) Multi-agent systems (vg) 4) Swarm intelligence (vg) 5) Artificial evolution (vg) 6) Virtual Ecosystems & Perspectives (sb) Inspired

More information

Dispersion and exploration algorithms for robots in unknown environments

Dispersion and exploration algorithms for robots in unknown environments Dispersion and exploration algorithms for robots in unknown environments Steven Damer a, Luke Ludwig a, Monica Anderson LaPoint a, Maria Gini a, Nikolaos Papanikolopoulos a, and John Budenske b a Dept

More information

A Solution to Cooperative Area Coverage Surveillance for a Swarm of MAVs

A Solution to Cooperative Area Coverage Surveillance for a Swarm of MAVs International Journal of Advanced Robotic Systems ARTICLE A Solution to Cooperative Area Coverage Surveillance for a Swarm of MAVs Regular Paper Wang Zheng-jie,* and Li Wei 2 School of Mechatronic Engineering,

More information

Gregory Bock, Brittany Dhall, Ryan Hendrickson, & Jared Lamkin Project Advisors: Dr. Jing Wang & Dr. In Soo Ahn Department of Electrical and Computer

Gregory Bock, Brittany Dhall, Ryan Hendrickson, & Jared Lamkin Project Advisors: Dr. Jing Wang & Dr. In Soo Ahn Department of Electrical and Computer Gregory Bock, Brittany Dhall, Ryan Hendrickson, & Jared Lamkin Project Advisors: Dr. Jing Wang & Dr. In Soo Ahn Department of Electrical and Computer Engineering March 1 st, 2016 Outline 2 I. Introduction

More information

Dispersing robots in an unknown environment

Dispersing robots in an unknown environment Dispersing robots in an unknown environment Ryan Morlok and Maria Gini Department of Computer Science and Engineering, University of Minnesota, 200 Union St. S.E., Minneapolis, MN 55455-0159 {morlok,gini}@cs.umn.edu

More information

Biologically-inspired Autonomic Wireless Sensor Networks. Haoliang Wang 12/07/2015

Biologically-inspired Autonomic Wireless Sensor Networks. Haoliang Wang 12/07/2015 Biologically-inspired Autonomic Wireless Sensor Networks Haoliang Wang 12/07/2015 Wireless Sensor Networks A collection of tiny and relatively cheap sensor nodes Low cost for large scale deployment Limited

More information

2006 CCRTS THE STATE OF THE ART AND THE STATE OF THE PRACTICE. Network on Target: Remotely Configured Adaptive Tactical Networks. C2 Experimentation

2006 CCRTS THE STATE OF THE ART AND THE STATE OF THE PRACTICE. Network on Target: Remotely Configured Adaptive Tactical Networks. C2 Experimentation 2006 CCRTS THE STATE OF THE ART AND THE STATE OF THE PRACTICE Network on Target: Remotely Configured Adaptive Tactical Networks C2 Experimentation Alex Bordetsky Eugene Bourakov Center for Network Innovation

More information

Flocking-Based Multi-Robot Exploration

Flocking-Based Multi-Robot Exploration Flocking-Based Multi-Robot Exploration Noury Bouraqadi and Arnaud Doniec Abstract Dépt. Informatique & Automatique Ecole des Mines de Douai France {bouraqadi,doniec}@ensm-douai.fr Exploration of an unknown

More information

Research Statement MAXIM LIKHACHEV

Research Statement MAXIM LIKHACHEV Research Statement MAXIM LIKHACHEV My long-term research goal is to develop a methodology for robust real-time decision-making in autonomous systems. To achieve this goal, my students and I research novel

More information

NAVIGATION OF MOBILE ROBOT USING THE PSO PARTICLE SWARM OPTIMIZATION

NAVIGATION OF MOBILE ROBOT USING THE PSO PARTICLE SWARM OPTIMIZATION Journal of Academic and Applied Studies (JAAS) Vol. 2(1) Jan 2012, pp. 32-38 Available online @ www.academians.org ISSN1925-931X NAVIGATION OF MOBILE ROBOT USING THE PSO PARTICLE SWARM OPTIMIZATION Sedigheh

More information

Surveillance strategies for autonomous mobile robots. Nicola Basilico Department of Computer Science University of Milan

Surveillance strategies for autonomous mobile robots. Nicola Basilico Department of Computer Science University of Milan Surveillance strategies for autonomous mobile robots Nicola Basilico Department of Computer Science University of Milan Intelligence, surveillance, and reconnaissance (ISR) with autonomous UAVs ISR defines

More information

Self-deployment algorithms for mobile sensors networks. Technical Report

Self-deployment algorithms for mobile sensors networks. Technical Report Self-deployment algorithms for mobile sensors networks Technical Report Department of Computer Science and Engineering University of Minnesota 4-92 EECS Building 2 Union Street SE Minneapolis, MN 55455-59

More information

Cognitive robots and emotional intelligence Cloud robotics Ethical, legal and social issues of robotic Construction robots Human activities in many

Cognitive robots and emotional intelligence Cloud robotics Ethical, legal and social issues of robotic Construction robots Human activities in many Preface The jubilee 25th International Conference on Robotics in Alpe-Adria-Danube Region, RAAD 2016 was held in the conference centre of the Best Western Hotel M, Belgrade, Serbia, from 30 June to 2 July

More information

Experiments in the Coordination of Large Groups of Robots

Experiments in the Coordination of Large Groups of Robots Experiments in the Coordination of Large Groups of Robots Leandro Soriano Marcolino and Luiz Chaimowicz VeRLab - Vision and Robotics Laboratory Computer Science Department - UFMG - Brazil {soriano, chaimo}@dcc.ufmg.br

More information

Collective Robotics. Marcin Pilat

Collective Robotics. Marcin Pilat Collective Robotics Marcin Pilat Introduction Painting a room Complex behaviors: Perceptions, deductions, motivations, choices Robotics: Past: single robot Future: multiple, simple robots working in teams

More information

Towards an Engineering Science of Robot Foraging

Towards an Engineering Science of Robot Foraging Towards an Engineering Science of Robot Foraging Alan FT Winfield Abstract Foraging is a benchmark problem in robotics - especially for distributed autonomous robotic systems. The systematic study of robot

More information

An Agent-based Heterogeneous UAV Simulator Design

An Agent-based Heterogeneous UAV Simulator Design An Agent-based Heterogeneous UAV Simulator Design MARTIN LUNDELL 1, JINGPENG TANG 1, THADDEUS HOGAN 1, KENDALL NYGARD 2 1 Math, Science and Technology University of Minnesota Crookston Crookston, MN56716

More information

OFFensive Swarm-Enabled Tactics (OFFSET)

OFFensive Swarm-Enabled Tactics (OFFSET) OFFensive Swarm-Enabled Tactics (OFFSET) Dr. Timothy H. Chung, Program Manager Tactical Technology Office Briefing Prepared for OFFSET Proposers Day 1 Why are Swarms Hard: Complexity of Swarms Number Agent

More information

IQ-ASyMTRe: Synthesizing Coalition Formation and Execution for Tightly-Coupled Multirobot Tasks

IQ-ASyMTRe: Synthesizing Coalition Formation and Execution for Tightly-Coupled Multirobot Tasks Proc. of IEEE International Conference on Intelligent Robots and Systems, Taipai, Taiwan, 2010. IQ-ASyMTRe: Synthesizing Coalition Formation and Execution for Tightly-Coupled Multirobot Tasks Yu Zhang

More information

MASON. A Java Multi-agent Simulation Library. Sean Luke Gabriel Catalin Balan Liviu Panait Claudio Cioffi-Revilla Sean Paus

MASON. A Java Multi-agent Simulation Library. Sean Luke Gabriel Catalin Balan Liviu Panait Claudio Cioffi-Revilla Sean Paus MASON A Java Multi-agent Simulation Library Sean Luke Gabriel Catalin Balan Liviu Panait Claudio Cioffi-Revilla Sean Paus George Mason University s Center for Social Complexity and Department of Computer

More information

Autonomous Self-deployment of Wireless Access Networks in an Airport Environment *

Autonomous Self-deployment of Wireless Access Networks in an Airport Environment * Autonomous Self-deployment of Wireless Access Networks in an Airport Environment * Holger Claussen Bell Labs Research, Swindon, UK. * This work was part-supported by the EU Commission through the IST FP5

More information

Multi-robot Dynamic Coverage of a Planar Bounded Environment

Multi-robot Dynamic Coverage of a Planar Bounded Environment Multi-robot Dynamic Coverage of a Planar Bounded Environment Maxim A. Batalin Gaurav S. Sukhatme Robotic Embedded Systems Laboratory, Robotics Research Laboratory, Computer Science Department University

More information

Traffic Control for a Swarm of Robots: Avoiding Target Congestion

Traffic Control for a Swarm of Robots: Avoiding Target Congestion Traffic Control for a Swarm of Robots: Avoiding Target Congestion Leandro Soriano Marcolino and Luiz Chaimowicz Abstract One of the main problems in the navigation of robotic swarms is when several robots

More information

Prey Modeling in Predator/Prey Interaction: Risk Avoidance, Group Foraging, and Communication

Prey Modeling in Predator/Prey Interaction: Risk Avoidance, Group Foraging, and Communication Prey Modeling in Predator/Prey Interaction: Risk Avoidance, Group Foraging, and Communication June 24, 2011, Santa Barbara Control Workshop: Decision, Dynamics and Control in Multi-Agent Systems Karl Hedrick

More information

Swarm Intelligence W7: Application of Machine- Learning Techniques to Automatic Control Design and Optimization

Swarm Intelligence W7: Application of Machine- Learning Techniques to Automatic Control Design and Optimization Swarm Intelligence W7: Application of Machine- Learning Techniques to Automatic Control Design and Optimization Learning to avoid obstacles Outline Problem encoding using GA and ANN Floreano and Mondada

More information

Biological Inspirations for Distributed Robotics. Dr. Daisy Tang

Biological Inspirations for Distributed Robotics. Dr. Daisy Tang Biological Inspirations for Distributed Robotics Dr. Daisy Tang Outline Biological inspirations Understand two types of biological parallels Understand key ideas for distributed robotics obtained from

More information

AIS and Swarm Intelligence : Immune-inspired Swarm Robotics

AIS and Swarm Intelligence : Immune-inspired Swarm Robotics AIS and Swarm Intelligence : Immune-inspired Swarm Robotics Jon Timmis Department of Electronics Department of Computer Science York Center for Complex Systems Analysis jtimmis@cs.york.ac.uk http://www-users.cs.york.ac.uk/jtimmis

More information

New task allocation methods for robotic swarms

New task allocation methods for robotic swarms New task allocation methods for robotic swarms F. Ducatelle, A. Förster, G.A. Di Caro and L.M. Gambardella Abstract We study a situation where a swarm of robots is deployed to solve multiple concurrent

More information

Trade-offs Between Mobility and Density for Coverage in Wireless Sensor Networks. Wei Wang, Vikram Srinivasan, Kee-Chaing Chua

Trade-offs Between Mobility and Density for Coverage in Wireless Sensor Networks. Wei Wang, Vikram Srinivasan, Kee-Chaing Chua Trade-offs Between Mobility and Density for Coverage in Wireless Sensor Networks Wei Wang, Vikram Srinivasan, Kee-Chaing Chua Coverage in sensor networks Sensors are often randomly scattered in the field

More information

Regional target surveillance with cooperative robots using APFs

Regional target surveillance with cooperative robots using APFs Rochester Institute of Technology RIT Scholar Works Theses Thesis/Dissertation Collections 4-1-2010 Regional target surveillance with cooperative robots using APFs Jessica LaRocque Follow this and additional

More information

Ant Robotics. Terrain Coverage. Motivation. Overview

Ant Robotics. Terrain Coverage. Motivation. Overview Overview Ant Robotics Terrain Coverage Sven Koenig College of Computing Gegia Institute of Technology Overview: One-Time Repeated Coverage of Known Unknown Terrain with Single Ant Robots Teams of Ant Robots

More information

Robotic Swarm Dispersion Using Wireless Intensity Signals

Robotic Swarm Dispersion Using Wireless Intensity Signals Robotic Swarm Dispersion Using Wireless Intensity Signals Luke Ludwig 1,2 and Maria Gini 1 1 Dept of Computer Science and Engineering, University of Minnesota (ludwig,gini)@cs.umn.edu 2 BAESystems Fridley,

More information

Swarm Robotics. Communication and Cooperation over the Internet. Will Ferenc, Hannah Kastein, Lauren Lieu, Ryan Wilson Mentor: Jérôme Gilles

Swarm Robotics. Communication and Cooperation over the Internet. Will Ferenc, Hannah Kastein, Lauren Lieu, Ryan Wilson Mentor: Jérôme Gilles and Cooperation over the Internet Will Ferenc, Hannah Kastein, Lauren Lieu, Ryan Wilson Mentor: Jérôme Gilles UCLA Applied Mathematics REU 2011 Credit: c 2010 Bruce Avera Hunter, Courtesy of life.nbii.gov

More information

Ground Robotics Capability Conference and Exhibit. Mr. George Solhan Office of Naval Research Code March 2010

Ground Robotics Capability Conference and Exhibit. Mr. George Solhan Office of Naval Research Code March 2010 Ground Robotics Capability Conference and Exhibit Mr. George Solhan Office of Naval Research Code 30 18 March 2010 1 S&T Focused on Naval Needs Broad FY10 DON S&T Funding = $1,824M Discovery & Invention

More information

Distributed Robotics From Science to Systems

Distributed Robotics From Science to Systems Distributed Robotics From Science to Systems Nikolaus Correll Distributed Robotics Laboratory, CSAIL, MIT August 8, 2008 Distributed Robotic Systems DRS 1 sensor 1 actuator... 1 device Applications Giant,

More information

Learning Behaviors for Environment Modeling by Genetic Algorithm

Learning Behaviors for Environment Modeling by Genetic Algorithm Learning Behaviors for Environment Modeling by Genetic Algorithm Seiji Yamada Department of Computational Intelligence and Systems Science Interdisciplinary Graduate School of Science and Engineering Tokyo

More information

ARCHITECTURE AND MODEL OF DATA INTEGRATION BETWEEN MANAGEMENT SYSTEMS AND AGRICULTURAL MACHINES FOR PRECISION AGRICULTURE

ARCHITECTURE AND MODEL OF DATA INTEGRATION BETWEEN MANAGEMENT SYSTEMS AND AGRICULTURAL MACHINES FOR PRECISION AGRICULTURE ARCHITECTURE AND MODEL OF DATA INTEGRATION BETWEEN MANAGEMENT SYSTEMS AND AGRICULTURAL MACHINES FOR PRECISION AGRICULTURE W. C. Lopes, R. R. D. Pereira, M. L. Tronco, A. J. V. Porto NepAS [Center for Teaching

More information

Semi-Autonomous Parking for Enhanced Safety and Efficiency

Semi-Autonomous Parking for Enhanced Safety and Efficiency Technical Report 105 Semi-Autonomous Parking for Enhanced Safety and Efficiency Sriram Vishwanath WNCG June 2017 Data-Supported Transportation Operations & Planning Center (D-STOP) A Tier 1 USDOT University

More information

No Robot Left Behind: Coordination to Overcome Local Minima in Swarm Navigation

No Robot Left Behind: Coordination to Overcome Local Minima in Swarm Navigation No Robot Left Behind: Coordination to Overcome Local Minima in Swarm Navigation Leandro Soriano Marcolino and Luiz Chaimowicz. Abstract In this paper, we address navigation and coordination methods that

More information

Prof. Emil M. Petriu 17 January 2005 CEG 4392 Computer Systems Design Project (Winter 2005)

Prof. Emil M. Petriu 17 January 2005 CEG 4392 Computer Systems Design Project (Winter 2005) Project title: Optical Path Tracking Mobile Robot with Object Picking Project number: 1 A mobile robot controlled by the Altera UP -2 board and/or the HC12 microprocessor will have to pick up and drop

More information

Distributed Intelligent Systems W11 Machine-Learning Methods Applied to Distributed Robotic Systems

Distributed Intelligent Systems W11 Machine-Learning Methods Applied to Distributed Robotic Systems Distributed Intelligent Systems W11 Machine-Learning Methods Applied to Distributed Robotic Systems 1 Outline Revisiting expensive optimization problems Additional experimental evidence Noise-resistant

More information

CORC 3303 Exploring Robotics. Why Teams?

CORC 3303 Exploring Robotics. Why Teams? Exploring Robotics Lecture F Robot Teams Topics: 1) Teamwork and Its Challenges 2) Coordination, Communication and Control 3) RoboCup Why Teams? It takes two (or more) Such as cooperative transportation:

More information

Reinforcement Learning Simulations and Robotics

Reinforcement Learning Simulations and Robotics Reinforcement Learning Simulations and Robotics Models Partially observable noise in sensors Policy search methods rather than value functionbased approaches Isolate key parameters by choosing an appropriate

More information

Map-Merging-Free Connectivity Positioning for Distributed Robot Teams

Map-Merging-Free Connectivity Positioning for Distributed Robot Teams Map-Merging-Free Connectivity Positioning for Distributed Robot Teams Somchaya LIEMHETCHARAT a,1, Manuela VELOSO a, Francisco MELO b, and Daniel BORRAJO c a School of Computer Science, Carnegie Mellon

More information

Multi-Robot Cooperative System For Object Detection

Multi-Robot Cooperative System For Object Detection Multi-Robot Cooperative System For Object Detection Duaa Abdel-Fattah Mehiar AL-Khawarizmi international collage Duaa.mehiar@kawarizmi.com Abstract- The present study proposes a multi-agent system based

More information

Coordinated Multi-Robot Exploration using a Segmentation of the Environment

Coordinated Multi-Robot Exploration using a Segmentation of the Environment Coordinated Multi-Robot Exploration using a Segmentation of the Environment Kai M. Wurm Cyrill Stachniss Wolfram Burgard Abstract This paper addresses the problem of exploring an unknown environment with

More information

Structural Analysis of Agent Oriented Methodologies

Structural Analysis of Agent Oriented Methodologies International Journal of Information & Computation Technology. ISSN 0974-2239 Volume 4, Number 6 (2014), pp. 613-618 International Research Publications House http://www. irphouse.com Structural Analysis

More information

Dipartimento di Elettronica Informazione e Bioingegneria Robotics

Dipartimento di Elettronica Informazione e Bioingegneria Robotics Dipartimento di Elettronica Informazione e Bioingegneria Robotics Behavioral robotics @ 2014 Behaviorism behave is what organisms do Behaviorism is built on this assumption, and its goal is to promote

More information

Effect of Sensor and Actuator Quality on Robot Swarm Algorithm Performance

Effect of Sensor and Actuator Quality on Robot Swarm Algorithm Performance 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems September 25-30, 2011. San Francisco, CA, USA Effect of Sensor and Actuator Quality on Robot Swarm Algorithm Performance Nicholas

More information

Glossary of terms. Short explanation

Glossary of terms. Short explanation Glossary Concept Module. Video Short explanation Abstraction 2.4 Capturing the essence of the behavior of interest (getting a model or representation) Action in the control Derivative 4.2 The control signal

More information

Distributed Collaborative Path Planning in Sensor Networks with Multiple Mobile Sensor Nodes

Distributed Collaborative Path Planning in Sensor Networks with Multiple Mobile Sensor Nodes 7th Mediterranean Conference on Control & Automation Makedonia Palace, Thessaloniki, Greece June 4-6, 009 Distributed Collaborative Path Planning in Sensor Networks with Multiple Mobile Sensor Nodes Theofanis

More information

Confidence-Based Multi-Robot Learning from Demonstration

Confidence-Based Multi-Robot Learning from Demonstration Int J Soc Robot (2010) 2: 195 215 DOI 10.1007/s12369-010-0060-0 Confidence-Based Multi-Robot Learning from Demonstration Sonia Chernova Manuela Veloso Accepted: 5 May 2010 / Published online: 19 May 2010

More information

C URRICULUM V I T A E

C URRICULUM V I T A E C URRICULUM V I T A E Name: Surname: Date of Birth: Nationality: Address: E-mail: Website: Mobile: Ettore Ferranti Italian http://web.comlab.ox.ac.uk/oucl/people/ettore.ferranti.html Education/Qualifications

More information

Biologically Inspired Embodied Evolution of Survival

Biologically Inspired Embodied Evolution of Survival Biologically Inspired Embodied Evolution of Survival Stefan Elfwing 1,2 Eiji Uchibe 2 Kenji Doya 2 Henrik I. Christensen 1 1 Centre for Autonomous Systems, Numerical Analysis and Computer Science, Royal

More information

International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February ISSN

International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February ISSN International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February-2016 181 A NOVEL RANGE FREE LOCALIZATION METHOD FOR MOBILE SENSOR NETWORKS Anju Thomas 1, Remya Ramachandran 2 1

More information

AGENT PLATFORM FOR ROBOT CONTROL IN REAL-TIME DYNAMIC ENVIRONMENTS. Nuno Sousa Eugénio Oliveira

AGENT PLATFORM FOR ROBOT CONTROL IN REAL-TIME DYNAMIC ENVIRONMENTS. Nuno Sousa Eugénio Oliveira AGENT PLATFORM FOR ROBOT CONTROL IN REAL-TIME DYNAMIC ENVIRONMENTS Nuno Sousa Eugénio Oliveira Faculdade de Egenharia da Universidade do Porto, Portugal Abstract: This paper describes a platform that enables

More information

Structure and Synthesis of Robot Motion

Structure and Synthesis of Robot Motion Structure and Synthesis of Robot Motion Motion Synthesis in Groups and Formations I Subramanian Ramamoorthy School of Informatics 5 March 2012 Consider Motion Problems with Many Agents How should we model

More information

CYCLIC GENETIC ALGORITHMS FOR EVOLVING MULTI-LOOP CONTROL PROGRAMS

CYCLIC GENETIC ALGORITHMS FOR EVOLVING MULTI-LOOP CONTROL PROGRAMS CYCLIC GENETIC ALGORITHMS FOR EVOLVING MULTI-LOOP CONTROL PROGRAMS GARY B. PARKER, CONNECTICUT COLLEGE, USA, parker@conncoll.edu IVO I. PARASHKEVOV, CONNECTICUT COLLEGE, USA, iipar@conncoll.edu H. JOSEPH

More information

Localized Distributed Sensor Deployment via Coevolutionary Computation

Localized Distributed Sensor Deployment via Coevolutionary Computation Localized Distributed Sensor Deployment via Coevolutionary Computation Xingyan Jiang Department of Computer Science Memorial University of Newfoundland St. John s, Canada Email: xingyan@cs.mun.ca Yuanzhu

More information

Rearrangement task realization by multiple mobile robots with efficient calculation of task constraints

Rearrangement task realization by multiple mobile robots with efficient calculation of task constraints 2007 IEEE International Conference on Robotics and Automation Roma, Italy, 10-14 April 2007 WeA1.2 Rearrangement task realization by multiple mobile robots with efficient calculation of task constraints

More information

An Algorithm for Dispersion of Search and Rescue Robots

An Algorithm for Dispersion of Search and Rescue Robots An Algorithm for Dispersion of Search and Rescue Robots Lava K.C. Augsburg College Minneapolis, MN 55454 kc@augsburg.edu Abstract When a disaster strikes, people can be trapped in areas which human rescue

More information

Adaptive Action Selection without Explicit Communication for Multi-robot Box-pushing

Adaptive Action Selection without Explicit Communication for Multi-robot Box-pushing Adaptive Action Selection without Explicit Communication for Multi-robot Box-pushing Seiji Yamada Jun ya Saito CISS, IGSSE, Tokyo Institute of Technology 4259 Nagatsuta, Midori, Yokohama 226-8502, JAPAN

More information

Investigation of Navigating Mobile Agents in Simulation Environments

Investigation of Navigating Mobile Agents in Simulation Environments Investigation of Navigating Mobile Agents in Simulation Environments Theses of the Doctoral Dissertation Richárd Szabó Department of Software Technology and Methodology Faculty of Informatics Loránd Eötvös

More information

Investigating Neglect Benevolence and Communication Latency During Human-Swarm Interaction

Investigating Neglect Benevolence and Communication Latency During Human-Swarm Interaction Investigating Neglect Benevolence and Communication Latency During Human-Swarm Interaction Phillip Walker, Steven Nunnally, Michael Lewis University of Pittsburgh Pittsburgh, PA Andreas Kolling, Nilanjan

More information

Distributed Adaptation in Multi-Robot Search using Particle Swarm Optimization

Distributed Adaptation in Multi-Robot Search using Particle Swarm Optimization Distributed Adaptation in Multi-Robot Search using Particle Swarm Optimization Jim Pugh and Alcherio Martinoli Swarm-Intelligent Systems Group École Polytechnique Fédérale de Lausanne 1015 Lausanne, Switzerland

More information

Calculation on Coverage & connectivity of random deployed wireless sensor network factors using heterogeneous node

Calculation on Coverage & connectivity of random deployed wireless sensor network factors using heterogeneous node Calculation on Coverage & connectivity of random deployed wireless sensor network factors using heterogeneous node Shikha Nema*, Branch CTA Ganga Ganga College of Technology, Jabalpur (M.P) ABSTRACT A

More information

Real-time Adaptive Robot Motion Planning in Unknown and Unpredictable Environments

Real-time Adaptive Robot Motion Planning in Unknown and Unpredictable Environments Real-time Adaptive Robot Motion Planning in Unknown and Unpredictable Environments IMI Lab, Dept. of Computer Science University of North Carolina Charlotte Outline Problem and Context Basic RAMP Framework

More information

Artificial Intelligence: Implications for Autonomous Weapons. Stuart Russell University of California, Berkeley

Artificial Intelligence: Implications for Autonomous Weapons. Stuart Russell University of California, Berkeley Artificial Intelligence: Implications for Autonomous Weapons Stuart Russell University of California, Berkeley Outline AI and autonomy State of the art Likely future developments Conclusions What is AI?

More information

SPQR RoboCup 2016 Standard Platform League Qualification Report

SPQR RoboCup 2016 Standard Platform League Qualification Report SPQR RoboCup 2016 Standard Platform League Qualification Report V. Suriani, F. Riccio, L. Iocchi, D. Nardi Dipartimento di Ingegneria Informatica, Automatica e Gestionale Antonio Ruberti Sapienza Università

More information

[31] S. Koenig, C. Tovey, and W. Halliburton. Greedy mapping of terrain.

[31] S. Koenig, C. Tovey, and W. Halliburton. Greedy mapping of terrain. References [1] R. Arkin. Motor schema based navigation for a mobile robot: An approach to programming by behavior. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA),

More information

Global Variable Team Description Paper RoboCup 2018 Rescue Virtual Robot League

Global Variable Team Description Paper RoboCup 2018 Rescue Virtual Robot League Global Variable Team Description Paper RoboCup 2018 Rescue Virtual Robot League Tahir Mehmood 1, Dereck Wonnacot 2, Arsalan Akhter 3, Ammar Ajmal 4, Zakka Ahmed 5, Ivan de Jesus Pereira Pinto 6,,Saad Ullah

More information

Two Foraging Algorithms for Robot Swarms Using Only Local Communication

Two Foraging Algorithms for Robot Swarms Using Only Local Communication Two Foraging Algorithms for Robot Swarms Using Only Local Communication Nicholas R. Hoff III Amelia Sagoff Robert J. Wood and Radhika Nagpal TR-07-10 Computer Science Group Harvard University Cambridge,

More information

Formation and Cooperation for SWARMed Intelligent Robots

Formation and Cooperation for SWARMed Intelligent Robots Formation and Cooperation for SWARMed Intelligent Robots Wei Cao 1 Yanqing Gao 2 Jason Robert Mace 3 (West Virginia University 1 University of Arizona 2 Energy Corp. of America 3 ) Abstract This article

More information

Navigation of Transport Mobile Robot in Bionic Assembly System

Navigation of Transport Mobile Robot in Bionic Assembly System Navigation of Transport Mobile obot in Bionic ssembly System leksandar Lazinica Intelligent Manufacturing Systems IFT Karlsplatz 13/311, -1040 Vienna Tel : +43-1-58801-311141 Fax :+43-1-58801-31199 e-mail

More information

biologically-inspired computing lecture 20 Informatics luis rocha 2015 biologically Inspired computing INDIANA UNIVERSITY

biologically-inspired computing lecture 20 Informatics luis rocha 2015 biologically Inspired computing INDIANA UNIVERSITY lecture 20 -inspired Sections I485/H400 course outlook Assignments: 35% Students will complete 4/5 assignments based on algorithms presented in class Lab meets in I1 (West) 109 on Lab Wednesdays Lab 0

More information

Multiple-Agent Surveillance Mission with Non-Stationary Obstacles

Multiple-Agent Surveillance Mission with Non-Stationary Obstacles Multiple-Agent Surveillance Mission with Non-Stationary Obstacles Kaveh Albekord kalbekord@yahoo.com Adam Watkins awatts@ufl.edu Gloria Wiens gwiens@ufl.edu Norman Fitz-Coy nfc@ufl.edu Department of Mechanical

More information

Using Haptic Feedback in Human Robotic Swarms Interaction

Using Haptic Feedback in Human Robotic Swarms Interaction Using Haptic Feedback in Human Robotic Swarms Interaction Steven Nunnally, Phillip Walker, Mike Lewis University of Pittsburgh Nilanjan Chakraborty, Katia Sycara Carnegie Mellon University Robotic swarms

More information

Node Deployment Strategies and Coverage Prediction in 3D Wireless Sensor Network with Scheduling

Node Deployment Strategies and Coverage Prediction in 3D Wireless Sensor Network with Scheduling Advances in Computational Sciences and Technology ISSN 0973-6107 Volume 10, Number 8 (2017) pp. 2243-2255 Research India Publications http://www.ripublication.com Node Deployment Strategies and Coverage

More information

Stealthy Attacks on Pheromone Swarming

Stealthy Attacks on Pheromone Swarming Stealthy Attacks on Pheromone Swarming JANIECE KELLY Department of Computer Science Texas State University jek44@txstate.edu SETH RICHTER Department of Computer Science LeTourneau University sethrichter@letu.edu

More information

Multi-Robot Coordination. Chapter 11

Multi-Robot Coordination. Chapter 11 Multi-Robot Coordination Chapter 11 Objectives To understand some of the problems being studied with multiple robots To understand the challenges involved with coordinating robots To investigate a simple

More information

Traffic Control for a Swarm of Robots: Avoiding Group Conflicts

Traffic Control for a Swarm of Robots: Avoiding Group Conflicts Traffic Control for a Swarm of Robots: Avoiding Group Conflicts Leandro Soriano Marcolino and Luiz Chaimowicz Abstract A very common problem in the navigation of robotic swarms is when groups of robots

More information

Robot Swarms Theory Applicable to Seek and Rescue Operation

Robot Swarms Theory Applicable to Seek and Rescue Operation Robot Swarms Theory Applicable to Seek and Rescue Operation José León 1 Gustavo A. Cardona 3 Andres Botello 2 and Juan M. Calderón 1,2 1 Department of Electronic Engineering, Universidad Santo Tomás, Colombia

More information

AN IMPROVED NEURAL NETWORK-BASED DECODER SCHEME FOR SYSTEMATIC CONVOLUTIONAL CODE. A Thesis by. Andrew J. Zerngast

AN IMPROVED NEURAL NETWORK-BASED DECODER SCHEME FOR SYSTEMATIC CONVOLUTIONAL CODE. A Thesis by. Andrew J. Zerngast AN IMPROVED NEURAL NETWORK-BASED DECODER SCHEME FOR SYSTEMATIC CONVOLUTIONAL CODE A Thesis by Andrew J. Zerngast Bachelor of Science, Wichita State University, 2008 Submitted to the Department of Electrical

More information

Distribution Statement A (Approved for Public Release, Distribution Unlimited)

Distribution Statement A (Approved for Public Release, Distribution Unlimited) www.darpa.mil 14 Programmatic Approach Focus teams on autonomy by providing capable Government-Furnished Equipment Enables quantitative comparison based exclusively on autonomy, not on mobility Teams add

More information

Correcting Odometry Errors for Mobile Robots Using Image Processing

Correcting Odometry Errors for Mobile Robots Using Image Processing Correcting Odometry Errors for Mobile Robots Using Image Processing Adrian Korodi, Toma L. Dragomir Abstract - The mobile robots that are moving in partially known environments have a low availability,

More information

Multi-Robot Systems, Part II

Multi-Robot Systems, Part II Multi-Robot Systems, Part II October 31, 2002 Class Meeting 20 A team effort is a lot of people doing what I say. -- Michael Winner. Objectives Multi-Robot Systems, Part II Overview (con t.) Multi-Robot

More information

Robotic Systems ECE 401RB Fall 2007

Robotic Systems ECE 401RB Fall 2007 The following notes are from: Robotic Systems ECE 401RB Fall 2007 Lecture 14: Cooperation among Multiple Robots Part 2 Chapter 12, George A. Bekey, Autonomous Robots: From Biological Inspiration to Implementation

More information

Randomized Motion Planning for Groups of Nonholonomic Robots

Randomized Motion Planning for Groups of Nonholonomic Robots Randomized Motion Planning for Groups of Nonholonomic Robots Christopher M Clark chrisc@sun-valleystanfordedu Stephen Rock rock@sun-valleystanfordedu Department of Aeronautics & Astronautics Stanford University

More information

URUS Ubiquitous Networking Robotics for Urban Settings

URUS Ubiquitous Networking Robotics for Urban Settings URUS Ubiquitous Networking Robotics for Urban Settings Prof. Alberto Sanfeliu (Coordinator) Instituto de Robótica (IRI) (CSIC-UPC) Technical University of Catalonia May 19th, 2008 http://www-iri-upc.es/groups/lrobots

More information

The Future of AI A Robotics Perspective

The Future of AI A Robotics Perspective The Future of AI A Robotics Perspective Wolfram Burgard Autonomous Intelligent Systems Department of Computer Science University of Freiburg Germany The Future of AI My Robotics Perspective Wolfram Burgard

More information

Evolution of Sensor Suites for Complex Environments

Evolution of Sensor Suites for Complex Environments Evolution of Sensor Suites for Complex Environments Annie S. Wu, Ayse S. Yilmaz, and John C. Sciortino, Jr. Abstract We present a genetic algorithm (GA) based decision tool for the design and configuration

More information

Artificial Neural Network based Mobile Robot Navigation

Artificial Neural Network based Mobile Robot Navigation Artificial Neural Network based Mobile Robot Navigation István Engedy Budapest University of Technology and Economics, Department of Measurement and Information Systems, Magyar tudósok körútja 2. H-1117,

More information